1
|
Weldon KC, Longaker MT, Ambrosi TH. Harnessing the diversity and potential of endogenous skeletal stem cells for musculoskeletal tissue regeneration. Stem Cells 2025; 43:sxaf006. [PMID: 39945760 PMCID: PMC11892563 DOI: 10.1093/stmcls/sxaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 03/11/2025]
Abstract
In our aging society, the degeneration of the musculoskeletal system and adjacent tissues is a growing orthopedic concern. As bones age, they become more fragile, increasing the risk of fractures and injuries. Furthermore, tissues like cartilage accumulate damage, leading to widespread joint issues. Compounding this, the regenerative capacity of these tissues declines with age, exacerbating the consequences of fractures and cartilage deterioration. With rising demand for fracture and cartilage repair, bone-derived stem cells have attracted significant research interest. However, the therapeutic use of stem cells has produced inconsistent results, largely due to ongoing debates and uncertainties regarding the precise identity of the stem cells responsible for musculoskeletal growth, maintenance and repair. This review focuses on the potential to leverage endogenous skeletal stem cells (SSCs)-a well-defined population of stem cells with specific markers, reliable isolation techniques, and functional properties-in bone repair and cartilage regeneration. Understanding SSC behavior in response to injury, including their activation to a functional state, could provide insights into improving treatment outcomes. Techniques like microfracture surgery, which aim to stimulate SSC activity for cartilage repair, are of particular interest. Here, we explore the latest advances in how such interventions may modulate SSC function to enhance bone healing and cartilage regeneration.
Collapse
Affiliation(s)
- Kelly C Weldon
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
- School of Medicine, University of California, Sacramento, CA 95817, United States
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| |
Collapse
|
2
|
Jia X, Zhang G, Yu D. Application of extracellular vesicles in diabetic osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1466775. [PMID: 39720256 PMCID: PMC11666354 DOI: 10.3389/fendo.2024.1466775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024] Open
Abstract
As the population ages, the occurrence of osteoporosis is becoming more common. Diabetes mellitus is one of the factors in the development of osteoporosis. Compared with the general population, the incidence of osteoporosis is significantly higher in diabetic patients. Diabetic osteoporosis (DOP) is a metabolic bone disease characterized by abnormal bone tissue structure due to hyperglycemia and insulin resistance, reduced bone strength and increased risk of fractures. This is a complex mechanism that occurs at the cellular level due to factors such as blood vessels, inflammation, and hyperglycemia and insulin resistance. Although the application of some drugs in clinical practice can reduce the occurrence of DOP, the incidence of fractures caused by DOP is still very high. Extracellular vesicles (EVs) are a new communication mode between cells, which can transfer miRNAs and proteins from mother cells to target cells through membrane fusion, thereby regulating the function of target cells. In recent years, the role of EVs in the pathogenesis of DOP has been widely demonstrated. In this article, we first describe the changes in the bone microenvironment of osteoporosis. Second, we describe the pathogenesis of DOP. Finally, we summarize the research progress and challenges of EVs in DOP.
Collapse
Affiliation(s)
- Xiaopeng Jia
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gongzi Zhang
- Department of Rehabilitation Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Deshui Yu
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
3
|
Li Z, Li Y, Liu C, Gu Y, Han G. Research progress of the mechanisms and applications of ginsenosides in promoting bone formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155604. [PMID: 38614042 DOI: 10.1016/j.phymed.2024.155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS Ginsenoside monomers regulate signaling pathways such as WNT/β-catenin, FGF, and BMP/TGF-β, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/β-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.
Collapse
Affiliation(s)
- Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
4
|
Chen S, Cheng D, Bao W, Ding R, Shen Z, Huang W, Lu Y, Zhang P, Sun Y, Chen H, Shen C, Wang Y. Polydopamine-Functionalized Strontium Alginate/Hydroxyapatite Composite Microhydrogel Loaded with Vascular Endothelial Growth Factor Promotes Bone Formation and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4462-4477. [PMID: 38240605 DOI: 10.1021/acsami.3c16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Critical-size bone defects are a common and intractable clinical problem that typically requires filling in with surgical implants to facilitate bone regeneration. Considering the limitations of autologous bone and allogeneic bone in clinical applications, such as secondary damage or immunogenicity, injectable microhydrogels with osteogenic and angiogenic effects have received considerable attention. Herein, polydopamine (PDA)-functionalized strontium alginate/nanohydroxyapatite (Sr-Alg/nHA) composite microhydrogels loaded with vascular endothelial growth factor (VEGF) were prepared using microfluidic technology. This composite microhydrogel released strontium ions stably for at least 42 days to promote bone formation. The PDA coating can release VEGF in a controlled manner, effectively promote angiogenesis around bone defects, and provide nutritional support for new bone formation. In in vitro experiments, the composite microhydrogels had good biocompatibility. The PDA coating greatly improves cell adhesion on the composite microhydrogel and provides good controlled release of VEGF. Therefore, this composite microhydrogel effectively promotes osteogenic differentiation and vascularization. In in vivo experiments, composite microhydrogels were injected into critical-size bone defects in the skull of rats, and they were shown by microcomputed tomography and tissue sections to be effective in promoting bone regeneration. These findings demonstrated that this novel microhydrogel effectively promotes bone formation and angiogenesis at the site of bone defects.
Collapse
Affiliation(s)
- Shi Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Dawei Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
| | - Weimin Bao
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Ruyuan Ding
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, P. R. China
| | - Zhenguo Shen
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Wenkai Huang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Yifan Lu
- Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, SAR, P. R. China
| | - Panpan Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Yiwei Sun
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Hemu Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Yuanyin Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
5
|
Sharma G, Pothuraju R, Kanchan RK, Batra SK, Siddiqui JA. Chemokines network in bone metastasis: Vital regulators of seeding and soiling. Semin Cancer Biol 2022; 86:457-472. [PMID: 35124194 PMCID: PMC9744380 DOI: 10.1016/j.semcancer.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
Abstract
Chemokines are well equipped with chemo-attractive signals that can regulate cancer cell trafficking to specific organ sites. Currently, updated concepts have revealed the diverse role of chemokines in the biology of cancer initiation and progression. Genomic instabilities and alterations drive tumor heterogeneity, providing more options for the selection and metastatic progression to cancer cells. Tumor heterogeneity and acquired drug resistance are the main obstacles in managing cancer therapy and the primary root cause of metastasis. Studies emphasize that multiple chemokine/receptor axis are involved in cancer cell-mediated organ-specific distant metastasis. One of the persuasive mechanisms for heterogeneity and subsequent events is sturdily interlinked with the crosstalk between chemokines and their receptors on cancer cells and tissue-specific microenvironment. Among different metastatic niches, skeletal metastasis is frequently observed in the late stages of prostate, breast, and lung cancer and significantly reduces the survival of cancer patients. Therefore, it is crucial to elucidate the role of chemokines and their receptors in metastasis and bone remodeling. Here, we review the potential chemokine/receptor axis in tumorigenesis, tumor heterogeneity, metastasis, and vicious cycle in bone microenvironment.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana Kumari Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
7
|
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 2020; 21:696-711. [PMID: 32901139 DOI: 10.1038/s41580-020-00279-w] [Citation(s) in RCA: 595] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Bone development occurs through a series of synchronous events that result in the formation of the body scaffold. The repair potential of bone and its surrounding microenvironment - including inflammatory, endothelial and Schwann cells - persists throughout adulthood, enabling restoration of tissue to its homeostatic functional state. The isolation of a single skeletal stem cell population through cell surface markers and the development of single-cell technologies are enabling precise elucidation of cellular activity and fate during bone repair by providing key insights into the mechanisms that maintain and regenerate bone during homeostasis and repair. Increased understanding of bone development, as well as normal and aberrant bone repair, has important therapeutic implications for the treatment of bone disease and ageing-related degeneration.
Collapse
Affiliation(s)
- Ankit Salhotra
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh N Shah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Wang L, Lan Y, Du Y, Xiang X, Tian W, Yang B, Li T, Zhai Q. Plastin 1 promotes osteoblast differentiation by regulating intracellular Ca2. Acta Biochim Biophys Sin (Shanghai) 2020; 52:563-569. [PMID: 32318696 DOI: 10.1093/abbs/gmaa027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Osteoblast differentiation is a key process in bone homeostasis. Mutations in plastin 3 have been reported to be responsible for X-linked osteoporosis. Plastin 3 and plastin 2 act synergistically to regulate osteoblast differentiation. However, the bone-related function of plastin 1, another family member of plastins, has not been assessed. In this study, we addressed the functional importance of plastin 1 in osteoblasts. We characterized the expression patterns of plastin 1 during osteoblast differentiation and revealed its important role in this process. In both HEK 293T and hFOB1.19 cells, plastin 1 was demonstrated to regulate intracellular Ca2+. Accordingly, we revealed that higher Ca2+ concentration promotes osteoblast differentiation. Finally, we found that plastin 1 may play a compensatory role in osteoporosis patients with plastin 3 deficiency. Together, our results indicate that plastin 1 promotes osteoblast differentiation by regulating intracellular Ca2+. Our work sheds new light on the role played by plastins in bone homeostasis.
Collapse
Affiliation(s)
- Lianqing Wang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yongting Lan
- Division of Gastroenterology, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Yanqin Du
- Department of Gynecology, Peking University Care Luzhong Hospital, Zibo 255400, China
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Wenxiu Tian
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Baoye Yang
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Tao Li
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| | - Qiaoli Zhai
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo 255036, China
| |
Collapse
|
9
|
Novais A, Lesieur J, Sadoine J, Slimani L, Baroukh B, Saubaméa B, Schmitt A, Vital S, Poliard A, Hélary C, Rochefort GY, Chaussain C, Gorin C. Priming Dental Pulp Stem Cells from Human Exfoliated Deciduous Teeth with Fibroblast Growth Factor-2 Enhances Mineralization Within Tissue-Engineered Constructs Implanted in Craniofacial Bone Defects. Stem Cells Transl Med 2019; 8:844-857. [PMID: 31016898 PMCID: PMC6646701 DOI: 10.1002/sctm.18-0182] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
The craniofacial area is prone to trauma or pathologies often resulting in large bone damages. One potential treatment option is the grafting of a tissue-engineered construct seeded with adult mesenchymal stem cells (MSCs). The dental pulp appears as a relevant source of MSCs, as dental pulp stem cells display strong osteogenic properties and are efficient at bone formation and repair. Fibroblast growth factor-2 (FGF-2) and/or hypoxia primings were shown to boost the angiogenesis potential of dental pulp stem cells from human exfoliated deciduous teeth (SHED). Based on these findings, we hypothesized here that these primings would also improve bone formation in the context of craniofacial bone repair. We found that both hypoxic and FGF-2 primings enhanced SHED proliferation and osteogenic differentiation into plastically compressed collagen hydrogels, with a much stronger effect observed with the FGF-2 priming. After implantation in immunodeficient mice, the tissue-engineered constructs seeded with FGF-2 primed SHED mediated faster intramembranous bone formation into critical size calvarial defects than the other groups (no priming and hypoxia priming). The results of this study highlight the interest of FGF-2 priming in tissue engineering for craniofacial bone repair. Stem Cells Translational Medicine 2019;8:844&857.
Collapse
Affiliation(s)
- Anita Novais
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
- AP‐HP Département d'OdontologieHôpitaux Universitaires PNVS, Charles Foix et Henri MondorIle de FranceFrance
| | - Julie Lesieur
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Jérémy Sadoine
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Lotfi Slimani
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Brigitte Baroukh
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Bruno Saubaméa
- Cellular and Molecular Imaging FacilityInserm US25, CNRS UMS 3612, Faculté de Pharmacie de Paris, Université Paris Descartes Sorbonne Paris CitéParisFrance
| | - Alain Schmitt
- Cochin Institute, Transmission Electron Microscopy Platform, INSERM U1016, CNRS UMR8104Université Paris Descartes Sorbonne Paris CitéParisFrance
| | - Sibylle Vital
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
- AP‐HP Département d'OdontologieHôpitaux Universitaires PNVS, Charles Foix et Henri MondorIle de FranceFrance
| | - Anne Poliard
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Christophe Hélary
- Laboratoire de Chimie de la Matière Condensée de ParisSorbonne Universités, CNRS, Collège de FranceParisFrance
| | - Gaël Y. Rochefort
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Catherine Chaussain
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
- AP‐HP Département d'OdontologieHôpitaux Universitaires PNVS, Charles Foix et Henri MondorIle de FranceFrance
| | - Caroline Gorin
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
- AP‐HP Département d'OdontologieHôpitaux Universitaires PNVS, Charles Foix et Henri MondorIle de FranceFrance
| |
Collapse
|
10
|
Collignon AM, Castillo-Dali G, Gomez E, Guilbert T, Lesieur J, Nicoletti A, Acuna-Mendoza S, Letourneur D, Chaussain C, Rochefort GY, Poliard A. Mouse Wnt1-CRE
-Rosa
Tomato
Dental Pulp Stem Cells Directly Contribute to the Calvarial Bone Regeneration Process. Stem Cells 2019; 37:701-711. [DOI: 10.1002/stem.2973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Anne-Margaux Collignon
- EA 2496 Orofacial Pathologies, Imagery, and Biotherapies, Dental School Faculty; University Paris Descartes, and Life Imaging Platform (PIV); Montrouge France
- University Hospitals, AP-HP; Paris France
| | - Gabriel Castillo-Dali
- EA 2496 Orofacial Pathologies, Imagery, and Biotherapies, Dental School Faculty; University Paris Descartes, and Life Imaging Platform (PIV); Montrouge France
| | - Eduardo Gomez
- EA 2496 Orofacial Pathologies, Imagery, and Biotherapies, Dental School Faculty; University Paris Descartes, and Life Imaging Platform (PIV); Montrouge France
| | - Thomas Guilbert
- Plateforme IMAG'IC, Institut Cochin, Inserm U1016-CNRS UMR8104; University Paris Descartes; Paris France
| | - Julie Lesieur
- EA 2496 Orofacial Pathologies, Imagery, and Biotherapies, Dental School Faculty; University Paris Descartes, and Life Imaging Platform (PIV); Montrouge France
| | - Antonino Nicoletti
- INSERM U1148, Laboratory of Vascular Translational Science; University Paris Diderot, University Paris 13, Bichat Hospital, and Département Hospitalo-Universitaire (DHU) FIRE; Paris France
| | - Soledad Acuna-Mendoza
- EA 2496 Orofacial Pathologies, Imagery, and Biotherapies, Dental School Faculty; University Paris Descartes, and Life Imaging Platform (PIV); Montrouge France
| | - Didier Letourneur
- INSERM U1148, Laboratory of Vascular Translational Science; University Paris Diderot, University Paris 13, Bichat Hospital, and Département Hospitalo-Universitaire (DHU) FIRE; Paris France
| | - Catherine Chaussain
- EA 2496 Orofacial Pathologies, Imagery, and Biotherapies, Dental School Faculty; University Paris Descartes, and Life Imaging Platform (PIV); Montrouge France
- University Hospitals, AP-HP; Paris France
| | - Gael Y. Rochefort
- EA 2496 Orofacial Pathologies, Imagery, and Biotherapies, Dental School Faculty; University Paris Descartes, and Life Imaging Platform (PIV); Montrouge France
| | - Anne Poliard
- EA 2496 Orofacial Pathologies, Imagery, and Biotherapies, Dental School Faculty; University Paris Descartes, and Life Imaging Platform (PIV); Montrouge France
| |
Collapse
|