1
|
Yuan ZS, Lu LS, Hu Y. Cerebrospinal fluid leakage complicated by intracranial hematoma and cervical infection following resection of dumbbell schwannoma in the cervical canal: a case report and literature review. BMC Musculoskelet Disord 2025; 26:305. [PMID: 40155914 PMCID: PMC11951519 DOI: 10.1186/s12891-025-08484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/02/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Haemorrhagic cerebral infarction with cervical infection is a severe and complex complication in spinal surgery. This paper report a case of intracranial hematoma secondary to cerebrospinal fluid leakage after surgery for dumbbell tumor of cervical spine. CASE PRESENTATIONS The patient suffered from postoperative cerebrospinal fluid leakage followed by hemorrhagic cerebral infarction, unilateral limb sensorimotor dysfunction and language dysfunction, and was treated conservatively. Combined with cervical infection, the treatment was anti-inflammatory and lumbar puncture drainage. The infection of the patient was cured, and the symptoms related to hemorrhagic cerebral infarction were better than before. RESULTS The case showed cerebrospinal fluid leakage after the operation of dumbbell tumor of cervical spine, which caused hemorrhagic cerebral infarction with typical clinical symptoms. CONCLUSIONS The risk complications of intracranial hemorrhage and cervical infection should be paid attention to when cerebrospinal fluid loss occurs in patients with cervical dumbbell tumor after surgery.
Collapse
Affiliation(s)
- Zhen-Shan Yuan
- Department of Spinal Surgery, Ningbo No.6 Hospital, NingBo, 315040, Zhejiang Province, People's Republic of China.
| | - Lian-Song Lu
- Department of Spinal Surgery, Ningbo No.6 Hospital, NingBo, 315040, Zhejiang Province, People's Republic of China
| | - Yong Hu
- Department of Spinal Surgery, Ningbo No.6 Hospital, NingBo, 315040, Zhejiang Province, People's Republic of China
| |
Collapse
|
2
|
Rong H, Sun S, Lu M, Zhang Y, Liu L, Guo Z, Zhang Z, Ye Z, Zhang J, Chen B, Li S, Dong A. Super-hydrophilic and super-lubricating Zwitterionic hydrogel coatings coupled with polyurethane to reduce postoperative dura mater adhesions and infections. Acta Biomater 2025; 192:206-217. [PMID: 39675498 DOI: 10.1016/j.actbio.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The dura trauma or large defects due to neurosurgical procedures can result in potential complications. Dural replacements have proven effective to reduce the risk of seizures, meningitis, cerebrospinal fluid leakage, cerebral herniation, and infection. Although various artificial dural patches have been developed, addressing iatrogenic infections and cerebral adhesions resulting from patches implantation remains a challenge. This study employed a network interpenetration modification strategy to introduce super-hydrophilic and super-lubricity zwitterionic hydrogel coatings on polyurethane Neuro-Patch® (NP®) dura mater patch. The successful modification with the hydrogel coating preserved the intrinsic properties of the NP®, such as their anti-leakage and tensile strength capabilities, while effectively reducing biofouling on the surface of the patches. Additionally, by constructing subdural implantation for each dura mater substitute in rabbits, we observed that artificial dura mater patches modified with the hydrogel coating effectively reduced the incidence of postoperative cerebral adhesions and infections. This suggests a promising application prospect of the hydrogel coating in dural repair. STATEMENT OF SIGNIFICANCE: The development of dural substitutes with anti-leakage, anti-adhesion and anti-infection functions is the key to the treatment of dural defects and cerebrospinal fluid leakage during trauma or neurosurgery. In this study, the amphoteric ionic hydrogel coating was firmly modified on the surface of polyurethane with a mild modification process to give the patch super-hydrophilic and super-lubricating properties. The adhesion of non-specific proteins and bacteria is effectively reduced. The rabbit dural defect repair model showed that the introduction of zwitterionic hydrogel coating effectively reduced the occurrence of postoperative infection, and no tissue adhesion was observed. Taken together, this study offers a promising way to enhance the performance of artificial dural patches, potentially benefiting patients undergoing neurosurgery.
Collapse
Affiliation(s)
- Hui Rong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Shupeng Sun
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumor New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Manhua Lu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Yiqun Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Lingyuan Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ziwei Guo
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zimeng Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhanpeng Ye
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, PR China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Budong Chen
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumor New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
3
|
Zhang J, Pei J, Li Y, Han Y, Song B. Reconstruction of Scalp and Skull Defects by a Free Anterolateral Thigh Flap Combined With Fascia Lata and Vastus Lateralis Muscle. J Craniofac Surg 2024; 35:1934-1937. [PMID: 38752727 DOI: 10.1097/scs.0000000000010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Reconstruction of composite scalp and skull defects is a great challenge for plastic surgeons, and this study aimed to report the therapeutic regimen of using free ALT flaps with fascia lata and vastus lateralis muscle to cover scalp and cranial defects. METHODS A retrospective analysis was performed including 10 patients with composite scalp and skull defects who were treated with a free ALT flap with fascia lata and vastus lateralis muscle from January 2012 to June 2020. All patients underwent a 1-stage operation and were followed up for 1 year with clinical data including sex, age, etiology, skull defect area, scalp defect area, flap area, dura mater involvement, recipient vessel, donor site repair, lumbar cistern drainage, and complications. RESULTS All flaps survived well, 2 patients developed complications, one had cerebrospinal fluid leakage, and another experienced partial skin graft necrosis; All patients were satisfied with both the appearance and functional outcomes of the procedure. CONCLUSION Free tissue transplantation is an effective method for large defects of the scalp and skull. The combination of a free ALT flap with fascia lata and vastus lateralis muscle, which has a long pedicle, convenient flap designs, less donor-site morbidity, and effective prevention of cerebrospinal fluid leakage, is an ideal choice to repair the composite scalp and cranial defects in stage 1.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital of Fourth Military Medical University, Xi'an, Shannxi Province
| | - Jiaomiao Pei
- Department of Plastic and Reconstructive Surgery, Xijing Hospital of Fourth Military Medical University, Xi'an, Shannxi Province
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital of Fourth Military Medical University, Xi'an, Shannxi Province
| | - Yan Han
- Department of Plastic Surgery, 301 Military Hospital of China, Beijing, People's Republic of China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital of Fourth Military Medical University, Xi'an, Shannxi Province
| |
Collapse
|
4
|
Perez CF, Gordon CR. Neuroplastic Surgery Principles of Computerized Surgical Planning in Complex Cranioplasty Reconstruction. Semin Plast Surg 2024; 38:189-197. [PMID: 39118861 PMCID: PMC11305828 DOI: 10.1055/s-0044-1786759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This article explores the evolution and implementation of three-dimensional (3D) models and Computerized Surgical Planning (CSP) for complex cranioplasty reconstruction and the advances in neuroplastic surgery principles for improved surgical outcomes. Over recent years, CSP has revolutionized the field by employing detailed medical imaging to enhance the accuracy and efficacy of 3D models and for the creation of customized cranial implants (CCIs). The study discusses the advancements of solid alloplastic implants to the future of implants with sophisticated and integrated neurotechnology to treat or enhance patient outcomes. CSP can be used to identify and mitigate complications that can occur within cranioplasty reconstruction and to create CCIs to address the postoperative challenge of temporal hollowing. Despite the promising advancements, the article acknowledges the current limitations of CSP, including cost and technological accessibility, and proposes future directions for research and development. The findings suggest that with further improvements in imaging, biomaterials, and manufacturing techniques, CSP in neuroplastic surgery and other specialties will continue to significantly enhance the precision and personalized care of cranioplasty reconstruction.
Collapse
Affiliation(s)
- Colleen F. Perez
- Divison of Neuroplastic and Reconstructive Surgery, Department of Otolaryngology – Head and Neck Surgery, Naval Medical Center Portsmouth, Portsmouth, Virginia
| | - Chad R. Gordon
- Division of Neuroplastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Khurana D, Suresh A, Nayak R, Shetty M, Sarda RK, Knowles JC, Kim HW, Singh RK, Singh BN. Biosubstitutes for dural closure: Unveiling research, application, and future prospects of dura mater alternatives. J Tissue Eng 2024; 15:20417314241228118. [PMID: 38343772 PMCID: PMC10858672 DOI: 10.1177/20417314241228118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 01/04/2025] Open
Abstract
The dura mater, as the crucial outermost protective layer of the meninges, plays a vital role in safeguarding the underlying brain tissue. Neurosurgeons face significant challenges in dealing with trauma or large defects in the dura mater, as they must address the potential complications, such as wound infections, pseudomeningocele formation, cerebrospinal fluid leakage, and cerebral herniation. Therefore, the development of dural substitutes for repairing or reconstructing the damaged dura mater holds clinical significance. In this review we highlight the progress in the development of dural substitutes, encompassing autologous, allogeneic, and xenogeneic replacements, as well as the polymeric-based dural substitutes fabricated through various scaffolding techniques. In particular, we explore the development of composite materials that exhibit improved physical and biological properties for advanced dural substitutes. Furthermore, we address the challenges and prospects associated with developing clinically relevant alternatives to the dura mater.
Collapse
Affiliation(s)
- Dolphee Khurana
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ankitha Suresh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Nayak
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunath Shetty
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rohit Kumar Sarda
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
| | - Rajendra K Singh
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Bhisham Narayan Singh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Wang S, Ren S, Wang J, Chen M, Wang H, Chen C. Dural Reconstruction Materials for the Repairing of Spinal Neoplastic Cerebrospinal Fluid Leaks. ACS Biomater Sci Eng 2023; 9:6610-6622. [PMID: 37988580 DOI: 10.1021/acsbiomaterials.3c01524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Spinal tumors often lead to more complex complications than other bone tumors. Nerve injuries, dura mater defect, and subsequent cerebrospinal fluid (CSF) leakage generally appear in spinal tumor surgeries and are followed by serious adverse outcomes such as infections and even death. The use of suitable dura mater replacements to achieve multifunctionality in fluid leakage plugging, preventing adhesions, and dural reconstruction is a promising therapeutic approach. Although there have been innovative endeavors to manage dura mater defects, only a handful of materials have realized the targeted multifunctionality. Here, we review recent advances in dura repair materials and techniques and discuss the relative merits in both preclinical and clinical trials as well as future therapeutic options. With these advances, spinal tumor patients with dura mater defects may be able to benefit from novel treatments.
Collapse
Affiliation(s)
- Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Shangjun Ren
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, People's Republic of China
| | - Juan Wang
- Department of Stomatology, Beijing Jishuitan Hospital, Capital Medical University, No. 31, Xinjiekou East Street, Xicheng District, Beijing100035, People's Republic of China
| | - Mengyu Chen
- School of Medicine, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Hongru Wang
- Department of Neurology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, People's Republic of China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
- Department of Orthopedics, Beijing Jishuitan Hospital, Capital Medical University, No. 31, Xinjiekou East Street, Xicheng District, Beijing 100035, People's Republic of China
| |
Collapse
|
7
|
Ben-Shalom N, Asemota AO, Belzberg M, Harnof S, Huang J, Lim M, Brem H, Gordon C. Cranioplasty With Customized Craniofacial Implants and Intraoperative Resizing for Single-Stage Reconstruction Following Oncologic Resection of Skull Neoplasms. J Craniofac Surg 2022; 33:1641-1647. [DOI: 10.1097/scs.0000000000008541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
|
8
|
Initial Histological Evaluation of a Novel Dura Mater Graft Based on Capsule Granulation Harvested from Subcutaneous Tissue: Experimental Model. J Craniofac Surg 2021; 33:710-712. [PMID: 34260462 DOI: 10.1097/scs.0000000000007985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Autografts are useful but unfortunately are limited in big dural defects, in such cases, synthetic implants have been recommended. Extensive evidence in the literature suggests that sometimes synthetic implants had high rates of complications like infections. This paper aims to present a novel dura matter graft based on capsule granulation tissue harvested from subcutaneous space as a dura substitute and its histological findings. MATERIALS AND METHODS Wistar rats between 240 and 430 grams of both genders were included. First stage procedure introducing silicon spheres in the subcutaneous tissue. Second stage procedure 4 weeks later harvested de capsule granulation tissue that contain them. Then a craniectomy was performed to create a dura mater defect. This defect was reconstructed with the granulation tissue was placed onlay the defect. After another 4 weeks the subjects were euthanized and sent to an external pathology unit for analysis with validated integration scales. RESULTS A total of 5 subjects were included (3 males and 2 females) with weight between 240 and 430 grams. Only 2 outcome out of 6 scales had significance difference between the samples: adhesions P = 0.011 and integration P = 0.006. CONCLUSIONS The histological findings shown that capsule granulation graft is a compatible, autologous compatible substitute for dura mater. It has a great potential of full integration and an acceptable grade of adhesions.
Collapse
|
9
|
Translucent Customized Cranial Implants Made of Clear Polymethylmethacrylate: An Early Outcome Analysis of 55 Consecutive Cranioplasty Cases. Ann Plast Surg 2021; 85:e27-e36. [PMID: 33170582 DOI: 10.1097/sap.0000000000002441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Large skull reconstruction, with the use of customized cranial implants, restores cerebral protection, physiologic homeostasis, and one's preoperative appearance. Cranial implants may be composed of either bone or a myriad of alloplastic biomaterials. Recently, patient-specific cranial implants have been fabricated using clear polymethylmethacrylate (PMMA), a visually transparent and sonolucent variant of standard opaque PMMA. Given the new enhanced diagnostic and therapeutic applications of clear PMMA, we present here a study evaluating all outcomes and complications in a consecutive patient series. METHODS A single-surgeon, retrospective, 3-year study was conducted on all consecutive patients undergoing large cranioplasty with clear PMMA implants (2016-2019). Patients who received clear PMMA implants with embedded neurotechnologies were excluded due to confounding variables. All outcomes were analyzed in detail and compared with previous studies utilizing similar alloplastic implant materials. RESULTS Fifty-five patients underwent cranioplasty with customized clear PMMA implants. Twenty-one (38%) were performed using a single-stage cranioplasty method (ie, craniectomy and cranioplasty performed during the same operation utilizing a prefabricated, oversized design and labor-intense, manual modification), whereas the remaining 34 (62%) underwent a standard, 2-stage reconstruction (craniectomy with a delayed surgery for cranioplasty and minimal-to-no implant modification necessary). The mean cranial defect size was 101.8 cm. The mean follow-up time was 9 months (range, 1.5-39). Major complications requiring additional surgery occurred in 7 patients (13%) consisting of 2 (4%) cerebrospinal fluid leaks, 2 (4%) epidural hematomas, and 3 (4%) infections. In addition, 3 patients developed self-limiting or nonoperative complications including 2 (4%) with new onset seizures and 1 (2%) with delayed scalp healing. CONCLUSIONS This is the first reported consecutive case series of cranioplasty reconstruction using customized clear PMMA implants, demonstrating excellent results with regard to ease of use, safety, and complication rates well below published rates when compared with other alloplastic materials. Clear PMMA also provides additional benefits, such as visual transparency and sonolucency, which is material specific and unavailable with autologous bone. Although these early results are promising, further studies with multicenter investigations are well justified to evaluate long-term outcomes.
Collapse
|
10
|
Deng W, Tan Y, Riaz Rajoka MS, Xue Q, Zhao L, Wu Y. A new type of bilayer dural substitute candidate made up of modified chitin and bacterial cellulose. Carbohydr Polym 2020; 256:117577. [PMID: 33483072 DOI: 10.1016/j.carbpol.2020.117577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
In the field of neurosurgery, timely and effective repair of dura mater plays an important role in stabilizing the physiological functions of the human body. Therefore, the aim of this study is to develop a new type of bilayer membrane as a dural substitute candidate. It consists of a dense layer that prevents cerebrospinal fluid leakage and a porous layer that promotes tissue regeneration. The dense layer, a composite polysaccharid film, was composed of high molecular weight chitosan (CS) and bacterial cellulose (BC). The porous layer, a composite polysaccharid scaffold cross-linked by glutaraldehyde (GA) or citric acid (CA) respectively, was composed of O-carboxymethyl chitin (O-CMCH) and BC. The bilayer dural substitutes were characterized in terms of SEM, mechanical behavior, swelling rate, anti-leakage test, in vitro cytotoxicity, proliferation, and animal experiment. Results indicated that all prepared dural substitutes were tightly bound between layers without excessively large cavities. The porous layer showed appropriate pore size (90~200 μm) with high porous connectivity. The optimized bilayer dural substitutes showed suitable swelling rate and mechanical behavior. Furthermore, no leakage was observed during testing, no cytotoxicity effect on NIH/3T3 cells, and exhibited excellent cell proliferation promoting properties. Also, it was observed that it did not deform in the peritoneal environment of mice, and tissue inflammation was mild.
Collapse
Affiliation(s)
- Wenjing Deng
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yongxin Tan
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| | - Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| | - Qinghui Xue
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yiguang Wu
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Bi X, Liu B, Mao Z, Wang C, Dunne N, Fan Y, Li X. Applications of materials for dural reconstruction in pre-clinical and clinical studies: Advantages and drawbacks, efficacy, and selections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111326. [PMID: 32919680 DOI: 10.1016/j.msec.2020.111326] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
The dura mater provides a barrier to protect the tissue underneath and cerebrospinal fluid. However, dural defects normally cause cerebrospinal fluid leakage and other complications, such as wound infections, meningitis, etc. Therefore, the reconstruction of dura mater has important clinical significance. Current dural reconstruction materials include: homologous, acellular, natural, synthetic, and composite materials. This review comprehensively summarizes the characteristics and efficacy of these dural substitutes, especially in clinical applications, including the advantages and drawbacks of those from different sources, the host tissue response in pre-clinical studies and clinical practice, and the comparison of these materials across different surgical procedures. Furthermore, the selections of materials for different surgical procedures are highlighted. Finally, the challenges and future perspectives in the development of ideal dural repair materials are discussed.
Collapse
Affiliation(s)
- Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Bo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Zhinan Mao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
12
|
The Neuroplastic Surgery Fellowship Experience: Where Tradition Meets Innovation. J Craniofac Surg 2020; 32:12-14. [DOI: 10.1097/scs.0000000000007201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Duraplasty Using Autologous Fascia Lata and Latissimus Dorsi Free Flap for Chronic Cerebrospinal Fluid Leak. J Craniofac Surg 2019; 30:e671-e674. [DOI: 10.1097/scs.0000000000005747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|