1
|
Stenzel A, Mumme-Monheit A, Sucharov J, Walker M, Mitchell JM, Appel B, Nichols JT. Distinct and redundant roles for zebrafish her genes during mineralization and craniofacial patterning. Front Endocrinol (Lausanne) 2022; 13:1033843. [PMID: 36578958 PMCID: PMC9791542 DOI: 10.3389/fendo.2022.1033843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
The Notch pathway is a cell-cell communication system which is critical for many developmental processes, including craniofacial development. Notch receptor activation induces expression of several well-known canonical targets including those encoded by the hes and her genes in mammals and zebrafish, respectively. The function of these genes, individually and in combination, during craniofacial development is not well understood. Here, we used zebrafish genetics to investigate her9 and her6 gene function during craniofacial development. We found that her9 is required for osteoblasts to efficiently mineralize bone, while cartilage is largely unaffected. Strikingly, gene expression studies in her9 mutants indicate that although progenitor cells differentiate into osteoblasts at the appropriate time and place, they fail to efficiently lay down mineralized matrix. This mineralization role of her9 is likely independent of Notch activation. In contrast, her9 also functions redundantly with her6 downstream of Jagged1b-induced Notch activation during dorsoventral craniofacial patterning. These studies disentangle distinct and redundant her gene functions during craniofacial development, including an unexpected, Notch independent, requirement during bone mineralization.
Collapse
Affiliation(s)
- Amanda Stenzel
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Abigail Mumme-Monheit
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Juliana Sucharov
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Macie Walker
- Department of Pediatrics, Section of Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: James T. Nichols,
| |
Collapse
|
2
|
Kameda Y. Molecular and cellular mechanisms of the organogenesis and development of the mammalian carotid body. Dev Dyn 2019; 249:592-609. [DOI: 10.1002/dvdy.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yoko Kameda
- Department of AnatomyKitasato University School of Medicine Sagamihara Japan
| |
Collapse
|
3
|
Lei H, Yan Z, Sun X, Zhang Y, Wang J, Ma C, Xu Q, Wang R, Jarvis ED, Sun Z. Axon guidance pathways served as common targets for human speech/language evolution and related disorders. BRAIN AND LANGUAGE 2017; 174:1-8. [PMID: 28692932 DOI: 10.1016/j.bandl.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Human and several nonhuman species share the rare ability of modifying acoustic and/or syntactic features of sounds produced, i.e. vocal learning, which is the important neurobiological and behavioral substrate of human speech/language. This convergent trait was suggested to be associated with significant genomic convergence and best manifested at the ROBO-SLIT axon guidance pathway. Here we verified the significance of such genomic convergence and assessed its functional relevance to human speech/language using human genetic variation data. In normal human populations, we found the affected amino acid sites were well fixed and accompanied with significantly more associated protein-coding SNPs in the same genes than the rest genes. Diseased individuals with speech/language disorders have significant more low frequency protein coding SNPs but they preferentially occurred outside the affected genes. Such patients' SNPs were enriched in several functional categories including two axon guidance pathways (mediated by netrin and semaphorin) that interact with ROBO-SLITs. Four of the six patients have homozygous missense SNPs on PRAME gene family, one youngest gene family in human lineage, which possibly acts upon retinoic acid receptor signaling, similarly as FOXP2, to modulate axon guidance. Taken together, we suggest the axon guidance pathways (e.g. ROBO-SLIT, PRAME gene family) served as common targets for human speech/language evolution and related disorders.
Collapse
Affiliation(s)
- Huimeng Lei
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China.
| | - Zhangming Yan
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohong Sun
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Yue Zhang
- Department of Children Healthcare, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jianhong Wang
- Department of Children Healthcare, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Caihong Ma
- Reproductive Medicine Center of Peking University Third Hospital, Beijing, 100191, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Hengkuan Telegenomics Co., Ltd., 36/F, 5 Meiyuan Rd., Tianjin 300384, China
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Chevy Chase, MD, 20815-6789, USA
| | - Zhirong Sun
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Kameda Y. Cellular and molecular events on the development of mammalian thyroid C cells. Dev Dyn 2016; 245:323-41. [PMID: 26661795 DOI: 10.1002/dvdy.24377] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Thyroid C cells synthesize and secrete calcitonin, a serum calcium-lowering hormone. This review provides our current understanding of mammalian thyroid C cells from the molecular and morphological perspectives. Several transcription factors and signaling molecules involved in the development of C cells have been identified, and genes expressed in the pharyngeal pouch endoderm, neural crest-derived mesenchyme in the pharyngeal arches, and ultimobranchial body play critical roles for the development of C cells. It has been generally accepted, without much-supporting evidence, that mammalian C cells, as well as the avian cells, are derived from the neural crest. However, by fate mapping of neural crest cells in both Wnt1-Cre/R26R and Connexin(Cxn)43-lacZ transgenic mice, we showed that neural crest cells colonize neither the fourth pharyngeal pouch nor the ultimobranchial body. E-cadherin, an epithelial cell marker, is expressed in thyroid C cells and their precursors, the fourth pharyngeal pouch and ultimobranchial body. Furthermore, E-cadherin is colocalized with calcitonin in C cells. Recently, lineage tracing in Sox17-2A-iCre/R26R mice has clarified that the pharyngeal endoderm-derived cells give rise to C cells. Together, these findings indicate that mouse thyroid C cells are endodermal in origin.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
5
|
Vega‐López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ. Functional analysis of
Hairy
genes in
Xenopus
neural crest initial specification and cell migration. Dev Dyn 2015; 244:988-1013. [DOI: 10.1002/dvdy.24295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Marcela Bonano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Celeste Tríbulo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| | - Juan P. Fernández
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Tristán H. Agüero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Manuel J. Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| |
Collapse
|
6
|
Kameda Y. Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 2014; 357:527-48. [PMID: 24770894 DOI: 10.1007/s00441-014-1847-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
The cells that constitute the sympathetic nervous system originate from the neural crest. This review addresses the current understanding of sympathetic ganglion development viewed from molecular and morphological perspectives. Development of the sympathetic nervous system is categorized into three main steps, as follows: (1) differentiation and migration of cells in the neural crest lineage for formation of the primary sympathetic chain, (2) differentiation of sympathetic progenitors, and (3) growth and survival of sympathetic ganglia. The signaling molecules and transcription factors involved in each of these developmental stages are elaborated mostly on the basis of the results of targeted mutation of respective genes. Analyses in mutant mice revealed differences between the superior cervical ganglion (SCG) and the other posterior sympathetic ganglia. This review provides a summary of the similarities and differences in the development of the SCG and other posterior sympathetic ganglia. Relevant to the development of sympathetic ganglia is the demonstration that neuroendocrine cells, such as adrenal chromaffin cells and carotid body glomus cells, share a common origin with the sympathetic ganglia. Neural crest cells at the trunk level give rise to common sympathoadrenal progenitors of sympathetic neurons and chromaffin cells, while progenitors segregated from the SCG give rise to glomus cells. After separation from the sympathetic primordium, the progenitors of both chromaffin cells and glomus cells colonize the anlage of the adrenal gland and carotid body, respectively. This review highlights the biological properties of chromaffin cells and glomus cells, because, although both cell types are derivatives of sympathetic primordium, they are distinct in many respects.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan,
| |
Collapse
|
7
|
Ishikawa S, Takeda A, Akimoto M, Kounoike N, Uchinuma E, Uezono Y. Effects of neuropeptides and their local administration to cutaneous wounds in sensory-impaired areas. J Plast Surg Hand Surg 2013; 48:143-7. [DOI: 10.3109/2000656x.2013.835265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S, Fujimura T. Hes1 is required for the development of pharyngeal organs and survival of neural crest-derived mesenchymal cells in pharyngeal arches. Cell Tissue Res 2013; 353:9-25. [PMID: 23686616 DOI: 10.1007/s00441-013-1649-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
Hes genes are required to maintain diverse progenitor cell populations during embryonic development. Loss of Hes1 results in a spectrum of malformations of pharyngeal endoderm-derived organs, including the ultimobranchial body (progenitor of C cells), parathyroid, thymus and thyroid glands, together with highly penetrant C-cell aplasia (81%) and parathyroid aplasia (28%). The hypoplastic parathyroid and thymus are mostly located around the pharyngeal cavity, even at embryonic day (E) 15.5 to E18.5, indicating the failure of migration of the organs. To clarify the relationship between these phenotypes and neural crest cells, we examine fate mapping of neural crest cells colonized in pharyngeal arches in Hes1 null mutants by using the Wnt1-Cre/R26R reporter system. In null mutants, the number of neural crest cells labeled by X-gal staining is markedly decreased in the pharyngeal mesenchyme at E12.5 when the primordia of the thymus, parathyroid and ultimobranchial body migrate toward their destinations. Furthermore, phospho-Histone-H3-positive proliferating cells are reduced in number in the pharyngeal mesenchyme at this stage. Our data indicate that the development of pharyngeal organs and survival of neural-crest-derived mesenchyme in pharyngeal arches are critically dependent on Hes1. We propose that the defective survival of neural-crest-derived mesenchymal cells in pharyngeal arches directly or indirectly leads to deficiencies of pharyngeal organs.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S. Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body. Dev Dyn 2012; 241:1289-300. [PMID: 22689348 DOI: 10.1002/dvdy.23819] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2012] [Indexed: 12/11/2022] Open
Abstract
Hes1 gene represses the expression of proneural basic helix-loop-helix (bHLH) factor Mash1, which is essential for the differentiation of the sympathetic ganglia and carotid body glomus cells. The sympathetic ganglia, carotid body, and common carotid artery in Wnt1-Cre/R26R double transgenic mice were intensely labeled by X-gal staining, i.e., the neural crest origin. The deficiency of Hes1 caused severe hypoplasia of the superior cervical ganglion (SCG). At embryonic day (E) 17.5-E18.5, the volume of the SCG in Hes1 null mutants was reduced to 26.4% of the value in wild-type mice. In 4 of 30 cases (13.3%), the common carotid artery derived from the third arch artery was absent in the null mutants, and the carotid body was not formed. When the common carotid artery was retained, the organ grew in the wall of the third arch artery and glomus cell precursors were provided from the SCG in the null mutants as well as in wild-types. However, the volume of carotid body in the null mutants was only 52.5% of the value in wild-types at E17.5-E18.5. These results suggest that Hes1 plays a critical role in regulating the development of neural crest derivatives in the mouse cervical region.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
10
|
Abstract
In this study, we evaluated whether a cross talk between nuclear factor κB (NF-κB) and Notch may take place and contribute to regulate cell morphology and/or neuronal network in primary cortical neurons. We found that lack of p50, either induced acutely by inhibiting p50 nuclear translocation or genetically in p50(-/-) mice, results in cortical neurons characterized by reduced neurite branching, loss of varicosities, and Notch1 signaling hyperactivation. The neuronal morphological effects found in p50(-/-) cortical cells were reversed after treatment with the γ-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-1-alanyl 1]-S-phenylglycine t-butyl ester) or Notch RNA interference. Together, these data suggested that morphological abnormalities in p50(-/-) cortical neurons were dependent on Notch pathway hyperactivation, with Notch ligand Jagged1 being a major player in mediating such effect. In this line, we demonstrated that the p50 subunit acts as transcriptional repressor of Jagged1. We also found altered distribution of Notch1 and Jagged1 immunoreactivity in the cortex of p50(-/-) mice compared with wild-type littermates at postnatal day 1. These data suggest the relevance of future studies on the role of Notch/NF-κB cross talk in regulating cortex structural plasticity in physiological and pathological conditions.
Collapse
|
11
|
Kameda Y, Saitoh T, Fujimura T. Hes1 regulates the number and anterior–posterior patterning of mesencephalic dopaminergic neurons at the mid/hindbrain boundary (isthmus). Dev Biol 2011; 358:91-101. [DOI: 10.1016/j.ydbio.2011.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/22/2011] [Accepted: 07/12/2011] [Indexed: 10/18/2022]
|
12
|
Hiyama A, Skubutyte R, Markova D, Anderson DG, Yadla S, Sakai D, Mochida J, Albert TJ, Shapiro IM, Risbud MV. Hypoxia activates the notch signaling pathway in cells of the intervertebral disc: implications in degenerative disc disease. ACTA ACUST UNITED AC 2011; 63:1355-64. [PMID: 21305512 DOI: 10.1002/art.30246] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate whether hypoxia regulates Notch signaling, and whether Notch plays a role in intervertebral disc cell proliferation. METHODS Reverse transcription-polymerase chain reaction and Western blotting were used to measure expression of Notch signaling components in intervertebral disc tissue from mature rats and from human discs. Transfections were performed to determine the effects of hypoxia and Notch on target gene activity. RESULTS Cells of the nucleus pulposus and annulus fibrosus of rat disc tissue expressed components of the Notch signaling pathway. Expression of Notch-2 was higher than that of the other Notch receptors in both the nucleus pulposus and annulus fibrosus. In both tissues, hypoxia increased Notch1 and Notch4 messenger RNA (mRNA) expression. In the annulus fibrosus, mRNA expression of the Notch ligand Jagged1 was induced by hypoxia, while Jagged2 mRNA expression was highly sensitive to hypoxia in both tissues. A Notch signaling inhibitor, L685458, blocked hypoxic induction of the activity of the Notch-responsive luciferase reporters 12xCSL and CBF1. Expression of the Notch target gene Hes1 was induced by hypoxia, while coexpression with the Notch-intracellular domain increased Hes1 promoter activity. Moreover, inhibition of Notch signaling blocked disc cell proliferation. Analysis of human disc tissue showed that there was increased expression of Notch signaling proteins in degenerated discs. CONCLUSION In intervertebral disc cells, hypoxia promotes expression of Notch signaling proteins. Notch signaling is an important process in the maintenance of disc cell proliferation, and thus offers a therapeutic target for the restoration of cell numbers during degenerative disc disease.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|