1
|
Choi H, Park KH, Jung N, Shim JS, Moon HS, Kim HJ, Oh SH, Kim YY, Ku SY, Park YB. In Vivo Study for Clinical Application of Dental Stem Cell Therapy Incorporated with Dental Titanium Implants. MATERIALS (BASEL, SWITZERLAND) 2021; 14:381. [PMID: 33466799 PMCID: PMC7829878 DOI: 10.3390/ma14020381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the behavior of dental-derived human mesenchymal stem cells (d-hMSCs) in response to differently surface-treated implants and to evaluate the effect of d-hMSCs on local osteogenesis around an implant in vivo. d-hMSCs derived from alveolar bone were established and cultured on machined, sandblasted and acid-etched (SLA)-treated titanium discs with and without osteogenic induction medium. Their morphological and osteogenic potential was assessed by scanning electron microscopy (SEM) and real-time polymerase chain reaction (RT-PCR) via mixing of 5 × 106 of d-hMSCs with 1 mL of Metrigel and 20 μL of gel-cell mixture, which was dispensed into the defect followed by the placement of customized mini-implants (machined, SLA-treated implants) in New Zealand white rabbits. Following healing periods of 2 weeks and 12 weeks, the obtained samples in each group were analyzed radiographically, histomorphometrically and immunohistochemically. The quantitative change in osteogenic differentiation of d-hMSCs was identified according to the type of surface treatment. Radiographic analysis revealed that an increase in new bone formation was statistically significant in the d-hMSCs group. Histomorphometric analysis was in accordance with radiographic analysis, showing the significantly increased new bone formation in the d-hMSCs group regardless of time of sacrifice. Human nuclei A was identified near the area where d-hMSCs were implanted but the level of expression was found to be decreased as time passed. Within the limitations of the present study, in this animal model, the transplantation of d-hMSCs enhanced the new bone formation around an implant and the survival and function of the stem cells was experimentally proven up to 12 weeks post-sacrifice.
Collapse
Affiliation(s)
- Hyunmin Choi
- BK21 Plus Project, Oral Science Research Center, Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (H.C.); (K.-H.P.); (N.J.); (J.-S.S.); (H.-S.M.)
| | - Kyu-Hyung Park
- BK21 Plus Project, Oral Science Research Center, Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (H.C.); (K.-H.P.); (N.J.); (J.-S.S.); (H.-S.M.)
| | - Narae Jung
- BK21 Plus Project, Oral Science Research Center, Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (H.C.); (K.-H.P.); (N.J.); (J.-S.S.); (H.-S.M.)
| | - June-Sung Shim
- BK21 Plus Project, Oral Science Research Center, Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (H.C.); (K.-H.P.); (N.J.); (J.-S.S.); (H.-S.M.)
| | - Hong-Seok Moon
- BK21 Plus Project, Oral Science Research Center, Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (H.C.); (K.-H.P.); (N.J.); (J.-S.S.); (H.-S.M.)
| | - Hyung-Jun Kim
- Department of Oral & Maxillofacial Surgery, Oral Science Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Seung-Han Oh
- Department of Dental Biomaterials, Institute of Biomaterials-Implant, Wonkwang University School of Dentistry, Iksan 54538, Korea;
| | - Yoon Young Kim
- Institute of Reproductive Medicine and Population, Medical Research Center, Soul National University, Seoul 03087, Korea; (Y.Y.K.); (S.-Y.K.)
| | - Seung-Yup Ku
- Institute of Reproductive Medicine and Population, Medical Research Center, Soul National University, Seoul 03087, Korea; (Y.Y.K.); (S.-Y.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Young-Bum Park
- BK21 Plus Project, Oral Science Research Center, Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea; (H.C.); (K.-H.P.); (N.J.); (J.-S.S.); (H.-S.M.)
| |
Collapse
|
2
|
Lee H, Min SK, Park YH, Park JB. The Role of Insulin-Like Growth Factor-2 on the Cellular Viability and Differentiation to the Osteogenic Lineage and Mineralization of Stem Cells Cultured on Deproteinized Bovine Bone Mineral. APPLIED SCIENCES 2020; 10:5471. [DOI: 10.3390/app10165471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Insulin-like growth factors (IGFs) plays various roles, including differentiation and mitogenesis, and IGFs are reported to regulate the bone growth and maintenance. This study was performed to analyze the enhancing effects of IGF-2 on osteogenic differentiation and the mineralization of stem cells cultured on deproteinized bovine bone mineral. Stem cell loaded bone graft material was cultured in the presence of the IGF-2 at final concentrations of 10 and 100 ng/mL and the morphology of the cells was observed on Days 1, 3, and 7. The commercially available, two-color assay based on plasma membrane integrity and esterase activity was also used for qualitative analyses on Days 1, 3, and 7. The level of alkaline phosphatase activity and anthraquinone dye assay were used to evaluate osteogenic differentiation on Days 7 and 14. Real-time polymerase chain reaction was applied in order to identify the mRNA expression of BGLAP, Runx2, and β-catenin. The stem cells were well-attached with fibroblast morphology and most of the stem cells produced a high intensity of green fluorescence, indicating that there were live cells on Day 1. The relative cellular viability assay values for IGF-2 groups at 0, 10, and 100 ng/mL on Day 1 were 0.419 ± 0.015, 0.427 ± 0.013, and 0.500 ± 0.030, respectively (p < 0.05). The absorbance values at 405 nm for alkaline phosphatase activity on Day 7 for IGF-2 at 0, 10, and 100 ng/mL were 2.112 ± 0.152, 1.897 ± 0.144, and 2.067 ± 0.128, respectively (p > 0.05). The mineralization assay results at Day 7 showed significantly higher values for IGF-2 groups at 10 and 100 ng/mL concentration when compared to the control (p < 0.05). The application of IGF-2 groups of 10 and 100 ng/mL produced a significant increase of BGLAP. Conclusively, this study indicates that the use of IGF-2 on stem cell loaded bone graft increased cellular viability, Alizarin red staining, and BGLAP expression of stem cells. This report suggests the combined approach of stem cells and IGF-2 with scaffold may have synergistic effects on osteogenesis.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
3
|
Mosquera-Perez R, Fernández-Olavarria A, Diaz-Sanchez RM, Gutierrez-Perez JL, Serrera-Figallo MÁ, Torres-Lagares D. Stem cells and oral surgery: A systematic review. J Clin Exp Dent 2019; 11:e1181-e1189. [PMID: 31824601 PMCID: PMC6894914 DOI: 10.4317/jced.56571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background Considering the structural loss that occurs after surgical procedures for cystic and tumoral pathology, in periodontitis, as well as the maxillary atrophy that determines the rehabilitation with dental implants, it is imperative to find satisfactory solutions. The opportunity provided by the findings in stem cells is a recent introduction in the field of oral surgery, based on the regenerative potential that these cells possess in order to restore defects at different levels of the oral cavity. The aim of this systematic review is to discover the real applications that stem cells may have in our treatments in the near future. Material and Methods We made a systematic review of the literature on the subject of stem cells to know the publications relating to them in the field of oral surgery since 2000. PRISMA statement was accomplished, as its official flow chart is used. Results This article draws clinical conclusions from basic research and those conducted in the first clinical cases to apply them in a short period of time to our patients in order to achieve excellence in regenerative therapies. Conclusions To summarize, stem cells may be a turning point in tissue regeneration, though the major challenge is to overcome the remaining obstacles before they become a realistic therapeutic alternative. Key words:Stem cells, oral surgery, cell therapy, regeneration.
Collapse
Affiliation(s)
- Regina Mosquera-Perez
- DDS. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | - Ana Fernández-Olavarria
- DDS. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | - Rosa-Maria Diaz-Sanchez
- DDS. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | - José-Luis Gutierrez-Perez
- MD, PhD. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | | | - Daniel Torres-Lagares
- DDS, PhD. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| |
Collapse
|
4
|
Niño-Sandoval TC, Vasconcelos BC, D Moraes SL, A Lemos CA, Pellizzer EP. Efficacy of stem cells in maxillary sinus floor augmentation: systematic review and meta-analysis. Int J Oral Maxillofac Surg 2019; 48:1355-1366. [PMID: 29759309 DOI: 10.1016/j.ijom.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/17/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The aim of this review was to test the hypothesis of no difference in the efficacy of bone regeneration when using stem cells in maxillary sinus floor augmentation surgery in comparison to other grafts. Nine randomized clinical trials and one follow-up study involving human subjects were identified through a search of the PubMed/MEDLINE, Scopus, Cochrane, and Web of Science databases, supplemented by a hand search. No significant difference between groups was found for the implant survival rate, increase in bone height, marginal bone loss following implant placement, or new bone formation. With regard to the residual bone graft, an effect favouring the graft group at 3-4months (P=0.001) and favouring the stem cell group at 6months (P=0.01) was found. Analyses of the subgroup in which the BMAC system extraction method was used in combination with Bio-Oss, revealed no difference in new bone formation; however, the results for residual bone graft at 3months favoured the control graft (Bio-Oss) (P=0.01), but at 6months favoured the stem cells (Bio-Oss+BMAC system) (P=0.01). Based on all findings, the use of stem cells does not contribute significantly to greater implant survival rates or the efficacy of bone regeneration following sinus lift procedures.
Collapse
Affiliation(s)
- T C Niño-Sandoval
- Department of Oral and Maxillofacial Surgery, University of Pernambuco, Camaragibe, Pernambuco, Brazil
| | - B C Vasconcelos
- Department of Oral and Maxillofacial Surgery, University of Pernambuco, Camaragibe, Pernambuco, Brazil.
| | - S L D Moraes
- Department of Prosthodontics, University of Pernambuco, Recife, Pernambuco, Brazil
| | - C A A Lemos
- Department of Prosthodontics and Dental Materials, Araçatuba Dental School, São Paulo State University - UNESP, Araçatuba, São Paulo, Brazil
| | - E P Pellizzer
- Department of Prosthodontics and Dental Materials, Araçatuba Dental School, São Paulo State University - UNESP, Araçatuba, São Paulo, Brazil
| |
Collapse
|
5
|
Wang F, Li Q, Wang Z. A comparative study of the effect of Bio-Oss®
in combination with concentrated growth factors or bone marrow-derived mesenchymal stem cells in canine sinus grafting. J Oral Pathol Med 2016; 46:528-536. [PMID: 27682609 DOI: 10.1111/jop.12507] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Fang Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Department of Oral and Maxillofacial Implantology; School and Hospital of Stomatology; Tongji University; Shanghai China
| | - Qiong Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration; School and Hospital of Stomatology; Tongji University; Shanghai China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Department of Oral and Maxillofacial Implantology; School and Hospital of Stomatology; Tongji University; Shanghai China
| |
Collapse
|
6
|
Application of Additive Manufacturing in Oral and Maxillofacial Surgery. J Oral Maxillofac Surg 2015; 73:2408-18. [DOI: 10.1016/j.joms.2015.04.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 01/07/2023]
|
7
|
Vertical ridge augmentation of the atrophic posterior mandible with custom-made, computer-aided design/computer-aided manufacturing porous hydroxyapatite scaffolds. J Craniofac Surg 2015; 24:856-9. [PMID: 23714896 DOI: 10.1097/scs.0b013e31827ca3a7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The present study describes a new protocol for the manufacturing of custom-made hydroxyapatite scaffolds using computer-aided design/computer-aided manufacturing (CAD/CAM), to augment posterior mandibular bone and minimize surgery when severe atrophy is present. Computed tomographic images of an atrophic posterior mandible were acquired and modified into a 3-dimensional (3D) reconstruction model. This model was transferred as a stereolithographic file to a CAD program, where virtual 3D reconstructions of the alveolar ridge were performed, drawing 2 anatomically shaped, custom-made scaffolds. Computer-aided-manufacturing software generated a set of tool-paths for manufacture on a computer-numerical-control milling machine into the exact shape of the 3D projects. Clinically sized, anatomically shaped scaffolds were generated from commercially available porous hydroxyapatite blocks. The custom-made scaffolds well matched the shape of the bone defects and could be easily implanted during surgery. This matching of the shape helped to reduce the time for the operation and contributed to the good healing of the defects. At the 6-month recall, a newly formed and well-integrated bone was observed, completely filling the mandibular posterior defects, and implants were placed, with good primary stability. At the 1-year follow-up examination, the implant-supported restorations showed a good functional and esthetic integration. Although this is an interim report, this study demonstrates that anatomically shaped custom-made scaffolds can be fabricated by combining computed tomographic scans and CAD/CAM techniques. Further studies are needed to confirm these results.
Collapse
|
8
|
Mangano FG, Colombo M, Veronesi G, Caprioglio A, Mangano C. Mesenchymal stem cells in maxillary sinus augmentation: A systematic review with meta-analysis. World J Stem Cells 2015; 7:976-991. [PMID: 26240683 PMCID: PMC4515439 DOI: 10.4252/wjsc.v7.i6.976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/27/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effectiveness of mesenchymal stem cells (MSCs) in maxillary sinus augmentation (MSA), with various scaffold materials.
METHODS: MEDLINE, EMBASE and SCOPUS were searched using keywords such as sinus graft, MSA, maxillary sinus lift, sinus floor elevation, MSC and cell-based, in different combinations. The searches included full text articles written in English, published over a 10-year period (2004-2014). Inclusion criteria were clinical/radiographic and histologic/ histomorphometric studies in humans and animals, on the use of MSCs in MSA. Meta-analysis was performed only for experimental studies (randomized controlled trials and controlled trials) involving MSA, with an outcome measurement of histologic evaluation with histomorphometric analysis reported. Mean and standard deviation values of newly formed bone from each study were used, and weighted mean values were assessed to account for the difference in the number of subjects among the different studies. To compare the results between the test and the control groups, the differences of regenerated bone in mean and 95% confidence intervals were calculated.
RESULTS: Thirty-nine studies (18 animal studies and 21 human studies) published over a 10-year period (between 2004 and 2014) were considered to be eligible for inclusion in the present literature review. These studies demonstrated considerable variation with respect to study type, study design, follow-up, and results. Meta-analysis was performed on 9 studies (7 animal studies and 2 human studies). The weighted mean difference estimate from a random-effect model was 9.5% (95%CI: 3.6%-15.4%), suggesting a positive effect of stem cells on bone regeneration. Heterogeneity was measured by the I2 index. The formal test confirmed the presence of substantial heterogeneity (I2 = 83%, P < 0.0001). In attempt to explain the substantial heterogeneity observed, we considered a meta-regression model with publication year, support type (animal vs humans) and follow-up length (8 or 12 wk) as covariates. After adding publication year, support type and follow-up length to the meta-regression model, heterogeneity was no longer significant (I2 = 33%, P = 0.25).
CONCLUSION: Several studies have demonstrated the potential for cell-based approaches in MSA; further clinical trials are needed to confirm these results.
Collapse
|
9
|
Zigdon-Giladi H, Rudich U, Michaeli Geller G, Evron A. Recent advances in bone regeneration using adult stem cells. World J Stem Cells 2015; 7:630-640. [PMID: 25914769 PMCID: PMC4404397 DOI: 10.4252/wjsc.v7.i3.630] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34+ blood progenitors) for bone regeneration.
Collapse
|
10
|
Zhao W, Lu JY, Hao YM, Cao CH, Zou DR. Maxillary sinus floor elevation with a tissue-engineered bone composite of deciduous tooth stem cells and calcium phosphate cement in goats. J Tissue Eng Regen Med 2014; 11:66-76. [PMID: 24616333 DOI: 10.1002/term.1867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/23/2013] [Accepted: 12/13/2013] [Indexed: 01/08/2023]
Abstract
The study aimed to assess the effect of maxillary sinus floor elevation with tissue-engineered bone constructed from deciduous tooth stem cells (DTSCs) and calcium phosphate cement (CPC). The stem cells from goat deciduous teeth (SGDs) were isolated and transfected by means of the adenovirus with an enhanced green fluorescent protein gene (AdEGFP). As many as 18 bilateral maxillary sinuses of nine goats were randomly allocated into three groups (n = 6/group): group A (SGDs-CPC compound), group B (CPC alone) and group C (autogenous bone obtained from an iliac crest). All the samples were evaluated by computed tomography (CT), histology and histomorphometric analysis. Furthermore, the fate of implanted SGDs was traced using an immunohistochemical staining method in the decalcified samples. SGDs might be differentiated into osteoblasts in an osteogenic medium. In the present study, three-dimensional CT analysis showed that the volume of newly formed bone in group A was greater than that in the other two groups. After a healing period of 3 months, sequential analyses of triad-colour fluorescence labelling, histology and histomorphology indicated that the SGDs-CPC compound primarily promoted bone formation and mineralization at 2 and 3 months after the operation. Moreover, the areas of new bone formation in elevated sinuses were 41.82 ± 6.24% in the SGDs-CPC group, which was significantly higher than the 30.11 ± 8.05% in the CPC-alone group or the 23.07 ± 10.21% in the autogenous bone group. Immunohistochemical staining revealed that GFP and OCN were both expressed in the new bone tissue for the samples with eGFP, which suggested that the implanted SGDs might have contributed to new bone formation on the elevated sinus floor. SGDs can promote new bone formation and maturation in the goat maxillary sinus, and the tissue-engineered bone composite of SGDs and CPC might be a potential substitute for existing maxillary sinus floor elevation methods. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Jia-Yu Lu
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Yong-Ming Hao
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Chun-Hua Cao
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - De-Rong Zou
- Department of Stomatology, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Yun KI, Kim DJ, Park JU. Osteogenic potential of adult stem cells from human maxillary sinus membrane by Simvastatin in vitro: preliminary report. J Korean Assoc Oral Maxillofac Surg 2013; 39:150-5. [PMID: 24471035 PMCID: PMC3858128 DOI: 10.5125/jkaoms.2013.39.4.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 01/14/2023] Open
Abstract
Objectives The objective of this study is to determine the adequate concentration and to evaluate the osteogenic potential of simvastatin in human maxillary sinus membrane-derived stem cells (hSMSC). Materials and Methods Mesenchymal stem cells derived from the human maxillary sinus membrane were treated with various concentrations of simvastatin. The adequate concentration of simvastatin for osteogenic induction was determined using bone morphogenetic protein (BMP-2). The efficacy of osteogenic differentiation of simavastatin was verified using osteocalcin mRNA, and the mineralization efficacy of hSMSCs and simvastatin treatment was compared with alkaline phosphatase and von Kossa staining. Results Expression of BMP-2 mRNA and protein was observed after three days and was dependent on the concentration of simvastatin. Expression of osteocalcin mRNA was observed after three days in the 1.0 µM simvastatin-treated group. Mineralization was observed after three days in the simvastatin-treated group. Conclusion These results suggest that simvastatin induces the osteogenic potential of mesenchymal stem cells derived from the human maxillary sinus membrane mucosa.
Collapse
Affiliation(s)
- Kyoung-In Yun
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea, St. Paul's Hospital, Seoul, Korea
| | - Dong-Joon Kim
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea School of Medicine, Seoul, Korea
| | - Je-Uk Park
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea School of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Farré-Guasch E, Prins HJ, Overman JR, ten Bruggenkate CM, Schulten EA, Helder MN, Klein-Nulend J. Human Maxillary Sinus Floor Elevation as a Model for Bone Regeneration Enabling the Application of One-Step Surgical Procedures. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:69-82. [DOI: 10.1089/ten.teb.2012.0404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Elisabet Farré-Guasch
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Henk-Jan Prins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Research Institute MOVE, VU University Medical Center/Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Janice R. Overman
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Research Institute MOVE, VU University Medical Center/Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Christiaan M. ten Bruggenkate
- Department of Oral and Maxillofacial Surgery, Research Institute MOVE, VU University Medical Center/Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Engelbert A.J.M. Schulten
- Department of Oral and Maxillofacial Surgery, Research Institute MOVE, VU University Medical Center/Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Marco N. Helder
- Department of Orthopaedics, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Maxillary sinus augmentation with adult mesenchymal stem cells: a review of the current literature. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115:717-23. [PMID: 23313230 DOI: 10.1016/j.oooo.2012.09.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE Mesenchymal stem cells (MSCs) have been applied in maxillary sinus augmentation (MSA) with clinically successful results. The purpose of this article was to evaluate the systematically acquired evidence for the effectiveness of cell-based approaches in MSA with various scaffolds, and to narratively assess evidence from additional articles that report effectiveness of cell-based approaches in MSA. MATERIALS AND METHODS Electronic database searches were performed. Inclusion criteria were studies of cell-based approaches in MSA with various scaffolds, in humans, with at least 3 to 4 months of follow-up. Meta-analysis was performed for randomized controlled trials (RCTs) with histologic/histomorphometric evaluation. RESULTS Fifteen studies (4 RCTs) were considered to be eligible for inclusion in the review. The meta-analysis suggested a marginal, nonstatistically significant positive effect of MSCs on the bone regrowth. CONCLUSIONS A number of studies have demonstrated the potential for cell-based approaches in MSA; further RCTs that clearly demonstrate benefits of cell-based approach are needed.
Collapse
|
14
|
Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration. Stem Cells Int 2012; 2012:103503. [PMID: 23093977 PMCID: PMC3472918 DOI: 10.1155/2012/103503] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 09/05/2012] [Indexed: 12/12/2022] Open
Abstract
Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs), which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.
Collapse
|
15
|
Nagata M, Hoshina H, Li M, Arasawa M, Uematsu K, Ogawa S, Yamada K, Kawase T, Suzuki K, Ogose A, Fuse I, Okuda K, Uoshima K, Nakata K, Yoshie H, Takagi R. A clinical study of alveolar bone tissue engineering with cultured autogenous periosteal cells: coordinated activation of bone formation and resorption. Bone 2012; 50:1123-9. [PMID: 22406494 DOI: 10.1016/j.bone.2012.02.631] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 11/18/2022]
Abstract
In ongoing clinical research into the use of cultured autogenous periosteal cells (CAPCs) in alveolar bone regeneration, CAPCs were grafted into 33 sites (15 for alveolar ridge augmentation and 18 for maxillary sinus lift) in 25 cases. CAPCs were cultured for 6weeks, mixed with particulate autogenous bone and platelet-rich plasma, and then grafted into the sites. Clinical outcomes were determined from high-resolution three-dimensional computed tomography (3D-CT) images and histological findings. No serious adverse events were attributable to the use of grafted CAPCs. Bone regeneration was satisfactory even in cases of advanced atrophy of the alveolar process. Bone biopsy after bone grafting with CAPCs revealed prominent recruitment of osteoblasts and osteoclasts accompanied by angiogenesis around the regenerated bone. 3D-CT imaging suggested that remodeling of the grafted autogenous cortical bone particles was faster in bone grafting with CAPCs than in conventional bone grafting. The use of CAPCs offers cell-based bone regeneration therapy, affording complex bone regeneration across a wide area, and thus expanding the indications for dental implants. Also, it enables the content of particulate autogenous bone in the graft material to be reduced to as low as 40%, making the procedure less invasive, or enabling larger amounts of graft materials to be prepared. It may also be possible to dispense with the use of autogenous bone altogether in the future. The results suggest that CAPC grafting induces bone remodeling, thereby enhancing osseointegration and consequently reducing postoperative waiting time after dental implant placement.
Collapse
Affiliation(s)
- Masaki Nagata
- Department of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Razzouk S, Schoor R. Mesenchymal stem cells and their challenges for bone regeneration and osseointegration. J Periodontol 2011; 83:547-50. [PMID: 21942789 DOI: 10.1902/jop.2011.110384] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone regeneration is an indispensable procedure for implant placement. Original techniques based on mesenchymal stromal cell (MSC) therapy are emerging with the goal of speeding up biology, thereby reducing the osseointegration period. Many products found their way in clinical application, yet their reliability remains uncertain because many in vitro culture-related challenges are facing these cells once they are out of their biologic environment. In this commentary, these limitations are discussed with the emphasis of their impact on the performance of MSCs. Clinicians should be aware of these issues before implementing this cell-based regenerative technique.
Collapse
Affiliation(s)
- Sleiman Razzouk
- Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York, NY, USA
| | | |
Collapse
|
17
|
Hermund NU, Stavropoulos A, Donatsky O, Nielsen H, Clausen C, Reibel J, Pakkenberg B, Holmstrup P. Reimplantation of cultivated human bone cells from the posterior maxilla for sinus floor augmentation. Histological results from a randomized controlled clinical trial. Clin Oral Implants Res 2011; 23:1031-7. [DOI: 10.1111/j.1600-0501.2011.02251.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Niels Ulrich Hermund
- Department of Oral and Maxillofacial Surgery; Hilleroed Hospital/Rigshospitalet; Hilleroed; Denmark
| | | | - Ole Donatsky
- Department of Oral and Maxillofacial Surgery; Hilleroed Hospital/Rigshospitalet; Hilleroed; Denmark
| | - Henrik Nielsen
- Department of Oral and Maxillofacial Surgery; Hilleroed Hospital/Rigshospitalet; Hilleroed; Denmark
| | | | - Jesper Reibel
- Department of Oral Pathology and Medicine; School of Dentistry; University of Copenhagen; Copenhagen; Denmark
| | - Bente Pakkenberg
- Laboratory of Stereology; Bispebjerg University Hospital; Copenhagen; Denmark
| | - Palle Holmstrup
- Department of Periodontology; School of Dentistry; University of Copenhagen; Copenhagen; Denmark
| |
Collapse
|
18
|
Klijn RJ, Hoekstra JWM, Van Den Beucken JJJP, Meijer GJ, Jansen JA. Maxillary sinus augmentation with microstructured tricalcium phosphate ceramic in sheep. Clin Oral Implants Res 2011; 23:274-80. [DOI: 10.1111/j.1600-0501.2011.02190.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Wang S, Zhang W, Zhao J, Ye D, Zhu C, Yang Y, Zhang X, Sun X, Yang C, Jiang X, Zhang Z. Long-term outcome of cryopreserved bone-derived osteoblasts for bone regeneration in vivo. Biomaterials 2011; 32:4546-55. [PMID: 21459433 DOI: 10.1016/j.biomaterials.2011.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 03/07/2011] [Indexed: 01/18/2023]
Abstract
Cryopreserved bone-derived osteoblasts (CBOs) have been considered as a promising cell source for bone regeneration. Previous studies have demonstrated that CBOs had good proliferation and osteogenicity. However, the long-term outcome of CBOs in vivo still remains unknown. In this experiment, we applied CBOs combined with calcium phosphate cement (CPC) to augment maxillary sinus in canine, computer tomography, polychrome labeling, biomechanical tests, fluorescent immunohistochemistry staining and histological analysis were used to analyze the property and mineralization process of the tissue-engineered bone preclinical application. Our results showed that CBOs combined with CPC could promote bone regeneration, dramatically maintain the height, volume and biomechanical property of augmented maxillary sinus. Furthermore, the tissue-engineered bone was more mature than scaffold alone or autogenous bone, and bone formation and remodeling were still apparent 20 months postoperatively. Additionally, 4 months after surgery might be the suitable time point for implants placement in the regenerated bone. These results also indicate that cryopreserved bone may be a potential source of osteoblasts for maxillary sinus augmentation.
Collapse
Affiliation(s)
- Shaoyi Wang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|