1
|
Masri S, Fauzi MB, Rajab NF, Lee WH, Zainal Abidin DA, Siew EL. In vitro 3D skin culture and its sustainability in toxicology: a narrative review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:476-499. [PMID: 39359233 DOI: 10.1080/21691401.2024.2407617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
In current toxicological research, 2D cell cultures and animal models are well- accepted and commonly employed methods. However, these approaches have many drawbacks and are distant from the actual environment in human. To embrace this, great efforts have been made to provide alternative methods for non-animal skin models in toxicology studies with the need for more mechanistically informative methods. This review focuses on the current state of knowledge regarding the in vitro 3D skin model methods, with different functional states that correspond to the sustainability in the field of toxicology testing. We discuss existing toxicology testing methods using in vitro 3D skin models which provide a better understanding of the testing requirements that are needed. The challenges and future landscape in using the in vitro 3D skin models in toxicology testing are also discussed. We are confident that the in vitro 3D skin models application may become an important tool in toxicology in the context of risk assessment.
Collapse
Affiliation(s)
- Syafira Masri
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nor Fadilah Rajab
- Centre for Health Aging and Wellness, Faculty of Helath Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wing-Hin Lee
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Perak, Malaysia
| | | | - Ee Ling Siew
- ASASIpintar Unit, Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Sun J, Lai YC, Lin YW, Fang CH, Sun JS. Enhancing cutaneous wound healing: A study on the beneficial effects of nano-gelatin scaffold in rat models. Int J Artif Organs 2024; 47:280-289. [PMID: 38624101 DOI: 10.1177/03913988241244661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The challenges in achieving optimal outcomes for wound healing have persisted for decades, prompting ongoing exploration of interventions and management strategies. This study focuses on assessing the potential benefits of implementing a nano-gelatin scaffold for wound healing. Using a rat skin defect model, full-thickness incisional wounds were created on each side of the thoracic-lumbar regions after anesthesia. The wounds were left un-sutured, with one side covered by a gelatin nano-fibrous membrane and the other left uncovered. Wound size changes were measured on days 1, 4, 7, and 14, and on day 14, rats were sacrificed for tissue sample excision, examined with hematoxylin and eosin, and Masson's trichrome stain. Statistical comparisons were performed. The gelatin nanofibers exhibited a smooth surface with a fiber diameter of 260 ± 40 nm and porous structures with proper interconnectivity. Throughout the 14-day experimental period, significant differences in the percentage of wound closure were observed between the groups. Histological scores were higher in the experiment group, indicating less inflammation but dense and well-aligned collagen fiber formation. A preliminary clinical trial on diabetic ulcers also demonstrated promising results. This study highlights the potential of the nano-collagen fibrous membrane to reduce inflammatory infiltration and enhance fibroblast differentiation into myofibroblasts during the early stages of cutaneous wound healing. The nano-fibrous collagen membrane emerges as a promising candidate for promoting wound healing, with considerable potential for future therapeutic applications.
Collapse
Affiliation(s)
- Jason Sun
- Carmel Catholic High School, Mundelein, IL, USA
| | - Yi-Chung Lai
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsiang Fang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Orthopedic Surgery, En Chu Kong Hospital, New Taipei City, Taiwan
| |
Collapse
|
3
|
Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B. Tissue Engineered Skin Substitutes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:143-188. [PMID: 29855826 DOI: 10.1007/5584_2018_226] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nematizadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Farazandeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Dixit S, Baganizi DR, Sahu R, Dosunmu E, Chaudhari A, Vig K, Pillai SR, Singh SR, Dennis VA. Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng 2017; 11:49. [PMID: 29255480 PMCID: PMC5729423 DOI: 10.1186/s13036-017-0089-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/17/2017] [Indexed: 12/29/2022] Open
Abstract
The repair or replacement of damaged skins is still an important, challenging public health problem. Immune acceptance and long-term survival of skin grafts represent the major problem to overcome in grafting given that in most situations autografts cannot be used. The emergence of artificial skin substitutes provides alternative treatment with the capacity to reduce the dependency on the increasing demand of cadaver skin grafts. Over the years, considerable research efforts have focused on strategies for skin repair or permanent skin graft transplantations. Available skin substitutes include pre- or post-transplantation treatments of donor cells, stem cell-based therapies, and skin equivalents composed of bio-engineered acellular or cellular skin substitutes. However, skin substitutes are still prone to immunological rejection, and as such, there is currently no skin substitute available to overcome this phenomenon. This review focuses on the mechanisms of skin rejection and tolerance induction and outlines in detail current available strategies and alternatives that may allow achieving full-thickness skin replacement and repair.
Collapse
Affiliation(s)
- Saurabh Dixit
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA.,Immunity, Inflammation, and Disease Laboratory, NIH/NIEHS, Durham, 27709 NC USA
| | - Dieudonné R Baganizi
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Rajnish Sahu
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Ejowke Dosunmu
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Atul Chaudhari
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Komal Vig
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Shreekumar R Pillai
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Shree R Singh
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| | - Vida A Dennis
- Center for Nanobiotechnology Research and Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104 USA
| |
Collapse
|
5
|
Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, Whitaker IS. Skin tissue engineering using 3D bioprinting: An evolving research field. J Plast Reconstr Aesthet Surg 2017; 71:615-623. [PMID: 29306639 DOI: 10.1016/j.bjps.2017.12.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Commercially available tissue engineered skin remains elusive despite extensive research because the multi-stratified anisotropic structure is difficult to replicate in vitro using traditional tissue engineering techniques. Bioprinting, involving computer-controlled deposition of cells and scaffolds into spatially controlled patterns, is able to control not only the macro but also micro and nanoarchitecture and could offer the potential to more faithfully replicate native skin. METHODS We conducted a literature review using PubMed, EMBASE and Web of Science for studies on skin 3D bioprinting between 2009 and 2016, evaluating the bioprinting technique, cell source, scaffold type and in vitro and in vivo outcomes. RESULTS We outline the evolution of biological skin replacements, principles of bioprinting and how they apply to the skin tissue engineering field, potential clinical applications as well the current limitations and future avenues for research. Of the studies analysed, the most common types of bioinks consisted of keratinocytes and fibroblasts combined with collagen, although stem cells are gaining increasing recognition. Laser assisted deposition was the most common printing modality, although ink-jet and pneumatic extrusion have also been tested. Bioprinted skin promoted accelerated wound healing, was able to mimic stratified epidermis but not the thick, elastic, vascular dermis. CONCLUSIONS Although 3D bioprinting shows promise in engineering skin, evidenced by large collective investments from the cosmetic industry, the research is still in its infancy. The resolution, vascularity, optimal cell and scaffold combinations and cost of bioprinted skin are hurdles that need to be overcome before the clinical applicability can be realised. Small scale 3D skin tissue models for cosmetics, drug and toxicity testing as well as tumour modelling are likely to be translated first before we see this technology used in reconstructive surgery patients.
Collapse
Affiliation(s)
- Sam P Tarassoli
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Ayesha Al-Sabah
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Neng Gao
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Sairan Whitaker
- Department of Dermatology, Royal Gwent Hospital, Newport, UK
| | - Shareen Doak
- In Vitro Toxicology Research Group, Swansea University Medical School, Swansea, UK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK.
| |
Collapse
|
6
|
Wang X, Wu P, Hu X, You C, Guo R, Shi H, Guo S, Zhou H, Chaoheng Y, Zhang Y, Han C. Polyurethane membrane/knitted mesh-reinforced collagen–chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure. J Mech Behav Biomed Mater 2016; 56:120-133. [DOI: 10.1016/j.jmbbm.2015.11.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 01/19/2023]
|
7
|
Suarez E, Syed F, Rasgado TA, Walmsley A, Mandal P, Bayat A. Skin equivalent tensional force alters keloid fibroblast behavior and phenotype. Wound Repair Regen 2014; 22:557-68. [DOI: 10.1111/wrr.12215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Edna Suarez
- Plastic & Reconstructive Surgery Research; Manchester Institute of Biotechnology; University of Manchester; Manchester United Kingdom
- Bioengineering Group; School of Materials; University of Manchester; Manchester United Kingdom
| | - Farhatullah Syed
- Plastic & Reconstructive Surgery Research; Manchester Institute of Biotechnology; University of Manchester; Manchester United Kingdom
| | - Teresa A. Rasgado
- Bioengineering Group; School of Materials; University of Manchester; Manchester United Kingdom
| | - Alan Walmsley
- Bioengineering Group; School of Materials; University of Manchester; Manchester United Kingdom
| | - Parthasarathi Mandal
- Bioengineering Group; School of Mechanical, Aerospace and Civil Engineering; University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research; Manchester Institute of Biotechnology; University of Manchester; Manchester United Kingdom
- Bioengineering Group; School of Materials; University of Manchester; Manchester United Kingdom
- University Hospital of South Manchester NHS Foundation Trust; Faculty of Medical and Human Sciences; Institute of Inflammation and Repair; Manchester Academic Health Science Centre; University of Manchester; Manchester United Kingdom
| |
Collapse
|
8
|
Matoušková E, Mestak O. The effect of different biologic and biosynthetic wound covers on keratinocyte growth, stratification and differentiation in vitro. J Tissue Eng 2014; 5:2041731414554966. [PMID: 25383177 PMCID: PMC4221924 DOI: 10.1177/2041731414554966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/04/2014] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to compare, by means of in vitro cultivation technique, five marketed brands of wound covers used in the treatment of burns and other skin defects (Biobrane®, Suprathel®, Veloderm®, Xe-Derma®, and Xenoderm®) for their ability to stimulate the keratinocyte growth, stratification, and differentiation. In three independent experiments, human keratinocytes were grown on the tested covers in organotypic cultures by the 3T3 feeder layer technique. Vertical paraffin sections of the wound covers with keratinocytes were processed using hematoxylin–eosin staining and immunostaining for involucrin. Keratinocyte populations on the dressings were assessed for (1) number of keratinocyte strata (primary variable), (2) quantitative growth, (3) thickness of the keratinocyte layer, and (4) cell differentiation. The Xe-Derma wound cover provided the best support to keratinocyte proliferation and stratification, with the number of keratinocyte strata significantly (p < 0.05) higher in comparison to all products studied, except Xenoderm. However, in contrast to Xe-Derma, Xenoderm did not significantly differ from the other dressings. The results of this in vitro study show that the brands based on porcine dermal matrix possess the strongest effect on keratinocyte proliferation and stratification. The distinctive position of Xe-Derma may be related to its composition, where natural dermal fibers form a smooth surface, similar to the basement membrane. Furthermore, the results indicate that in vitro evaluation of effects on epithelial growth may accelerate the development of new bio-engineering-based wound covers.
Collapse
Affiliation(s)
- Eva Matoušková
- Prague Burn Centre, 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ondrej Mestak
- Department of Plastic Surgery, Bulovka Hospital, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
9
|
|
10
|
Zonari A, Cerqueira MT, Novikoff S, Goes AM, Marques AP, Correlo VM, Reis RL. Poly(hydroxybutyrate-co
-hydroxyvalerate) Bilayer Skin Tissue Engineering Constructs with Improved Epidermal Rearrangement. Macromol Biosci 2014; 14:977-90. [DOI: 10.1002/mabi.201400005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/04/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandra Zonari
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology; Institute of Biological Sciences, Federal University of Minas Gerais; Caixa Postal 486, CEP 31.270-901 Belo Horizonte Minas Gerais Brazil
| | - Mariana T. Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
| | - Silviene Novikoff
- Department of Nephrology; Federal University of São Paulo; CEP: 04.023-900 São Paulo- SP Brazil
| | - Alfredo M. Goes
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology; Institute of Biological Sciences, Federal University of Minas Gerais; Caixa Postal 486, CEP 31.270-901 Belo Horizonte Minas Gerais Brazil
| | - Alexandra P. Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
| | - Vitor M. Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães; Portugal
| |
Collapse
|
11
|
Garland CB, Pomerantz JH. Regenerative strategies for craniofacial disorders. Front Physiol 2012; 3:453. [PMID: 23248598 PMCID: PMC3521957 DOI: 10.3389/fphys.2012.00453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/12/2012] [Indexed: 01/26/2023] Open
Abstract
Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new “regenerative” approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders.
Collapse
Affiliation(s)
- Catharine B Garland
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California San Francisco San Francisco, CA, USA ; Craniofacial and Mesenchymal Biology Program, University of California San Francisco San Francisco, CA, USA
| | | |
Collapse
|
12
|
|