1
|
Ren J, Gan S, Zheng S, Li M, An Y, Yuan S, Gu X, Zhang L, Hou Y, Du Q, Zhang G, Shen W. Genotype-phenotype pattern analysis of pathogenic PAX9 variants in Chinese Han families with non-syndromic oligodontia. Front Genet 2023; 14:1142776. [PMID: 37056289 PMCID: PMC10086135 DOI: 10.3389/fgene.2023.1142776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Non-syndromic oligodontia is characterized by the absence of six or more permanent teeth, excluding third molars, and can have aesthetic, masticatory, and psychological consequences. Previous studies have shown that PAX9 is associated with autosomal dominant forms of oligodontia but the precise molecular mechanisms are still unknown.Methods: Whole-exome and Sanger sequencing were performed on a cohort of approximately 28 probands with NSO, for mutation analysis. Bioinformatic analysis was performed on the potential variants. Immunofluorescence assay, western blotting, and qPCR were used to explore the preliminary functional impact of the variant PAX9 proteins. We reviewed PAX9-related NSO articles in PubMed to analyze the genotype-phenotype correlations.Results: We identified three novel PAX9 variants in Chinese Han families: c.152G>T (p.Gly51Val), c.239delC (p.Thr82Profs*3), and c.409C>T (q.Gln137Ter). In addition, two previously reported missense variants were identified: c.140G>C (p.Arg47Pro) and c.146C>T (p.Ser49Leu) (reference sequence NM_006194.4). Structural modeling revealed that all missense variants were located in the highly conserved paired domain. The other variants led to premature termination of the protein, causing structural impairment of the PAX9 protein. Immunofluorescence assay showed abnormal subcellular localizations of the missense variants (R47P, S49L, and G51V). In human dental pulp stem cells, western blotting and qPCR showed decreased expression of PAX9 variants (c.140G>C, p.R47P, and c.152G>T, p.G51V) compared with the wild-type group at both the transcription and translation levels. A review of published papers identified 64 PAX9 variants related to NSO and found that the most dominant feature was the high incidence of missing upper second molars, first molars, second premolars, and lower second molars.Conclusion: Three novel PAX9 variants were identified in Chinese Han families with NSO. These results extend the variant spectrum of PAX9 and provide a foundation for genetic diagnosis and counseling.
Collapse
Affiliation(s)
- Jiabao Ren
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Sifang Gan
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | | | - Meikang Li
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yilin An
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Shuo Yuan
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Xiuge Gu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Li Zhang
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yan Hou
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Qingqing Du
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guozhong Zhang
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenjing Shen
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Wenjing Shen,
| |
Collapse
|
2
|
REN J, ZHAO Y, YUAN Y, ZHANG J, DING Y, LI M, AN Y, CHEN W, ZHANG L, LIU B, ZHENG S, SHEN W. Novel PAX9 compound heterozygous variants in a Chinese family with non-syndromic oligodontia and genotype-phenotype analysis of PAX9 variants. J Appl Oral Sci 2023; 31:e20220403. [PMID: 36995881 PMCID: PMC10065762 DOI: 10.1590/1678-7757-2022-0403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVE Studies have reported that >91.9% of non-syndromic tooth agenesis cases are caused by seven pathogenic genes. To report novel heterozygous PAX9 variants in a Chinese family with non-syndromic oligodontia and summarize the reported genotype-phenotype relationship of PAX9 variants. METHODOLOGY We recruited 28 patients with non-syndromic oligodontia who were admitted to the Hospital of Stomatology Hebei Medical University (China) from 2018 to 2021. Peripheral blood was collected from the probands and their core family members for whole-exome sequencing (WES) and variants were verified by Sanger sequencing. Bioinformatics tools were used to predict the pathogenicity of the variants. SWISS-MODEL homology modeling was used to analyze the three-dimensional structural changes of variant proteins. We also analyzed the genotype-phenotype relationships of PAX9 variants. RESULTS We identified novel compound heterozygous PAX9 variants (reference sequence NM_001372076.1) in a Chinese family with non-syndromic oligodontia: a new missense variant c.1010C>A (p.T337K) in exon 4 and a new frameshift variant c.330_331insGT (p.D113Afs*9) in exon 2, which was identified as the pathogenic variant in this family. This discovery expands the known variant spectrum of PAX9; then, we summarized the phenotypes of non-syndromic oligodontia with PAX9 variants. CONCLUSION We found that PAX9 variants commonly lead to loss of the second molars.
Collapse
|
3
|
Multiple Dental Inclusion in Monozygotic Twins with Congenital Visual Impairment. Case Rep Dent 2020; 2020:8856206. [PMID: 32832166 PMCID: PMC7428941 DOI: 10.1155/2020/8856206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022] Open
Abstract
The study presents two monozygotic twins (MZ) with multiple impacted teeth, affecting the upper canines and lower second molars, as well as congenital aniridia. The clinical aspect of the upper canines is peculiar because of the different positions—palatal in one and buccal in the other twin. Studies reporting different scenarios of impaction in monozygotic twins can contribute more data to the debate on tooth eruption aetiology and more so in this case because of the association with a genetic panocular disease. Patients' Concerns. The patients were referred by a general dentist, who diagnosed the presence of multiple inclusions. Diagnostic Study. Both patients showed severe malocclusion, classified as grade 5 of the Index of Orthodontic Treatment Need (IOTN). The MZ showed class I malocclusion, upper and lower crowding, and impacted lower right and left second molars. A Dentascan was prescribed for the canine impaction. The impaction of the upper canine was palatal of 2.3 in one of the MZ and buccal of 1.3 in the other one. The same altered pattern of eruption of the lower second molars was identified in both twins. The proposed treatment plan contemplated orthodontic surgical recovery of the impacted elements, followed by orthodontic treatment with multibracket appliance after the extraction of the first four premolars, given the crowding entity. The use of a retraction spring action was chosen for the recovery of the lower second molars. Many aspects of the possible genetic aetiology of tooth impaction are still under discussion. The study of diseases in twins offers decisive information. Finally, the possibility that alterations in the eruptive pattern of the dental elements may be associated with other congenital problems broadens the range of investigations related to the possible aetiological causes of the inclusions in humans.
Collapse
|
4
|
Haddaji Mastouri M, De Coster P, Zaghabani A, Trabelsi S, May Y, Saad A, Coucke P, H’mida Ben Brahim D. Characterization of a novel mutation in PAX9 gene in a family with non-syndromic dental agenesis. Arch Oral Biol 2016; 71:110-116. [DOI: 10.1016/j.archoralbio.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
|
5
|
Mostowska A, Zadurska M, Rakowska A, Lianeri M, Jagodziński PP. NovelPAX9mutation associated with syndromic tooth agenesis. Eur J Oral Sci 2013; 121:403-11. [DOI: 10.1111/eos.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Małgorzata Zadurska
- Department of Orthodontics, Institute of Dentistry; The Medical University of Warsaw; Warsaw; Poland
| | - Adriana Rakowska
- Department of Dermatology; Central Clinical Hospital of Ministry of Internal Affaires; Warsaw; Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| |
Collapse
|
6
|
Laugel-Haushalter V, Paschaki M, Thibault-Carpentier C, Dembelé D, Dollé P, Bloch-Zupan A. Molars and incisors: show your microarray IDs. BMC Res Notes 2013; 6:113. [PMID: 23531410 PMCID: PMC3658942 DOI: 10.1186/1756-0500-6-113] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/08/2013] [Indexed: 01/31/2023] Open
Abstract
Background One of the key questions in developmental biology is how, from a relatively small number of conserved signaling pathways, is it possible to generate organs displaying a wide range of shapes, tissue organization, and function. The dentition and its distinct specific tooth types represent a valuable system to address the issues of differential molecular signatures. To identify such signatures, we performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5). Results 231 genes were identified as being differentially expressed between mandibular incisors and molars, with a fold change higher than 2 and a false discovery rate lower than 0.1, whereas only 96 genes were discovered as being differentially expressed between mandibular and maxillary molars. Numerous genes belonging to specific signaling pathways (the Hedgehog, Notch, Wnt, FGF, TGFβ/BMP, and retinoic acid pathways), and/or to the homeobox gene superfamily, were also uncovered when a less stringent fold change threshold was used. Differential expressions for 10 out of 12 (mandibular incisors versus molars) and 9 out of 10 selected genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of incisor versus molar differentially expressed genes revealed that 143 genes belonged to 9 networks with intermolecular connections. Networks with the highest significance scores were centered on the TNF/NFκB complex and the ERK1/2 kinases. Two networks ERK1/2 kinases and tretinoin were involved in differential molar morphogenesis. Conclusion These data allowed us to build several regulatory networks that may distinguish incisor versus molar identity, and may be useful for further investigations of these tooth-specific ontogenetic programs. These programs may be dysregulated in transgenic animal models and related human diseases leading to dental anomalies.
Collapse
Affiliation(s)
- Virginie Laugel-Haushalter
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, BP 10142, 1 rue Laurent Fries, Illkirch Cedex, 67404, France
| | | | | | | | | | | |
Collapse
|
7
|
Fonseca DJ, Prada CF, Siza LM, Angel D, Gomez YM, Restrepo CM, Douben H, Rivadeneira F, de Klein A, Laissue P. A de novo 14q12q13.3 interstitial deletion in a patient affected by a severe neurodevelopmental disorder of unknown origin. Am J Med Genet A 2012; 158A:689-93. [PMID: 22315208 DOI: 10.1002/ajmg.a.35215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 11/02/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Dora Janeth Fonseca
- Unidad de Genética, Escuela de Medicina y Ciencias de la Salud. Universidad del Rosario. Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | |
Collapse
|