1
|
Wu M, Vossough A, Massenburg BB, Romeo DJ, Ng JJ, Napoli JA, Swanson JW, Bartlett SP, Taylor JA. Mystery of the Muenke midface: spheno-occipital synchondrosis fusion and craniofacial skeletal patterns. Childs Nerv Syst 2024; 40:3683-3691. [PMID: 38992185 DOI: 10.1007/s00381-024-06518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE The spheno-occipital synchondrosis (SOS) is an important site of endochondral ossification in the cranial base that closes prematurely in Apert, Crouzon, and Pfeiffer syndromes, which contributes to varying degrees of midface hypoplasia. The facial dysmorphology of Muenke syndrome, in contrast, is less severe with low rates of midface hypoplasia. We thus evaluated the timing of SOS fusion and cephalometric landmarks in patients with Muenke syndrome compared to normal controls. METHODS Patients with Muenke syndrome who had at least one fine-cut head computed tomography scan performed from 2000 to 2020 were retrospectively reviewed. A case-control study was performed of patient scans and age- and sex-matched control scans. SOS fusion status was evaluated as open, partially closed, or closed. RESULTS We included 28 patients and compared 77 patient scans with 77 control scans. Kaplan-Meier analysis demonstrated an insignificantly earlier timeline of SOS fusion in Muenke syndrome (p = 0.300). Mean sella-orbitale (SO) distance was shorter (44.0 ± 6.6 vs. 47.7 ± 6.7 mm, p < 0.001) and mean sella-nasion-Frankfort horizontal (SN-FH) angle was greater (12.1° ± 3.8° vs. 10.1° ± 3.2°, p < 0.001) in the Muenke group, whereas mean sella-nasion-A point (SNA) angle was similar and normal (81.1° ± 5.7° vs. 81.4° ± 4.7°, p = 0.762). CONCLUSION Muenke syndrome is characterized by mild and often absent midfacial hypoplasia, with the exception of slight retropositioning of the infraorbital rim. Interestingly, SOS fusion patterns in these patients are not significantly different from age- and sex-matched controls despite an increased odds of fusion. It is possible that differences in timing of SOS fusion may manifest phenotypically at the infraorbital rim rather than at the maxilla.
Collapse
Affiliation(s)
- Meagan Wu
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Department of Radiology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Benjamin B Massenburg
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dominic J Romeo
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jinggang J Ng
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph A Napoli
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jordan W Swanson
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott P Bartlett
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jesse A Taylor
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Paltoglou G, Ziakas N, Chrousos GP, Yapijakis C. Cephalometric Evaluation of Children with Short Stature of Genetic Etiology: A Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:792. [PMID: 39062241 PMCID: PMC11275085 DOI: 10.3390/children11070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Introduction: A plethora of biological molecules regulate chondrogenesis in the epiphyseal growth plate. Disruptions of the quantity and function of these molecules can manifest clinically as stature abnormalities of various etiologies. Traditionally, the growth hormone/insulin-like growth factor 1 (IGF1) axis represents the etiological centre of final stature attainment. Of note, little is known about the molecular events that dominate the growth of the craniofacial complex and its correlation with somatic stature. Aim: Given the paucity of relevant data, this review discusses available information regarding potential applications of lateral cephalometric radiography as a potential clinical indicator of genetic short stature in children. Materials and Methods: A literature search was conducted in the PubMed electronic database using the keywords: cephalometric analysis and short stature; cephalometric analysis and achondroplasia; cephalometric analysis and hypochondroplasia; cephalometric analysis and skeletal abnormalities; cephalometr* and SHOX; cephalometr* and CNP; cephalometr* and ACAN; cephalometr* and CNVs; cephalometr* and IHH; cephalometr* and FGFR3; cephalometr* and Noonan syndrome; cephalometr* and "Turner syndrome"; cephalometr* and achondroplasia. Results: In individuals with genetic syndromes causing short stature, linear growth of the craniofacial complex is confined, following the pattern of somatic short stature regardless of its aetiology. The angular and linear cephalometric measurements differ from the measurements of the average normal individuals and are suggestive of a posterior placement of the jaws and a vertical growth pattern of the face. Conclusions: The greater part of the existing literature regarding cephalometric measurements in short-statured children with genetic syndromes provides qualitative data. Furthermore, cephalometric data for individuals affected with specific rare genetic conditions causing short stature should be the focus of future studies. These quantitative data are required to potentially establish cut-off values for reference for genetic testing based on craniofacial phenotypes.
Collapse
Affiliation(s)
- George Paltoglou
- Unit of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Nickolas Ziakas
- Unit of Orofacial Genetics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
3
|
Grosser JA, Kogan S, Layton RG, Pontier JF, Bins GP, Runyan CM. The Need for Additional Surgery after Passive versus Active Approaches to Syndromic Craniosynostosis: A Meta-analysis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4891. [PMID: 36936458 PMCID: PMC10017396 DOI: 10.1097/gox.0000000000004891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 03/17/2023]
Abstract
Endoscopically assisted craniofacial surgery (EACS) has numerous advantages over traditional, open approaches, such as fronto-orbital advancement in treating nonsyndromic craniosynostosis. However, several articles report high reoperation rates in syndromic patients treated with EACS. This meta-analysis and review examines undesirable outcome rates (UORs), defined as reoperation or Whitaker category III/IV, in syndromic patients undergoing primary EACS compared with procedures that actively expand the cranial vault. Methods PubMed and Embase were searched in June 2022 to identify all articles reporting primary reoperation or Whitaker outcomes for syndromic patients undergoing cranial vault expanding surgery or suturectomy. A meta-analysis of proportions was performed comparing UORs, and a trim-and-fill adjustment method was used to validate sensitivity and assess publication bias. Results A total of 721 articles were screened. Five EACS articles (83 patients) and 22 active approach articles (478 patients) met inclusion criteria. Average UORs for EACS and active approaches were 26% (14%-38%) and 20% (13%-28%), respectively (P = 0.18). Reoperation occurred earlier in EACS patients (13.7 months postprimary surgery versus 37.1 months for active approaches, P = 0.003). Relapse presentations and reason for reoperation were also reviewed. Subjectively, EACS UORs were higher in all syndromes except Apert, and Saethre-Chotzen patients had the highest UOR for both approaches. Conclusions There was no statistically significant increase in UORs among syndromic patients treated with EACS compared with traditional approaches, although EACS patients required revision significantly sooner. Uncertainties regarding the long-term efficacy of EACS in children with syndromic craniosynostosis should be revisited as more data become available.
Collapse
Affiliation(s)
- Joshua A. Grosser
- From the Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, N.C
| | - Samuel Kogan
- From the Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, N.C
| | - Ryan G. Layton
- From the Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, N.C
| | - Joshua F. Pontier
- From the Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, N.C
| | - Griffin P. Bins
- From the Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, N.C
| | - Christopher M. Runyan
- From the Department of Plastic and Reconstructive Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, N.C
| |
Collapse
|
4
|
Udayakumaran S, Krishnadas A, Subash P. Multisuture and syndromic craniosynostoses: Simplifying the complex. J Pediatr Neurosci 2022; 17:S29-S43. [PMID: 36388010 PMCID: PMC9648657 DOI: 10.4103/jpn.jpn_26_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/12/2022] [Indexed: 11/30/2022] Open
Abstract
Most complex craniosynostoses are managed the same way as syndromic craniosynostoses (SCs), as these patients often experience similar problems regarding cognition and increased intracranial pressure (ICP). The evaluation and treatment plan for craniosynostoses is complex, and this, additionally, is complicated by the age at presentation. In this article, the authors review the complexity of SCs in the presentation and management. An algorithm is necessary for such multifaceted and multidimensional pathology as craniosynostoses. In most algorithms, posterior calvarial distraction is a consistent early option for complex craniosynostoses presenting early with raised ICP. Addressing the airway early is critical when significant airway issues are there. All other surgical interventions are tailored on the basis of presentation and age.
Collapse
|
5
|
Craniofacial morphology and growth in Muenke syndrome, Saethre-Chotzen syndrome, and TCF12-related craniosynostosis. Clin Oral Investig 2021; 26:2927-2936. [PMID: 34904178 PMCID: PMC8898243 DOI: 10.1007/s00784-021-04275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022]
Abstract
Objectives To determine whether the midface of patients with Muenke syndrome, Saethre-Chotzen syndrome, or TCF12-related craniosynostosis is hypoplastic compared to skeletal facial proportions of a Dutch control group. Material and methods We included seventy-four patients (43 patients with Muenke syndrome, 22 patients with Saethre-Chotzen syndrome, and 9 patients with TCF12-related craniosynostosis) who were referred between 1990 and 2020 (age range 4.84 to 16.83 years) and were treated at the Department of Oral Maxillofacial Surgery, Special Dental Care and Orthodontics, Children’s Hospital Erasmus University Medical Center, Sophia, Rotterdam, the Netherlands. The control group consisted of 208 healthy children. Results Cephalometric values comprising the midface were decreased in Muenke syndrome (ANB: β = –1.87, p = 0.001; and PC1: p < 0,001), Saethre-Chotzen syndrome (ANB: β = –1.76, p = 0.001; and PC1: p < 0.001), and TCF12-related craniosynostosis (ANB: β = –1.70, p = 0.015; and PC1: p < 0.033). Conclusions In this study, we showed that the midface is hypoplastic in Muenke syndrome, Saethre-Chotzen syndrome, and TCF12-related craniosynostosis compared to the Dutch control group. Furthermore, the rotation of the maxilla and the typical craniofacial buildup is significantly different in these three craniosynostosis syndromes compared to the controls. Clinical relevance The maxillary growth in patients with Muenke syndrome, Saethre-Chotzen syndrome, or TCF12-related craniosynostosis is impaired, leading to a deviant dental development. Therefore, timely orthodontic follow-up is recommended. In order to increase expertise and support treatment planning by medical and dental specialists for these patients, and also because of the specific differences between the syndromes, we recommend the management of patients with Muenke syndrome, Saethre-Chotzen syndrome, or TCF12-related craniosynostosis in specialized multidisciplinary teams. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-04275-y.
Collapse
|
6
|
Kidwai FK, Mui BWH, Almpani K, Jani P, Keyvanfar C, Iqbal K, Paravastu SS, Arora D, Orzechowski P, Merling RK, Mallon B, Myneni VD, Ahmad M, Kruszka P, Muenke M, Woodcock J, Gilman JW, Robey PG, Lee JS. Quantitative Craniofacial Analysis and Generation of Human Induced Pluripotent Stem Cells for Muenke Syndrome: A Case Report. J Dev Biol 2021; 9:39. [PMID: 34698187 PMCID: PMC8544470 DOI: 10.3390/jdb9040039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
In this case report, we focus on Muenke syndrome (MS), a disease caused by the p.Pro250Arg variant in fibroblast growth factor receptor 3 (FGFR3) and characterized by uni- or bilateral coronal suture synostosis, macrocephaly without craniosynostosis, dysmorphic craniofacial features, and dental malocclusion. The clinical findings of MS are further complicated by variable expression of phenotypic traits and incomplete penetrance. As such, unraveling the mechanisms behind MS will require a comprehensive and systematic way of phenotyping patients to precisely identify the impact of the mutation variant on craniofacial development. To establish this framework, we quantitatively delineated the craniofacial phenotype of an individual with MS and compared this to his unaffected parents using three-dimensional cephalometric analysis of cone beam computed tomography scans and geometric morphometric analysis, in addition to an extensive clinical evaluation. Secondly, given the utility of human induced pluripotent stem cells (hiPSCs) as a patient-specific investigative tool, we also generated the first hiPSCs derived from a family trio, the proband and his unaffected parents as controls, with detailed characterization of all cell lines. This report provides a starting point for evaluating the mechanistic underpinning of the craniofacial development in MS with the goal of linking specific clinical manifestations to molecular insights gained from hiPSC-based disease modeling.
Collapse
Affiliation(s)
- Fahad K. Kidwai
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Byron W. H. Mui
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Konstantinia Almpani
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Priyam Jani
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Cyrus Keyvanfar
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Kulsum Iqbal
- School of Dental Medicine, Tufts University, Boston, MA 02111, USA;
| | - Sriram S. Paravastu
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Deepika Arora
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Pamela Orzechowski
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Randall K. Merling
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Barbara Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA;
| | - Vamsee D. Myneni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Moaz Ahmad
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Paul Kruszka
- National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (P.K.); (M.M.)
| | - Maximilian Muenke
- National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (P.K.); (M.M.)
| | - Jeremiah Woodcock
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (J.W.); (J.W.G.)
| | - Jeffrey W. Gilman
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (J.W.); (J.W.G.)
| | - Pamela G. Robey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
| | - Janice S. Lee
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA; (B.W.H.M.); (K.A.); (P.J.); (C.K.); (S.S.P.); (D.A.); (P.O.); (R.K.M.); (V.D.M.); (M.A.); (P.G.R.)
- Craniofacial Anomalies & Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA
| |
Collapse
|
7
|
Adidharma W, Mercan E, Purnell C, Birgfeld CB, Lee A, Ellenbogen RG, Hopper RA. Evolution of Cranioorbital Shape in Nonsyndromic, Muenke, and Saethre-Chotzen Bilateral Coronal Synostosis: A Case-Control Study of 2-Year Outcomes. Plast Reconstr Surg 2021; 147:148-159. [PMID: 33370058 DOI: 10.1097/prs.0000000000007494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purpose of this study was to quantify change in cranioorbital morphology from presentation, after fronto-orbital advancement, and at 2-year follow-up. METHODS Volumetric, linear, and angular analyses were performed on computed tomographic scans of consecutive bilateral coronal synostosis patients. Comparisons were made across three time points, between syndromic and nonsyndromic cases, and against normal controls. Significance was set at p < 0.05. RESULTS Twenty-five patients were included: 11 were nonsyndromic, eight had Saethre-Chotzen syndrome, and six had Muenke syndrome. Total cranial volume was comparable to normal, age-matched control subjects before and 2 years after surgery despite an expansion during surgery. Axial and sagittal vector analyses showed advancement and widening of the lower forehead beyond control values with surgery and comparable anterior position, but increased width compared to controls at 2 years. Frontal bossing decreased with a drop in anterior cranial height and advanced lower forehead position. Middle vault height was not normalized and turricephaly persisted at follow-up. Posterior fossa volume remained lower at all three time points compared to control subjects. Supraorbital retrusion relative to anterior corneal position was overcorrected by surgery, with values comparable to those of control subjects at 2 years because of differential growth. There was no difference at 2 years between syndromic and nonsyndromic groups. CONCLUSIONS Open fronto-orbital advancement successfully remodels the anterior forehead but requires overcorrection to be comparable to normal at 2 years. Although there are differences in syndromic cases at presentation, they do not result in significant morphometric differences on follow-up. Posterior fossa volume remains lower at all time points. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, IV.
Collapse
Affiliation(s)
- Widya Adidharma
- From the Craniofacial Image Analysis Lab, Craniofacial Center, Seattle Children's Hospital; and the Division of Plastic Surgery and the Department of Neurological Surgery, University of Washington
| | - Ezgi Mercan
- From the Craniofacial Image Analysis Lab, Craniofacial Center, Seattle Children's Hospital; and the Division of Plastic Surgery and the Department of Neurological Surgery, University of Washington
| | - Chad Purnell
- From the Craniofacial Image Analysis Lab, Craniofacial Center, Seattle Children's Hospital; and the Division of Plastic Surgery and the Department of Neurological Surgery, University of Washington
| | - Craig B Birgfeld
- From the Craniofacial Image Analysis Lab, Craniofacial Center, Seattle Children's Hospital; and the Division of Plastic Surgery and the Department of Neurological Surgery, University of Washington
| | - Amy Lee
- From the Craniofacial Image Analysis Lab, Craniofacial Center, Seattle Children's Hospital; and the Division of Plastic Surgery and the Department of Neurological Surgery, University of Washington
| | - Richard G Ellenbogen
- From the Craniofacial Image Analysis Lab, Craniofacial Center, Seattle Children's Hospital; and the Division of Plastic Surgery and the Department of Neurological Surgery, University of Washington
| | - Richard A Hopper
- From the Craniofacial Image Analysis Lab, Craniofacial Center, Seattle Children's Hospital; and the Division of Plastic Surgery and the Department of Neurological Surgery, University of Washington
| |
Collapse
|
8
|
Ferry AM, Dibbs RP, Sarrami SM, Abu-Ghname A, Beh HZ, Maricevich RS, Buchanan EP. Pediatric Fronto-Orbital Skull Reconstruction. Facial Plast Surg 2021; 37:771-780. [PMID: 33525031 DOI: 10.1055/s-0041-1722920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Craniofacial surgery in children is a highly challenging discipline that requires extensive knowledge of craniofacial anatomy and pathology. Insults to the fronto-orbital skeleton have the potential to inflict significant morbidity and even mortality in patients due to its proximity to the central nervous system. In addition, significant aesthetic and ophthalmologic disturbances frequently accompany these insults. Craniosynostosis, facial trauma, and craniofacial tumors are all pathologies that frequently affect the fronto-orbital region of the craniofacial skeleton in children. While the mechanisms of these pathologies vary greatly, the underlying principles of reconstruction remain the same. Despite the limited data in certain areas of fronto-orbital reconstruction in children, significant innovations have greatly improved its safety and efficacy. It is imperative that further investigations of fronto-orbital reconstruction are undertaken so that craniofacial surgeons may provide optimal care for these patients.
Collapse
Affiliation(s)
- Andrew M Ferry
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas
| | - Rami P Dibbs
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas
| | - Shayan M Sarrami
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas
| | - Amjed Abu-Ghname
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Han Zhuang Beh
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas
| | - Renata S Maricevich
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas
| | - Edward P Buchanan
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
9
|
Morice A, Cornette R, Giudice A, Collet C, Paternoster G, Arnaud É, Galliani E, Picard A, Legeai-Mallet L, Khonsari RH. Early mandibular morphological differences in patients with FGFR2 and FGFR3-related syndromic craniosynostoses: A 3D comparative study. Bone 2020; 141:115600. [PMID: 32822871 DOI: 10.1016/j.bone.2020.115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Syndromic craniosynostoses are defined by the premature fusion of one or more cranial and facial sutures, leading to skull vault deformation, and midfacial retrusion. More recently, mandibular shape modifications have been described in FGFR-related craniosynostoses, which represent almost 75% of the syndromic craniosynostoses. Here, further characterisation of the mandibular phenotype in FGFR-related craniosynostoses is provided in order to confirm mandibular shape modifications, as this could contribute to a better understanding of the involvement of the FGFR pathway in craniofacial development. The aim of our study was to analyse early mandibular morphology in a cohort of patients with FGFR2- (Crouzon and Apert) and FGFR3- (Muenke and Crouzonodermoskeletal) related syndromic craniosynostoses. We used a comparative geometric morphometric approach based on 3D imaging. Thirty-one anatomical landmarks and eleven curves with sliding semi-landmarks were defined to model the shape of the mandible. In total, 40 patients (12 with Crouzon, 12 with Apert, 12 with Muenke and 4 with Crouzonodermoskeletal syndromes) and 40 age and sex-matched controls were included (mean age: 13.7 months ±11.9). Mandibular shape differed significantly between controls and each patient group based on geometric morphometrics. Mandibular shape in FGFR2-craniosynostoses was characterized by open gonial angle, short ramus height, and high and prominent symphysis. Short ramus height appeared more pronounced in Apert than in Crouzon syndrome. Additionally, narrow inter-condylar and inter-gonial distances were observed in Crouzon syndrome. Mandibular shape in FGFR3-craniosynostoses was characterized by high and prominent symphysis and narrow inter-gonial distance. In addition, narrow condylar processes affected patients with Crouzonodermoskeletal syndrome. Statistical analysis of variance showed significant clustering of Apert and Crouzon, Crouzon and Muenke, and Apert and Muenke patients (p < 0.05). Our results confirm distinct mandibular shapes at early ages in FGFR2- (Crouzon and Apert syndromes) and FGFR3-related syndromic craniosynostoses (Muenke and Crouzonodermoskeletal syndromes) and reinforce the hypothesis of genotype-phenotype correspondence concerning mandibular morphology.
Collapse
Affiliation(s)
- A Morice
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France.
| | - R Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - A Giudice
- Università Degli Studi di Catanzaro 'Magna Graecia', Catanzaro, Italy
| | - C Collet
- BIOSCAR, INSERM U1132, Université de Paris, Hôpital Lariboisière, 75010 Paris, France; Service de Biochimie et Biologie Moléculaire, CHU-Paris-GH Saint Louis Lariboisière Widal, Paris, France
| | - G Paternoster
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - É Arnaud
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - E Galliani
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - A Picard
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - L Legeai-Mallet
- Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France
| | - R H Khonsari
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France; Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| |
Collapse
|
10
|
Murali CN, McDonald-McGinn DM, Wenger TL, McDougall C, Stroup BM, Sheppard SE, Taylor J, Bartlett SP, Bhoj EJ, Zackai EH, Santani A. Muenke syndrome: Medical and surgical comorbidities and long-term management. Am J Med Genet A 2019; 179:1442-1450. [PMID: 31111620 DOI: 10.1002/ajmg.a.61199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 11/08/2022]
Abstract
Muenke syndrome (MIM #602849), the most common syndromic craniosynostosis, results from the recurrent pathogenic p.P250R variant in FGFR3. Affected patients exhibit wide phenotypic variability. Common features include coronal craniosynostosis, hearing loss, carpal and tarsal anomalies, and developmental/behavioral issues. Our study examined the phenotypic findings, medical management, and surgical outcomes in a cohort of 26 probands with Muenke syndrome identified at the Children's Hospital of Philadelphia. All probands had craniosynostosis; 69.7% had bicoronal synostosis only, or bicoronal and additional suture synostosis. Three male patients had autism spectrum disorder. Recurrent ear infections were the most common comorbidity, and myringotomy tube placement the most common extracranial surgical procedure. Most patients (76%) required only one fronto-orbital advancement. de novo mutations were confirmed in 33% of the families in which proband and both parents were genetically tested, while in the remaining 66% one of the parents was a mutation carrier. In affected parents, 40% had craniosynostosis, including 71% of mothers and 13% of fathers. We additionally analyzed the medical resource utilization of probands with Muenke syndrome. To our knowledge, these data represent the first comprehensive examination of long-term management in a large cohort of patients with Muenke syndrome. Our study adds valuable information regarding neuropsychiatric and medical comorbidities, and highlights findings in affected relatives.
Collapse
Affiliation(s)
- Chaya N Murali
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Tara Lynn Wenger
- Division of Craniofacial Medicine, Seattle Children's Hospital, Seattle, WA
| | - Carey McDougall
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Bridget M Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sarah E Sheppard
- Division of Human Genetics and Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jesse Taylor
- Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Scott P Bartlett
- Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth J Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Avni Santani
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Assessing the midface in Muenke syndrome: A cephalometric analysis and review of the literature. J Plast Reconstr Aesthet Surg 2016; 69:1285-90. [PMID: 27449747 DOI: 10.1016/j.bjps.2016.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Max Muenke included midface hypoplasia as part of the clinical syndrome caused by the Pro250Arg FGFR3 mutation that now bears his name. Murine models have demonstrated midface hypoplasia in homozygous recessive mice only, with heterozygotes having normal midfaces; as the majority of humans with the syndrome are heterozygotes, we investigated the incidence of midface hypoplasia in our institution's clinical cohort. METHODS We retrospectively reviewed all patients with a genetic and clinical diagnosis of Muenke syndrome from 1990 to 2014. Review of clinical records and photographs included skeletal Angle Class, dental occlusion, and incidence of orthognathic intervention. Cephalometric evaluation of our patients was compared to the Eastman Standard Values. RESULTS 18 patients met inclusion criteria - 7 females and 11 males, with average follow-up of 11.2 years (1.0-23.1). Cephalometric analysis revealed an average sella-nasion-A point angle (SNA) of 82.5 (67.8-88.8) and an average sella-nasion-B point angle (SNB) of 77.9 (59.6-84.1). The SNA of our cohort was found to be significantly different from the Eastman Standards (p = 0.017); subgroup analysis revealed that this was due to the mixed dentition group which had a higher than average SNA. 12 patients were noted to be in Class I occlusion, 4 in Class II malocclusion, and 2 in Class III malocclusion. Only one patient (6%) underwent orthognathic surgery for Class III malocclusion. CONCLUSIONS While a part of the original description of Muenke syndrome, clinically significant midface hypoplasia is not a common feature. This data is important, as it allows more accurate counseling of patients and families. LEVEL OF EVIDENCE III.
Collapse
|
12
|
Biosse Duplan M, Komla-Ebri D, Heuzé Y, Estibals V, Gaudas E, Kaci N, Benoist-Lasselin C, Zerah M, Kramer I, Kneissel M, Porta DG, Di Rocco F, Legeai-Mallet L. Meckel's and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible. Hum Mol Genet 2016; 25:2997-3010. [PMID: 27260401 PMCID: PMC5181594 DOI: 10.1093/hmg/ddw153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 02/07/2023] Open
Abstract
Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel’s) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel’s and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders.
Collapse
Affiliation(s)
- Martin Biosse Duplan
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France.,Service d'Odontologie, Hôpital Bretonneau, HUPNVS, AP-HP, Paris, France
| | - Davide Komla-Ebri
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Yann Heuzé
- UMR5199 PACEA, Université de Bordeaux, Bordeaux Archaeological Sciences Cluster Of Excellence, Université de Bordeaux, Bordeaux, France
| | - Valentin Estibals
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Emilie Gaudas
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Nabil Kaci
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | | | - Michel Zerah
- Neurochirurgie Pédiatrique, Unité de Chirurgie Craniofaciale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Ina Kramer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Federico Di Rocco
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France.,Neurochirurgie Pédiatrique, Unité de Chirurgie Craniofaciale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Laurence Legeai-Mallet
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France .,Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
13
|
Accogli A, Pacetti M, Fiaschi P, Pavanello M, Piatelli G, Nuzzi D, Baldi M, Tassano E, Severino MS, Allegri A, Capra V. Association of achondroplasia with sagittal synostosis and scaphocephaly in two patients, an underestimated condition? Am J Med Genet A 2016; 167A:646-52. [PMID: 25691418 DOI: 10.1002/ajmg.a.36933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/07/2014] [Indexed: 12/25/2022]
Abstract
We report on two patients with an unusual combination of achondroplasia and surgically treated sagittal synostosis and scaphocephaly. The most common achondroplasia mutation, p.Gly380Arg in fibroblast growth factor receptor 3 (FGFR3), was detected in both patients. Molecular genetic testing of FGFR1, FGFR2, FGFR3 and TWIST1 genes failed to detect any additional mutations. There are several reports of achondroplasia with associated craniosynostosis, but no other cases of scaphocephaly in children with achondroplasia have been described. Recently it has been demonstrated that FGFR3 mutations affect not only endochondral ossification but also membranous ossification, providing new explanations for the craniofacial hallmarks in achondroplasia. Our report suggests that the association of isolated scaphocephaly and other craniosynostoses with achondroplasia may be under recognized.
Collapse
Affiliation(s)
- Andrea Accogli
- Universit, à, di Genova, Genova, Italy; Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Conditional Deletion of Fgfr3 in Chondrocytes leads to Osteoarthritis-like Defects in Temporomandibular Joint of Adult Mice. Sci Rep 2016; 6:24039. [PMID: 27041063 PMCID: PMC4819201 DOI: 10.1038/srep24039] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/21/2016] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a common degenerative disease in adult, which is characterized by progressive destruction of the articular cartilage. To investigate the role of FGFR3 in the homeostasis of TMJ cartilage during adult stage, we generated Fgfr3f/f; Col2a1-CreERT2 (Fgfr3 cKO) mice, in which Fgfr3 was deleted in chondrocytes at 2 months of age. OA-like defects were observed in Fgfr3 cKO TMJ cartilage. Immunohistochemical staining and quantitative real-time PCR analyses revealed a significant increase in expressions of COL10, MMP13 and AMAMTS5. In addition, there was a sharp increase in chondrocyte apoptosis at the Fgfr3 cKO articular surface, which was accompanied by a down-regulation of lubricin expression. Importantly, the expressions of RUNX2 and Indian hedgehog (IHH) were up-regulated in Fgfr3 cKO TMJ. Primary Fgfr3 cKO chondrocytes were treated with IHH signaling inhibitor, which significantly reduced expressions of Runx2, Col10, Mmp13 and Adamts5. Furthermore, the IHH signaling inhibitor partially alleviated OA-like defects in the TMJ of Fgfr3 cKO mice, including restoration of lubricin expression and improvement of the integrity of the articular surface. In conclusion, our study proposes that FGFR3/IHH signaling pathway plays a critical role in maintaining the homeostasis of TMJ articular cartilage during adult stage.
Collapse
|
15
|
Jayaratne YSN, Zwahlen RA. Application of digital anthropometry for craniofacial assessment. Craniomaxillofac Trauma Reconstr 2014; 7:101-7. [PMID: 25050146 DOI: 10.1055/s-0034-1371540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/07/2013] [Indexed: 10/25/2022] Open
Abstract
Craniofacial anthropometry is an objective technique based on a series of measurements and proportions, which facilitate the characterization of phenotypic variation and quantification of dysmorphology. With the introduction of stereophotography, it is possible to acquire a lifelike three-dimensional (3D) image of the face with natural color and texture. Most of the traditional anthropometric landmarks can be identified on these 3D photographs using specialized software. Therefore, it has become possible to compute new digital measurements, which were not feasible with traditional instruments. The term "digital anthropometry" has been used by researchers based on such systems to separate their methods from conventional manual measurements. Anthropometry has been traditionally used as a research tool. With the advent of digital anthropometry, this technique can be employed in several disciplines as a noninvasive tool for quantifying facial morphology. The aim of this review is to provide a broad overview of digital anthropometry and discuss its clinical applications.
Collapse
Affiliation(s)
- Yasas S N Jayaratne
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Roger A Zwahlen
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
16
|
|
17
|
Heuzé Y, Martínez-Abadías N, Stella JM, Arnaud E, Collet C, García Fructuoso G, Alamar M, Lo LJ, Boyadjiev SA, Di Rocco F, Richtsmeier JT. Quantification of facial skeletal shape variation in fibroblast growth factor receptor-related craniosynostosis syndromes. ACTA ACUST UNITED AC 2014; 100:250-9. [PMID: 24578066 DOI: 10.1002/bdra.23228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/06/2014] [Accepted: 01/18/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND fibroblast growth factor receptor (FGFR) -related craniosynostosis syndromes are caused by many different mutations within FGFR-1, 2, 3, and certain FGFR mutations are associated with more than one clinical syndrome. These syndromes share coronal craniosynostosis and characteristic facial skeletal features, although Apert syndrome (AS) is characterized by a more dysmorphic facial skeleton relative to Crouzon (CS), Muenke (MS), or Pfeiffer syndromes. METHODS Here we perform a detailed three-dimensional evaluation of facial skeletal shape in a retrospective sample of cases clinically and/or genetically diagnosed as AS, CS, MS, and Pfeiffer syndrome to quantify variation in facial dysmorphology, precisely identify specific facial features pertaining to these four syndromes, and further elucidate what knowledge of the causative FGFR mutation brings to our understanding of these syndromes. RESULTS Our results confirm a strong correspondence between genotype and facial phenotype for AS and MS with severity of facial dysmorphology diminishing from Apert FGFR2(S252W) to Apert FGFR2(P253R) to MS. We show that AS facial shape variation is increased relative to CS, although CS has been shown to be caused by numerous distinct mutations within FGFRs and reduced dosage in ERF. CONCLUSION Our quantitative analysis of facial phenotypes demonstrate subtle variation within and among craniosynostosis syndromes that might, with further research, provide information about the impact of the mutation on facial skeletal and nonskeletal development. We suggest that precise studies of the phenotypic consequences of genetic mutations at many levels of analysis should accompany next-generation genetic research and that these approaches should proceed cooperatively.
Collapse
Affiliation(s)
- Yann Heuzé
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Di Rocco F, Biosse Duplan M, Heuzé Y, Kaci N, Komla-Ebri D, Munnich A, Mugniery E, Benoist-Lasselin C, Legeai-Mallet L. FGFR3 mutation causes abnormal membranous ossification in achondroplasia. Hum Mol Genet 2014; 23:2914-25. [PMID: 24419316 DOI: 10.1093/hmg/ddu004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of patients with ACH and FGFR3-related craniosynostoses provide an opportunity to address this issue. Studying the calvaria and skull base, we observed abnormal cartilage and premature fusion of the synchondroses leading to modifications of foramen magnum shape and size in Fgfr3(Y367C/+) mice, ACH and FGFR3-related craniosynostoses patients. Partial premature fusion of the coronal sutures and non-ossified gaps in frontal bones were also present in Fgfr3(Y367C/+) mice and ACH patients. Our data provide strong support that not only endochondral ossification but also membranous ossification is severely affected in ACH. Demonstration of the impact of FGFR3 mutations on craniofacial development should initiate novel pharmacological and surgical therapeutic approaches.
Collapse
Affiliation(s)
- Federico Di Rocco
- INSERM U781, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Hopital Necker-Enfants malades, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Aravidis C, Konialis CP, Pangalos CG, Kosmaidou Z. A familial case of Muenke syndrome. Diverse expressivity of the FGFR3 Pro252Arg mutation--case report and review of the literature. J Matern Fetal Neonatal Med 2013; 27:1502-6. [PMID: 24168007 DOI: 10.3109/14767058.2013.860520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Muenke is a fibroblast growth factor receptor 3 (FGFR-3)-associated syndrome, which was first described in late 1990 s. Muenke syndrome is an autosomal dominant disorder characterized mainly by coronal suture craniosynostosis, hearing impairment and intellectual disability. The syndrome is defined molecularly by a unique point mutation c.749C > G in exon 7 of the FGFR3 gene which results to an amino acid substitution p.Pro250Arg of the protein product. Despite the fact that the mutation rate at this nucleotide is one of the most frequently described in human genome, few Muenke familial case reports are published in current literature. We describe individuals among three generations of a Greek family who are carriers of the same mutation. Medical record and physical examination of family members present a wide spectrum of clinical manifestations. In particular, a 38-year-old woman and her father appear milder clinical findings regarding craniofacial characteristics compared to her uncle and newborn female child. This familial case illustrates the variable expressivity of Muenke syndrome in association with an identical gene mutation.
Collapse
Affiliation(s)
- Christos Aravidis
- Critical Care Department, Cytogenetics Unit, Evangelismos Hospital, Medical School of Athens University , Athens , Greece
| | | | | | | |
Collapse
|
20
|
Cranial Vault Growth in Multiple-Suture Nonsyndromic and Syndromic Craniosynostosis. J Craniofac Surg 2013; 24:753-7. [DOI: 10.1097/scs.0b013e3182868b4f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Agochukwu NB, Solomon BD, Gropman AL, Muenke M. Epilepsy in Muenke syndrome: FGFR3-related craniosynostosis. Pediatr Neurol 2012; 47:355-61. [PMID: 23044018 PMCID: PMC4133743 DOI: 10.1016/j.pediatrneurol.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/18/2012] [Indexed: 12/21/2022]
Abstract
Epilepsy, a neurologic disorder characterized by the predisposition to recurrent unprovoked seizures, is reported in more than 300 genetic syndromes. Muenke syndrome is an autosomal-dominant craniosynostosis syndrome characterized by unilateral or bilateral coronal craniosynostosis, hearing loss, intellectual disability, and relatively subtle limb findings such as carpal bone fusion and tarsal bone fusion. Muenke syndrome is caused by a single defining point mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. Epilepsy rarely occurs in individuals with Muenke syndrome, and little detail is reported on types of epilepsy, patient characteristics, and long-term outcomes. We present seven patients with Muenke syndrome and seizures. A review of 789 published cases of Muenke syndrome, with a focus on epilepsy and intracranial anomalies in Muenke syndrome, revealed epilepsy in six patients, with intracranial anomalies in five. The occurrence of epilepsy in Muenke syndrome within our cohort of 58 patients, of whom seven manifested epilepsy, and the intracranial anomalies and epilepsy reported in the literature, suggest that patients with Muenke syndrome may be at risk for epilepsy and intracranial anomalies. Furthermore, the impact of Muenke syndrome on the central nervous system may be greater than previously thought.
Collapse
Affiliation(s)
- Nneamaka B. Agochukwu
- Clinical Research Training Program, National Institutes of Health, Bethesda, Maryland,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea L. Gropman
- Department of Neurology, Children’s National Medical Center, Washington, DC,Department of Neurology, George Washington University of the Health Sciences, Washington, DC
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland,Communications should be addressed to: Dr. Muenke; Medical, Genetics Branch; National Human Genome Research Institute; National, Institutes of Health; Building 35, Room 1B-203, MSC 3717; Bethesda, MD 20892.
| |
Collapse
|
22
|
Differential Closure of the Spheno-occipital Synchondrosis in Syndromic Craniosynostosis. Plast Reconstr Surg 2012; 130:681e-689e. [DOI: 10.1097/prs.0b013e318267d4c0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Nah HD, Koyama E, Agochukwu NB, Bartlett SP, Muenke M. Phenotype profile of a genetic mouse model for Muenke syndrome. Childs Nerv Syst 2012; 28:1483-93. [PMID: 22872265 PMCID: PMC4131982 DOI: 10.1007/s00381-012-1778-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE The Muenke syndrome mutation (FGFR3 (P250R)), which was discovered 15 years ago, represents the single most common craniosynostosis mutation. Muenke syndrome is characterized by coronal suture synostosis, midface hypoplasia, subtle limb anomalies, and hearing loss. However, the spectrum of clinical presentation continues to expand. To better understand the pathophysiology of the Muenke syndrome, we present collective findings from several recent studies that have characterized a genetically equivalent mouse model for Muenke syndrome (FgfR3 (P244R)) and compare them with human phenotypes. CONCLUSIONS FgfR3 (P244R) mutant mice show premature fusion of facial sutures, premaxillary and/or zygomatic sutures, but rarely the coronal suture. The mice also lack the typical limb phenotype. On the other hand, the mutant mice display maxillary retrusion in association with a shortening of the anterior cranial base and a premature closure of intersphenoidal and spheno-occipital synchondroses, resembling human midface hypoplasia. In addition, sensorineural hearing loss is detected in all FgfR3 (P244R) mutant mice as in the majority of Muenke syndrome patients. It is caused by a defect in the mechanism of cell fate determination in the organ of Corti. The mice also express phenotypes that have not been previously described in humans, such as reduced cortical bone thickness, hypoplastic trabecular bone, and defective temporomandibular joint structure. Therefore, the FgfR3 (P244R) mouse provides an excellent opportunity to study disease mechanisms of some classical phenotypes of Muenke syndrome and to test novel therapeutic strategies. The mouse model can also be further explored to discover previously unreported yet potentially significant phenotypes of Muenke syndrome.
Collapse
Affiliation(s)
- Hyun-Duck Nah
- Plastic and Reconstructive Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
24
|
Agochukwu NB, Solomon BD, Muenke M. Impact of genetics on the diagnosis and clinical management of syndromic craniosynostoses. Childs Nerv Syst 2012; 28:1447-63. [PMID: 22872262 PMCID: PMC4101189 DOI: 10.1007/s00381-012-1756-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE More than 60 different mutations have been identified to be causal in syndromic forms of craniosynostosis. The majority of these mutations occur in the fibroblast growth factor receptor 2 gene (FGFR2). The clinical management of syndromic craniosynostosis varies based on the particular causal mutation. Additionally, the diagnosis of a patient with syndromic craniosynostosis is based on the clinical presentation, signs, and symptoms. The understanding of the hallmark features of particular syndromic forms of craniosynostosis leads to efficient diagnosis, management, and long-term prognosis of patients with syndromic craniosynostoses. METHODS A comprehensive literature review was done with respect to the major forms of syndromic craniosynostosis and additional less common FGFR-related forms of syndromic craniosynostosis. Additionally, information and data gathered from studies performed in our own investigative lab (lab of Dr. Muenke) were further analyzed and reviewed. A literature review was also performed with regard to the genetic workup and diagnosis of patients with craniosynostosis. RESULTS Patients with Apert syndrome (craniosynostosis syndrome due to mutations in FGFR2) are most severely affected in terms of intellectual disability, developmental delay, central nervous system anomalies, and limb anomalies. All patients with FGFR-related syndromic craniosynostosis have some degree of hearing loss that requires thorough initial evaluations and subsequent follow-up. CONCLUSIONS Patients with syndromic craniosynostosis require management and treatment of issues involving multiple organ systems which span beyond craniosynostosis. Thus, effective care of these patients requires a multidisciplinary approach.
Collapse
Affiliation(s)
- Nneamaka B Agochukwu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, NIH, MSC 3717, Building 35, Room 1B-207, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
25
|
Brons S, van Beusichem ME, Bronkhorst EM, Draaisma J, Bergé SJ, Maal TJ, Kuijpers-Jagtman AM. Methods to quantify soft-tissue based facial growth and treatment outcomes in children: a systematic review. PLoS One 2012; 7:e41898. [PMID: 22879898 PMCID: PMC3412871 DOI: 10.1371/journal.pone.0041898] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/28/2012] [Indexed: 01/03/2023] Open
Abstract
Context Technological advancements have led craniofacial researchers and clinicians into the era of three-dimensional digital imaging for quantitative evaluation of craniofacial growth and treatment outcomes. Objective To give an overview of soft-tissue based methods for quantitative longitudinal assessment of facial dimensions in children until six years of age and to assess the reliability of these methods in studies with good methodological quality. Data Source PubMed, EMBASE, Cochrane Library, Web of Science, Scopus and CINAHL were searched. A hand search was performed to check for additional relevant studies. Study Selection Primary publications on facial growth and treatment outcomes in children younger than six years of age were included. Data Extraction Independent data extraction by two observers. A quality assessment instrument was used to determine the methodological quality. Methods, used in studies with good methodological quality, were assessed for reliability expressed as the magnitude of the measurement error and the correlation coefficient between repeated measurements. Results In total, 47 studies were included describing 4 methods: 2D x-ray cephalometry; 2D photography; anthropometry; 3D imaging techniques (surface laser scanning, stereophotogrammetry and cone beam computed tomography). In general the measurement error was below 1 mm and 1° and correlation coefficients range from 0.65 to 1.0. Conclusion Various methods have shown to be reliable. However, at present stereophotogrammetry seems to be the best 3D method for quantitative longitudinal assessment of facial dimensions in children until six years of age due to its millisecond fast image capture, archival capabilities, high resolution and no exposure to ionizing radiation.
Collapse
Affiliation(s)
- Sander Brons
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yasuda T, Nah HD, Laurita J, Kinumatsu T, Shibukawa Y, Shibutani T, Minugh-Purvis N, Pacifici M, Koyama E. Muenke syndrome mutation, FgfR3P²⁴⁴R, causes TMJ defects. J Dent Res 2012; 91:683-9. [PMID: 22622662 DOI: 10.1177/0022034512449170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Muenke syndrome is characterized by various craniofacial deformities and is caused by an autosomal-dominant activating mutation in fibroblast growth factor receptor 3 (FGFR3(P250R) ). Here, using mice carrying a corresponding mutation (FgfR3(P244R) ), we determined whether the mutation affects temporomandibular joint (TMJ) development and growth. In situ hybridization showed that FgfR3 was expressed in condylar chondroprogenitors and maturing chondrocytes that also expressed the Indian hedgehog (Ihh) receptor and transcriptional target Patched 1(Ptch1). In FgfR3(P244R) mutants, the condyles displayed reduced levels of Ihh expression, H4C-positive proliferating chondroprogenitors, and collagen type II- and type X-expressing chondrocytes. Primary bone spongiosa formation was also disturbed and was accompanied by increased osteoclastic activity and reduced trabecular bone formation. Treatment of wild-type condylar explants with recombinant FGF2/FGF9 decreased Ptch1 and PTHrP expression in superficial/polymorphic layers and proliferation in chondroprogenitors. We also observed early degenerative changes of condylar articular cartilage, abnormal development of the articular eminence/glenoid fossa in the TMJ, and fusion of the articular disc. Analysis of our data indicates that the activating FgfR3(P244R) mutation disturbs TMJ developmental processes, likely by reducing hedgehog signaling and endochondral ossification. We suggest that a balance between FGF and hedgehog signaling pathways is critical for the integrity of TMJ development and for the maintenance of cellular organization.
Collapse
Affiliation(s)
- T Yasuda
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Abramson Research Center, 3516 Civic Center Blvd, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Laurita J, Koyama E, Chin B, Taylor JA, Lakin GE, Hankenson KD, Bartlett SP, Nah HD. The Muenke syndrome mutation (FgfR3P244R) causes cranial base shortening associated with growth plate dysfunction and premature perichondrial ossification in murine basicranial synchondroses. Dev Dyn 2012; 240:2584-96. [PMID: 22016144 DOI: 10.1002/dvdy.22752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Muenke syndrome caused by the FGFR3(P250R) mutation is an autosomal dominant disorder mostly identified with coronal suture synostosis, but it also presents with other craniofacial phenotypes that include mild to moderate midface hypoplasia. The Muenke syndrome mutation is thought to dysregulate intramembranous ossification at the cranial suture without disturbing endochondral bone formation in the skull. We show in this study that knock-in mice harboring the mutation responsible for the Muenke syndrome (FgfR3(P244R)) display postnatal shortening of the cranial base along with synchondrosis growth plate dysfunction characterized by loss of resting, proliferating and hypertrophic chondrocyte zones and decreased Ihh expression. Furthermore, premature conversion of resting chondrocytes along the perichondrium into prehypertrophic chondrocytes leads to perichondrial bony bridge formation, effectively terminating the postnatal growth of the cranial base. Thus, we conclude that the Muenke syndrome mutation disturbs endochondral and perichondrial ossification in the cranial base, explaining the midface hypoplasia in patients.
Collapse
Affiliation(s)
- Jason Laurita
- Division of Plastic and Reconstructive Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|