1
|
Gani MA, Marhaeny HD, Lee G, Rahmawati SF, Anjalikha PDA, Sugito T, Lebullenger R, Adnyana IK, Lee K, Brézulier D. Ceramic-based 3D printed bone graft in bone tissue reconstruction: a systematic review and proportional meta-analysis of clinical studies. Expert Rev Med Devices 2025:1-19. [PMID: 40227056 DOI: 10.1080/17434440.2025.2492232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION This systematic review and proportional meta-analysis aims to evaluate the postoperative complication rate (CR%) of ceramic-based 3D-printed bone grafts based on the reported scientific articles conducted with human individuals. METHODS MEDLINE and SCOPUS were used as information sources. The synthesis of the study was carried out from studies with human individuals and the use of 3D-printed bone graft-ceramic as inclusion criteria. Cohen's kappa (κ) was calculated for interrater reliability. Qualitative analysis was performed based on the characteristics and outcomes of the individual study, and quantitative analysis was performed using proportional meta-analysis for CR%. RESULTS A total of 1352 records were identified through databases and resulted in 11 included studies (κ = 0.81-1.00) consisting of prospective clinical trials (64.63%), case series (16.67%), and case reports (18.18%). The overall postoperative complication rate was 14.3% (95% Cl: 0.19-53.6). The postoperative complication rate for studies conducted on the cranial defect, the maxillofacial-zygomatic defect, and the tibial-femoral defect was 2.7%, 11.1%, and 15.6%, respectively. This review also highlights common 3D printing techniques, materials, and grafs' characteristics, as well as their clinical applications. CONCLUSIONS Ceramic-based 3D-printed bone grafts show potential as alternatives for bone tissue reconstruction.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Gyubok Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
| | - Siti Farah Rahmawati
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Putu Diah Apri Anjalikha
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Timothy Sugito
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Ronan Lebullenger
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
| | - I Ketut Adnyana
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Kangwon Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Suwon, Republic of Korea
| | - Damien Brézulier
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
- CHU Rennes, Pole Odontologie, Univ Rennes, Rennes, France
| |
Collapse
|
2
|
Tommasato G, Piano S, Casentini P, De Stavola L, Chiapasco M. Digital planning and bone regenerative technologies: A narrative review. Clin Oral Implants Res 2024; 35:906-921. [PMID: 38591734 DOI: 10.1111/clr.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES The aim of this narrative review was to explore the application of digital technologies (DT) for the simplification and improvement of bone augmentation procedures in advanced implant dentistry. MATERIAL AND METHODS A search on electronic databases was performed to identify systematic reviews, meta-analyses, randomized and non-randomized controlled trials, prospective/retrospective case series, and case reports related to the application of DT in advanced implant dentistry. RESULTS Seventy-nine articles were included. Potential fields of application of DT are the following: 1) the use of intra-oral scanners for the definition of soft tissue profile and the residual dentition; 2) the use of dental lab CAD (computer-aided design) software to create a digital wax-up replicating the ideal ridge and tooth morphology; 3) the matching of STL (Standard Triangulation Language) files with DICOM (DIgital COmmunication in Medicine) files from CBCTs with a dedicated software; 4) the production of stereolithographic 3D models reproducing the jaws and the bone defects; 5) the creation of surgical templates to guide implant placement and augmentation procedures; 6) the production of customized meshes for bone regeneration; and 7) the use of static or dynamic computer-aided implant placement. CONCLUSIONS Results from this narrative review seem to demonstrate that the use of a partially or fully digital workflow can be successfully used also in advanced implant dentistry. However, the number of studies (in particular RCTs) focused on the use of a fully digital workflow in advanced implant dentistry is still limited and more studies are needed to properly evaluate the potentials of DT.
Collapse
Affiliation(s)
- Grazia Tommasato
- Unit of Oral Surgery, Department of Biomedical, Surgical, and Dental Sciences, University of Milano, Milan, Italy
| | | | | | - Luca De Stavola
- Unit of Periodontology, Dental Clinic, Department of Neurosciences, University of Padova, Padova, Italy
| | - Matteo Chiapasco
- Unit of Oral Surgery, Department of Biomedical, Surgical, and Dental Sciences, University of Milano, Milan, Italy
| |
Collapse
|
3
|
Kim NH, Yang BE, On SW, Kwon IJ, Ahn KM, Lee JH, Byun SH. Customized three-dimensional printed ceramic bone grafts for osseous defects: a prospective randomized study. Sci Rep 2024; 14:3397. [PMID: 38336901 PMCID: PMC10858220 DOI: 10.1038/s41598-024-53686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Ridge resorption can result in insufficient bone volume for implant surgery, necessitating bone substitutes to restore the resorption area. Recent advances in computer-aided design and manufacturing enable the use of alloplastic bone graft materials with customizable compositions or shapes. This randomized study evaluated the clinical effectiveness of a customized three-dimensional (3D) printed alloplastic bone material. Sixty patients requiring guided bone regeneration for implant installation following tooth extraction due to alveolar bone resorption were recruited at two institutions. The participants were randomly allocated to either a group that received 3D-printed patient-customized bone graft material or a group that received conventional block bone graft material. Implant installation with bone harvesting was performed approximately 5 months after bone grafting. Histological and radiological assessments of the harvested bone area were performed. The experimental group had a significantly higher percent bone volume and a smaller tissue surface than the control group. Bone volume, bone surface, bone surface/volume ratio, bone surface density (bone surface/total volume), and bone mineral density did not differ significantly between groups. Patient-customized bone graft materials offer convenience and reduce patient discomfort. The findings suggest 3D-printed patient-customized bone graft materials could be used as an alternative for simpler bone grafting procedures.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Conservative Dentistry, Hallym University Sacred Heart Hospital, Anyang, 14066, Republic of Korea
| | - Byoung-Eun Yang
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Gwanpyung-ro 170, Anyang, 14066, Republic of Korea
- Dental AI-Robotics Center, Hallym University Sacred Heart Hospital, Anyang, 14066, Republic of Korea
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon, 24252, Republic of Korea
- Institute of Clinical Dentistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Sung-Woon On
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon, 24252, Republic of Korea
- Institute of Clinical Dentistry, Hallym University, Chuncheon, 24252, Republic of Korea
- Department of Oral and Maxillofacial Surgery, Department of Dentistry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, 18450, Republic of Korea
| | - Ik-Jae Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kang-Min Ahn
- Department of Oral and Maxillofacial Surgery, Seoul Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Oral and Maxillofacial Surgery, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Soo-Hwan Byun
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Gwanpyung-ro 170, Anyang, 14066, Republic of Korea.
- Dental AI-Robotics Center, Hallym University Sacred Heart Hospital, Anyang, 14066, Republic of Korea.
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon, 24252, Republic of Korea.
- Institute of Clinical Dentistry, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
4
|
Ma S, Ma B, Yang Y, Mu Y, Wei P, Yu X, Zhao B, Zou Z, Liu Z, Wang M, Deng J. Functionalized 3D Hydroxyapatite Scaffold by Fusion Peptides-Mediated Small Extracellular Vesicles of Stem Cells for Bone Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3064-3081. [PMID: 38215277 DOI: 10.1021/acsami.3c13273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
3D printing technology offers extensive applications in tissue engineering and regenerative medicine (TERM) because it can create a three-dimensional porous structure with acceptable porosity and fine mechanical qualities that can mimic natural bone. Hydroxyapatite (HA) is commonly used as a bone repair material due to its excellent biocompatibility and osteoconductivity. Small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (BMSCs) can regulate bone metabolism and stimulate the osteogenic differentiation of stem cells. This study has designed a functionalized bone regeneration scaffold (3D H-P-sEVs) by combining the biological activity of BMSCs-sEVs and the 3D-HA scaffold to improve bone regeneration. The scaffold utilizes the targeting of fusion peptides to increase the loading efficiency of sEVs. The composition, structure, mechanical properties, and in vitro degradation performance of the 3D H-P-sEVs scaffolds were examined. The composite scaffold demonstrated good biocompatibility, substantially increased the expression of osteogenic-related genes and proteins, and had a satisfactory bone integration effect in the critical skull defect model of rats. In conclusion, the combination of EVs and 3D-HA scaffold via fusion peptide provides an innovative composite scaffold for bone regeneration and repair, improving osteogenic performance.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, China
| | - Beibei Ma
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yilin Yang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Xueqiao Yu
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Zhenyu Zou
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 5 Jingyuan Road, Shijingshan District, Beijing 100043, China
| | - Zihao Liu
- Tianjin Zhongnuo Dental Hospital, Dingfu Building at the intersection of Nanma Road and Nankai Sanma Road in Nankai District, Tianjin 300100, China
| | - Minggang Wang
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 5 Jingyuan Road, Shijingshan District, Beijing 100043, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| |
Collapse
|
5
|
Boroojeni HSH, Mohaghegh S, Khojasteh A. Application of CAD-CAM Technologies for Maxillofacial Bone Regeneration: A Narrative Review of the Clinical Studies. Curr Stem Cell Res Ther 2024; 19:461-472. [PMID: 36372914 DOI: 10.2174/1574888x18666221111154057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022]
Abstract
The application of regenerative methods in treating maxillofacial defects can be categorized as functional bone regeneration in which scaffolds without protection are used and in-situ bone regeneration in which a protected healing space is created to induce bone formation. It has been shown that functional bone regeneration can reduce surgical time and obviate the necessity of autogenous bone grafting. However, studies mainly focused on applying this method to reconstruct minor bone effects, and more investigation concerning the large defects is required. In terms of in situ maxillofacial bone regeneration with the help of CAD-CAM technologies, the present data have suggested feasible mesh rigidity, perseverance of the underlying space, and apt augmentative results with CAD-CAM-based individualized Ti meshes. However, complications, including dehiscence and mesh exposure, coupled with consequent graft loss, infection and impeded regenerative rates have also been reported.
Collapse
Affiliation(s)
- Helia Sadat Haeri Boroojeni
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadra Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Mohaghegh S, Sadat Haeri Boroojeni H, Nokhbatolfoghahaei H, Khojasteh A. Application of biodegradable Patient-specific scaffolds for maxillofacial bone regeneration: a scoping review of clinical studies. Br J Oral Maxillofac Surg 2023; 61:587-597. [PMID: 37845099 DOI: 10.1016/j.bjoms.2023.08.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 10/18/2023]
Abstract
This study aimed to systematically review clinical studies in which biodegradable patient-specific scaffolds were used for bone regeneration. Studies in which biodegradable scaffolds were fabricated through computer-assisted design and computer-assisted manufacturing (CAD-CAM) procedures were included. Those that applied non-biodegradable materials or used biodegradable materials in a condensable powder or block form were excluded. Among a total of 26 included studies, 11 used customised allogeneic bone blocks, five used polycaprolactone (PCL)-containing scaffolds, four used hydroxyapatite (HA) scaffolds, and four biphasic calcium phosphate (BCP). The majority of the studies applied scaffolds for minor intraoral defects. All the large defects were reconstructed with polymer-containing scaffolds. Results of the included studies showed partial to complete filling of the defect following the application of biodegradable scaffolds. However, limited graft exposure was reported when using PCL, BCP, and HA scaffolds. Tissue engineering can be considered a potential method for the treatment of maxillofacial bone defects. However, more evidence is required, especially for the application of biodegradable scaffolds in large defects.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Helia Sadat Haeri Boroojeni
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
| |
Collapse
|
7
|
Tang Y, Zhai S, Yu H, Qiu L. Clinical feasibility evaluation of a digital workflow of prosthetically oriented onlay bone grafting for horizontal alveolar augmentation: a prospective pilot study. BMC Oral Health 2023; 23:824. [PMID: 37904141 PMCID: PMC10614392 DOI: 10.1186/s12903-023-03556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Onlay bone grafting is considered highly reliable for reconstructing severe horizontal bone defects. A critical problem is how to achieve precise position of the bone block to control alveolar ridge dimensions. This research aims to establish a digital workflow for prosthetically oriented onlay bone grafting and evaluate its accuracy and efficiency. METHODS This prospective pilot study investigated eight patients who required implant restoration in the esthetic area with horizontal alveolar bone defects. The workflow includes preoperative virtual planning, design and manufacture of patient-specific templates, bone grafting surgery, and implant insertion. Primary outcomes were graft accuracy, defined by root mean square estimate (RMSE) values between preoperatively designed and actual implanted outer contours of bone blocks. Secondary outcomes were bone graft and implant success rates. Besides, the surgeons used the visual analog scale (VAS) to rate the intuitiveness, ease of understanding, and helpfulness of the workflow. RESULTS No bone grafts or implants failed in any of the eight patients, resulting in a 100% success rate. The RMSE values between the preoperative design and the implanted outer contour of bone blocks were 0.41 ± 0.15 mm. The digital approach showed advantages in intuitiveness (9.3 ± 0.5), understanding (9.0 ± 0.5), and helpfulness (8.4 ± 1.1) according to surgeons' VAS scores. CONCLUSIONS A digital workflow provided encouraging results, in terms of accuracy and efficacy, for horizontal bone augmentation. TRIAL REGISTRATION This study was registered in the National Clinical Trials Registry in 16/02/2023 under the identification number ChiCTR2300068361.
Collapse
Affiliation(s)
- Yiman Tang
- 4Th Division, Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral, Beijing, 100081, People's Republic of China
| | - Shuyong Zhai
- Dental Digital & Esthetics Laboratory, Beijing Shengzhuo Dental Corporation, Beijing, People's Republic of China
| | - Huajie Yu
- 4Th Division, Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral, Beijing, 100081, People's Republic of China.
| | - Lixin Qiu
- 4Th Division, Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral, Beijing, 100081, People's Republic of China.
| |
Collapse
|
8
|
Mangano C, Luongo G, Luongo F, Lerner H, Margiani B, Admakin O, Mangano F. Custom-made computer-aided-design/ computer-assisted-manufacturing (CAD/CAM) synthetic bone grafts for alveolar ridge augmentation: A retrospective clinical study with 3 years of follow-up. J Dent 2022; 127:104323. [PMID: 36241044 DOI: 10.1016/j.jdent.2022.104323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To report on the results obtained with computer-aided-design/ computer-assisted-manufacturing (CAD/CAM) custom-made synthetic hydroxyapatite/beta-tricalcium-phosphate (HA/beta-TCP) bone grafts in alveolar ridge augmentation for dental implant placement. METHODS The procedure included: (1) cone-beam computed tomography (CBCT) of the bone defect; (2) virtual design of the custom-made onlay bone grafts; (3) milling of grafts from a pre-formed block of synthetic HA/beta-TCP; and (4) bone reconstructive surgery. Implants were placed 8 months later. The patients were followed for 3 years. The study outcomes were: (1) intra- and immediate post-operative complications; (2) 8-month vertical and horizontal bone gain; (3) implant survival; (4) implant-crown success; and (5) peri-implant marginal bone loss (MBL). RESULTS Twenty-six patients underwent ridge augmentation with custom-made CAD/CAM HA/beta-TCP onlay grafts. Eight months later, these patients were rehabilitated with dental implants. During surgery, 25/26 (96.1%) of the grafts adapted well to the bone defect. Immediate post-operative complications were pain and swelling (2/26 patients: 7.6%), and bone graft exposure (3/26: 11.5%); one exposure led to infection, removal of the graft, and failure of the procedure. Excellent integration of the other grafts was observed 8 months after the regenerative procedure, with mean vertical and horizontal bone gains of 2.10 mm (± 0.35) and 2.96 mm (± 0.45), respectively. Twenty-five implants were placed and restored with single crowns. Three years later, all implants were in function. The 3-year implant crown success rate and peri-implant MBL were 92.0% and 0.7 mm (±0.19), respectively. CONCLUSIONS With custom-made CAD/CAM synthetic HA/beta-TCP onlay grafts reconstruction of small vertical and/or horizontal defects of the alveolar ridge was obtained; this enabled implant placement, with high implant-crown success rate after 3 years. Further studies are needed to validate this technique. STATEMENT OF CLINICAL RELEVANCE Custom-made CAD/CAM synthetic HA/beta-TCP onlay grafts may represent an option for regeneration of small bone defects prior to implant placement.
Collapse
Affiliation(s)
| | | | | | - Henriette Lerner
- Academic Teaching and Research Institution of Johann Wolfgang Goethe University, Frankfurt, Germany.
| | - Bidzina Margiani
- Department of Department of Pediatric, Preventive Dentistry and Orthodontics, Sechenov First State Medical University, Moscow, Russia.
| | - Oleg Admakin
- Department of Department of Pediatric, Preventive Dentistry and Orthodontics, Sechenov First State Medical University, Moscow, Russia.
| | - Francesco Mangano
- Department of Department of Pediatric, Preventive Dentistry and Orthodontics, Sechenov First State Medical University, Moscow, Russia.
| |
Collapse
|
9
|
The use of 3D ceramic block graft compared with autogenous block graft for rehabilitation of the atrophic maxilla: a randomized controlled clinical trial. Trials 2022; 23:903. [DOI: 10.1186/s13063-022-06843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dental implant placement may require a bone graft for vertical and horizontal alveolar ridge augmentation. Due to its osteoconduction, osteoinductive, and osteogenesis, autogenous bone graft characteristics are considered the standard gold treatment. However, autografts can promote postoperative morbidity and implicate difficulties concerning the graft adaptation to the recipient's bone since it can eventually avoid gaps. To overcome these issues, this trial will compare the performance of Plenum® Oss 3Dβ fit, an alloplastic graft, and a 3D-printed patient-specific graft based on β-tricalcium phosphate to the autograft procedure.
Methods
This is a split-mouth randomized clinical study designed to evaluate the performance of personalized (patient-specific) bioceramic bone grafts (Plenum® Oss 3Dβ fit) for bone augmentation of the atrophic anterior maxilla in comparison to the autogenous bone graft. We hypothesize that the gain and maintenance of the grafted area volume and the quality of the newly formed bone tissue after eight months postoperative with the synthetic patient-specific graft will be superior to the autogenous bone graft. To assess the quantity and the quality of bone neoformation, volumetric and histological analyses will be performed.
Discussion
The fabrication of medical devices by additive manufacturing presents advantages over conventional manufacturing processes, mostly related to the precision of geometry and anatomy. Additionally, the osteoconductive proprieties of β-tricalcium phosphate enable this synthetic bone substitute as an alternative solution over autogenous graft for bone defect reconstruction. Thus, patient-specific bone grafts can potentially improve patient satisfaction, reducing the need for autogenous bone grafts, consequently avoiding implications related to this type of treatment, such as patient morbidity.
Trial registration
This study is registered in REBEC (Registro Brasileiro de Ensaios Clínicos): RBR-76wmm3q; UTN: U1111-1272-7773. Registration date: 14 September 2021.
Collapse
|
10
|
Chen MY, Fang JJ, Lee JN, Periasamy S, Yen KC, Wang HC, Hsieh DJ. Supercritical Carbon Dioxide Decellularized Xenograft-3D CAD/CAM Carved Bone Matrix Personalized for Human Bone Defect Repair. Genes (Basel) 2022; 13:755. [PMID: 35627140 PMCID: PMC9141546 DOI: 10.3390/genes13050755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
About 30-50% of oral cancer patients require mandibulectomy and autologous fibula reconstruction. Autograft is the gold standard choice because of its histocompatibility; however, it requires additional surgery from the patient and with possible complications such as loss of fibula leading to calf weakening in the future. Allograft and xenograft are alternatives but are susceptible to immune response. Currently, no personalized bone xenografts are available in the market for large fascial bone defects. In addition, a large-sized complex shape bone graft cannot be produced directly from the raw material. We propose the use of porcine bones with 3D CAD/CAM carving to reconstruct a personalized, wide range and complex-shaped bone. We anticipate that patients can restore their native facial appearance after reconstruction surgery. Supercritical CO2 (SCCO2) technology was employed to remove the cells, fat and non-collagenous materials while maintaining a native collagen scaffold as a biomedical device for bone defects. We successfully developed 3D CAD/CAM carved bone matrices, followed by SCCO2 decellularization of those large-sized bones. A lock-and-key puzzle design was employed to fulfil a wide range of large and complex-shaped maxillofacial defects. To conclude, the 3D CAD/CAM carved bone matrices with lock and key puzzle Lego design were completely decellularized by SCCO2 extraction technology with intact natural collagen scaffold. In addition, the processed bone matrices were tested to show excellent cytocompatibility and mechanical stiffness. Thus, we can overcome the limitation of large size and complex shapes of xenograft availability. In addition, the 3D CAD/CAM carving process can provide personalized tailor-designed decellularized bone grafts for the native appearance for maxillofacial reconstruction surgery for oral cancer patients and trauma patients.
Collapse
Affiliation(s)
- Meng-Yen Chen
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan;
| | - Jing-Jing Fang
- Department of Mechanical Engineering, College of Engineering, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Jeng-Nan Lee
- Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung 833301, Taiwan;
| | - Srinivasan Periasamy
- R & D Center, ACRO Biomedical Co., Ltd. 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung 821011, Taiwan; (S.P.); (K.-C.Y.); (H.-C.W.)
| | - Ko-Chung Yen
- R & D Center, ACRO Biomedical Co., Ltd. 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung 821011, Taiwan; (S.P.); (K.-C.Y.); (H.-C.W.)
| | - Hung-Chou Wang
- R & D Center, ACRO Biomedical Co., Ltd. 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung 821011, Taiwan; (S.P.); (K.-C.Y.); (H.-C.W.)
| | - Dar-Jen Hsieh
- R & D Center, ACRO Biomedical Co., Ltd. 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung 821011, Taiwan; (S.P.); (K.-C.Y.); (H.-C.W.)
| |
Collapse
|
11
|
Mangano C, Giuliani A, De Tullio I, Raspanti M, Piattelli A, Iezzi G. Case Report: Histological and Histomorphometrical Results of a 3-D Printed Biphasic Calcium Phosphate Ceramic 7 Years After Insertion in a Human Maxillary Alveolar Ridge. Front Bioeng Biotechnol 2021; 9:614325. [PMID: 33937211 PMCID: PMC8082101 DOI: 10.3389/fbioe.2021.614325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
Introduction: Dental implant placement can be challenging when insufficient bone volume is present and bone augmentation procedures are indicated. The purpose was to assess clinically and histologically a specimen of 30%HA-60%β-TCP BCP 3D-printed scaffold, after 7-years. Case Description: The patient underwent bone regeneration of maxillary buccal plate with 3D-printed biphasic-HA block in 2013. After 7-years, a specimen of the regenerated bone was harvested and processed to perform microCT and histomorphometrical analyses. Results: The microarchitecture study performed by microCT in the test-biopsy showed that biomaterial volume decreased more than 23% and that newly-formed bone volume represented more than 57% of the overall mineralized tissue. Comparing with unloaded controls or peri-dental bone, Test-sample appeared much more mineralized and bulky. Histological evaluation showed complete integration of the scaffold and signs of particles degradation. The percentage of bone, biomaterials and soft tissues was, respectively, 59.2, 25.6, and 15.2%. Under polarized light microscopy, the biomaterial was surrounded by lamellar bone. These results indicate that, while unloaded jaws mimicked the typical osteoporotic microarchitecture after 1-year without loading, the BCP helped to preserve a correct microarchitecture after 7-years. Conclusions: BCP 3D-printed scaffolds represent a suitable solution for bone regeneration: they can lead to straightforward and less time-consuming surgery, and to bone preservation.
Collapse
Affiliation(s)
| | - Alessandra Giuliani
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Ilaria De Tullio
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.,Chair of Biomaterials Engineering, Catholic University of San Antonio de Murcia (UCAM), Murcia, Spain.,Fondazione Villaserena per la Ricerca, Città Sant'Angelo, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
12
|
Li S, Zhang T, Zhou M, Zhang X, Gao Y, Cai X. A novel digital and visualized guided bone regeneration procedure and digital precise bone augmentation: A case series. Clin Implant Dent Relat Res 2020; 23:19-30. [PMID: 33079419 DOI: 10.1111/cid.12959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although the traditional bone augmentation technology can basically meet the clinical needs at present, the effect of bone augmentation in most cases is related to the experience of the operator. PROPOSE This study commits to providing a digital solution for precise bone augmentation in the field of oral implantology. MATERIALS AND METHODS After collecting the data of patients' intraoral scanning and DICOM (digital imaging and communications in medicine), the implant position is digitally designed, and the alveolar bone is digitally augmented around the ideal implant position. On the premise of ensuring that the thickness of labial bone is 2 mm, and there is sufficient alveolar bone 3 to 4 mm apically from the ideal gingival margin for implant placing, we carry out excessive augmentation of 0.5 and 1 mm on the labial bone and alveolar crest, respectively, to compensate for possible bone resorption after 6 months. After 3D printing the reconstructed alveolar bone model, the titanium mesh is trimmed and preformed on the alveolar bone model. Outcomes are reported in terms of mean values (5%-95% percentile values). RESULTS Thirty implant sites have accepted this novel virtually designed alveolar bone augmentation. Before the second-stage surgery, the average vertical bone gain was 2.48 mm (0.29-6.32), the average horizontal bone gain was 4.11 mm (1.19-8.74), the average height of the residual alveolar bone above the implant platform was 1.44 mm (0.59-2.92), the average thickness of the labial bone width at the implant platform was 2.00 mm (0.93-3.64), the average thickness of the labial bone width at 2 mm apically from the implant platform was 2.74 mm (1.40-5.46). The virtual augmentation of each tooth position was 349.41 mm3 (165.70-482.70), while the actual augmentation of each tooth position was 352.94 mm3 (159.24-501.78), the accuracy of the final actual augmentation reached 95.82% (range from 88.53% to 99.15%). CONCLUSION This case series suggests that a virtually digital guided bone regeneration (GBR) workflow is precise and controllable. The practicality, safety and effectiveness of this procedure needs to be compared to other bone augmentation procedures in randomized controlled trials.
Collapse
Affiliation(s)
- Songhang Li
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianxu Zhang
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mi Zhou
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolin Zhang
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Gao
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Le Guéhennec L, Van Hede D, Plougonven E, Nolens G, Verlée B, De Pauw MC, Lambert F. In vitro and in vivo biocompatibility of calcium-phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration. J Biomed Mater Res A 2019; 108:412-425. [PMID: 31654476 DOI: 10.1002/jbm.a.36823] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Stereolithography (SLA) is an interesting manufacturing technology to overcome limitations of commercially available particulated biomaterials dedicated to intra-oral bone regeneration applications. The purpose of this study was to evaluate the in vitro and in vivo biocompatibility and osteoinductive properties of two calcium-phosphate (CaP)-based scaffolds manufactured by SLA three-dimensional (3D) printing. Pellets and macro-porous scaffolds were manufactured in pure hydroxyapatite (HA) and in biphasic CaP (HA:60-TCP:40). Physico-chemical characterization was performed using micro X-ray fluorescence, scanning electron microscopy (SEM), optical interferometry, and microtomography (μCT) analyses. Osteoblast-like MG-63 cells were used to evaluate the biocompatibility of the pellets in vitro with MTS assay and the cell morphology and growth characterized by SEM and DAPI-actin staining showed similar early behavior. For in vivo biocompatibility, newly formed bone and biodegradability of the experimental scaffolds were evaluated in a subperiosteal cranial rat model using μCT and descriptive histology. The histological analysis has not indicated evidences of inflammation but highlighted close contacts between newly formed bone and the experimental biomaterials revealing an excellent scaffold osseointegration. This study emphasizes the relevance of SLA 3D printing of CaP-based biomaterials for intra-oral bone regeneration even if manufacturing accuracy has to be improved and further experiments using biomimetic scaffolds should be conducted.
Collapse
Affiliation(s)
- Laurent Le Guéhennec
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes, France.,Department of Preclinical Biomedical Sciences, Mammalian Cell Culture Laboratory, GIGA-R, Faculty of Medicine, Liège, Belgium
| | - Dorien Van Hede
- Department of Periodontology and Oral Surgery, Faculty of Medicine, Liège, Belgium
| | - Erwan Plougonven
- Department of Chemical Engineering, Faculty of Applied Sciences, Liège, Belgium
| | - Grégory Nolens
- Department of Biomedical Sciences, Faculty of Medicine, Namur, Belgium
| | - Bruno Verlée
- Sirris, Additive Manufacturing Department, Seraing, Belgium
| | - Marie-Claire De Pauw
- Department of Preclinical Biomedical Sciences, Mammalian Cell Culture Laboratory, GIGA-R, Faculty of Medicine, Liège, Belgium
| | - France Lambert
- Department of Periodontology and Oral Surgery, Faculty of Medicine, Liège, Belgium
| |
Collapse
|
14
|
Hydroxyapatite Block Produced by Sponge Replica Method: Mechanical, Clinical and Histologic Observations. MATERIALS 2019; 12:ma12193079. [PMID: 31546617 PMCID: PMC6804165 DOI: 10.3390/ma12193079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
Purpose: The grafting procedure for the anthropic ridges of jaws represents a surgical technique for increasing the bone volume to permit the placement of dental implants for oral rehabilitations. The aim of this study was to evaluate a hydroxyapatite (HA) porous scaffold produced via a sponge replica method for the treatment of maxillary bone defects in a human model. Methods: A total of thirteen patients were treated for sinus lifting in the posterior maxilla for a total of 16 defects treated with cylindrical HA Block. The experimental sites were evaluated by a 3D Cone Beam Computer Tomography scan (CBCT), and the histological analysis was performed after 3 months of healing. Results: After the 3 months healing period, the histological outcome of the investigation showed a high level of biological osteoconduction of the HA. Microscopical evidence of new bone formation was also observed in the central portion of the graft block. The samples were composed of different tissues: 39 ± 1% new bone, 42 ± 3% marrow space, 17 ± 3% residual HA Block and 4.02 ± 2% osteoid tissue were present. The new bone formation in the block was 8 ± 3%. Conclusions: The study findings support that HA porous scaffolds produced by sponge replica were effective for the treatment of maxillary bone defects in humans.
Collapse
|
15
|
Helal MH, Hendawy HD, Gaber RA, Helal NR, Aboushelib MN. Osteogenesis ability of CAD-CAM biodegradable polylactic acid scaffolds for reconstruction of jaw defects. J Prosthet Dent 2019; 121:118-123. [DOI: 10.1016/j.prosdent.2018.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
|
16
|
Yen HH, Stathopoulou PG. CAD/CAM and 3D-Printing Applications for Alveolar Ridge Augmentation. ACTA ACUST UNITED AC 2018; 5:127-132. [PMID: 30505646 DOI: 10.1007/s40496-018-0180-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose of review CAD/CAM and 3D-printing are emerging manufacturing technologies in dentistry. In the field of alveolar ridge augmentation, graft customization utilizing these technologies can result in significant reduction of surgical time. A review of the literature on materials, techniques and applications of CAD/CAM and 3D-printing available for alveolar ridge augmentation was performed. Recent findings CAD/CAM applications for milling of customized block grafts of allogeneic, xenogeneic, and alloplastic origins have been reported, and currently only limited products are commercially available. 3D-printing applications are limited to alloplastic graft materials and containment shells, and have been mostly used in animal studies for optimizing biomaterials' properties. Summary While current data support the potential use of CAD/CAM and 3D-printing for graft customization for alveolar ridge augmentation procedures, additional research is needed on predictability and long-term stability of the grafted sites.
Collapse
Affiliation(s)
- Howard H Yen
- Postdoctoral Periodontics Resident, Department of Periodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, USA
| | - Panagiota G Stathopoulou
- Assistant Professor of Periodontics and Director of Postdoctoral Periodontics, Department of Periodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Rocchietta I, Ferrantino L, Simion M. Vertical ridge augmentation in the esthetic zone. Periodontol 2000 2018; 77:241-255. [DOI: 10.1111/prd.12218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Oh JH. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing. Maxillofac Plast Reconstr Surg 2018; 40:2. [PMID: 29430438 PMCID: PMC5797724 DOI: 10.1186/s40902-018-0141-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/16/2018] [Indexed: 11/21/2022] Open
Abstract
With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.
Collapse
Affiliation(s)
- Ji-Hyeon Oh
- Department of Oral and MaxilloFacial Surgery, Dental Hospital, Gangneung-Wonju National University, Gangneung, South Korea
| |
Collapse
|
19
|
Venet L, Perriat M, Mangano FG, Fortin T. Horizontal ridge reconstruction of the anterior maxilla using customized allogeneic bone blocks with a minimally invasive technique - a case series. BMC Oral Health 2017; 17:146. [PMID: 29216869 PMCID: PMC5721474 DOI: 10.1186/s12903-017-0423-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/12/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Different surgical procedures have been proposed to achieve horizontal ridge reconstruction of the anterior maxilla; all these procedures, however, require bone replacement materials to be adapted to the bone defect at the time of implantation, resulting in complex and time-consuming procedures. The purpose of this study was to describe how to use a 3D printed hardcopy model of the maxilla to prepare customized milled bone blocks, to be adapted on the bone defect areas using a minimally invasive subperiosteal tunneling technique. METHODS Cone beam computed tomography (CBCT) images of the atrophic maxilla of six patients were acquired and modified into 3D reconstruction models. Data were transferred to a 3D printer and solid models were fabricated using autoclavable nylon polyamide. Before the surgery, freeze-dried cortico-cancellous blocks were manually milled and adapted on the 3D printed hardcopy models of the maxillary bone, in order to obtain customized allogeneic bone blocks. RESULTS In total, eleven onlay customized allogeneic bone grafts were prepared and implanted in 6 patients, using a minimally invasive subperiosteal tunneling technique. The scaffolds closely matched the shape of the defects: this reduced the operation time and contributed to good healing. The patients did not demonstrate adverse events such as inflammation, dehiscence or flap re-opening during the recovery period; however, one patient experienced scaffold resorption, which was likely caused by uncontrolled motion of the removable provisional prosthesis. Following a 6 month healing period, CBCT was used to assess graft integration, which was followed by insertion of implants into the augmented areas. Prosthetic restorations were placed 4 months later. CONCLUSIONS These observations suggest that customized bone allografts can be successfully used for horizontal ridge reconstruction of the anterior maxilla: patients demonstrated reduced morbidity and decreased total surgery time. Further studies on a larger sample of patients, with histologic evaluation and longer follow-up are needed to confirm the present observations.
Collapse
Affiliation(s)
- Laurent Venet
- Department of oral surgery, Hospices Civils de Lyon, Lyon, France
| | - Michel Perriat
- Department of oral surgery, Hospices Civils de Lyon, Lyon, France
| | | | - Thomas Fortin
- Department of Oral Surgery, Dental School of Lyon, University Claude Bernard, Lyon 1, 6-8 rue Guillaume Paradin, 69007, Lyon, France. .,UJF-Grenoble 1 / CNRS / TIMC-IMAG UMR 5525, F-38041, Grenoble, France.
| |
Collapse
|
20
|
Cortese A, Pantaleo G, Amato M, Howard CM, Pedicini L, Claudio PP. Platelet-Rich Fibrin (PRF) in Implants Dentistry in Combination with New Bone Regenerative Flapless Technique: Evolution of the Technique and Final Results. Open Med (Wars) 2017; 12:24-32. [PMID: 28401197 PMCID: PMC5385970 DOI: 10.1515/med-2017-0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/15/2017] [Indexed: 12/23/2022] Open
Abstract
Most common techniques for alveolar bone augmentation are guided bone regeneration (GBR) and autologous bone grafting. GBR studies demonstrated long-term reabsorption using heterologous bone graft. A general consensus has been achieved in implant surgery for a minimal amount of 2 mm of healthy bone around the implant. A current height loss of about 3-4 mm will result in proper deeper implant insertion when alveolar bone expansion is not planned because of the dome shape of the alveolar crest. To manage this situation a split crest technique has been proposed for alveolar bone expansion and the implants' insertion in one stage surgery. Platelet-rich fibrin (PRF) is a healing biomaterial with a great potential for bone and soft tissue regeneration without inflammatory reactions, and may be used alone or in combination with bone grafts, promoting hemostasis, bone growth, and maturation. AIM The aim of this study was to demonstrate the clinical effectiveness of PRF combined with a new split crest flapless modified technique in 5 patients vs. 5 control patients. MATERIALS AND METHODS Ten patients with horizontal alveolar crests deficiency were treated in this study, divided into 2 groups: Group 1 (test) of 5 patients treated by the flapless split crest new procedure; Group 2 (control) of 5 patients treated by traditional technique with deeper insertion of smaller implants without split crest. The follow-up was performed with x-ray orthopantomography and intraoral radiographs at T0 (before surgery), T1 (operation time), T2 (3 months) and T3 (6 months) post-operation. RESULTS All cases were successful; there were no problems at surgery and post-operative times. All implants succeeded osteointegration and all patients underwent uneventful prosthetic rehabilitation. Mean height bone loss was 1 mm, measured as bone-implant most coronal contact (Δ-BIC), and occurred at immediate T2 post-operative time (3 months). No alveolar bone height loss was detected at implant insertion time, which was instead identified in the control group because of deeper implant insertion. CONCLUSION This modified split crest technique combined with PRF appears to be reliable, safe, and to improve the clinical outcome of patients with horizontal alveolar crests deficiency compared to traditional implanting techniques by avoiding alveolar height-loss related to deeper insertion of smaller implants.
Collapse
Affiliation(s)
- Antonio Cortese
- Department of Medicine and Surgery, Unit of Maxillofacial Surgery, University of Salerno, Salerno, Italy
| | - Giuseppe Pantaleo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Massimo Amato
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Pier Paolo Claudio
- Department of BioMolecular Sciences, and Department Radiation Oncology, University of Mississippi, Jackson Cancer Center, 2500 N. State St, Jackson, MS 39216, USA
| |
Collapse
|
21
|
Luongo F, Mangano FG, Macchi A, Luongo G, Mangano C. Custom-Made Synthetic Scaffolds for Bone Reconstruction: A Retrospective, Multicenter Clinical Study on 15 Patients. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5862586. [PMID: 28070512 PMCID: PMC5192311 DOI: 10.1155/2016/5862586] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
Purpose. To present a computer-assisted-design/computer-assisted-manufacturing (CAD/CAM) technique for the design, fabrication, and clinical application of custom-made synthetic scaffolds, for alveolar ridge augmentation. Methods. The CAD/CAM procedure consisted of (1) virtual planning/design of the custom-made scaffold; (2) milling of the scaffold into the exact size/shape from a preformed synthetic bone block; (3) reconstructive surgery. The main clinical/radiographic outcomes were vertical/horizontal bone gain, any biological complication, and implant survival. Results. Fifteen patients were selected who had been treated with a custom-made synthetic scaffold for ridge augmentation. The scaffolds closely matched the shape of the defects: this reduced the operation time and contributed to good healing. A few patients experienced biological complications, such as pain/swelling (2/15: 13.3%) and exposure of the scaffold (3/15: 20.0%); one of these had infection and complete graft loss. In all other patients, 8 months after reconstruction, a well-integrated newly formed bone was clinically available, and the radiographic evaluation revealed a mean vertical and horizontal bone gain of 2.1 ± 0.9 mm and 3.0 ± 1.0 mm, respectively. Fourteen implants were placed and restored with single crowns. The implant survival rate was 100%. Conclusions. Although positive outcomes have been found with custom-made synthetic scaffolds in alveolar ridge augmentation, further studies are needed to validate this technique.
Collapse
Affiliation(s)
| | - Francesco Guido Mangano
- Department of Surgical and Morphological Science, Dental School, Insubria University, 21100 Varese, Italy
| | - Aldo Macchi
- Department of Surgical and Morphological Science, Dental School, Insubria University, 21100 Varese, Italy
| | - Giuseppe Luongo
- Department of Oral and Maxillofacial Surgery, Federico II University, 80131 Naples, Italy
| | - Carlo Mangano
- Department of Dental Sciences, Vita Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
22
|
Figliuzzi MM, Giudice A, Pileggi S, Scordamaglia F, Marrelli M, Tatullo M, Fortunato L. Biomimetic hydroxyapatite used in the treatment of periodontal intrabony pockets: clinical and radiological analysis. ANNALI DI STOMATOLOGIA 2016; 7:16-23. [PMID: 27486507 DOI: 10.11138/ads/2016.7.1.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM Hydroxyapatite (PA) has a chemical composition and physical structure very similar to natural bone and therefore it has been considered to be the ideal biomaterial able to ensure a biomimetic scaffold to use in bone tissue engineering. The aim of this study is to clinically test hydroxyapatite used as osteoconductive biomaterial in the treatment of periodontal bone defects. Clinical and radiological evaluations were conducted at 6, 12 and 18 months after the surgery. MATERIALS AND METHODS Forty patients with 2- and 3-wall intrabony pockets were enrolled in this study. PPD, CAL, radiographic depth (RD) and angular defects were preoperatively measured. After surgery, patients were re-evaluated every 6 months for 18 months. Statistical analyses were also performed to investigate any differences between preoperative and postoperative measurements. RESULTS Paired t-test samples conducted on the data obtained at baseline and 18 months after, showed significant (p<0.01) differences in each measurement performed. The role of preoperative RD was demonstrated to be a significant key factor (p<0.01). A relevant correlation between preoperative PPD and CAL gain was also found. CONCLUSIONS Within the limitations of this study, the absence of anatomical variables, except the morphology of the bone defect, emphasizes the importance of the proper surgical approach and the graft material used.
Collapse
Affiliation(s)
| | - Amerigo Giudice
- Department of Periodontics and Oral Sciences, University "Magna Graecia" Catanzaro, Italy
| | - Settimia Pileggi
- Department of Periodontics and Oral Sciences, University "Magna Graecia" Catanzaro, Italy
| | - Francesco Scordamaglia
- Department of Periodontics and Oral Sciences, University "Magna Graecia" Catanzaro, Italy
| | | | - Marco Tatullo
- Maxillofacial Unit, Calabrodental Clinic, Crotone, Italy
| | - Leonzio Fortunato
- Department of Periodontics and Oral Sciences, University "Magna Graecia" Catanzaro, Italy
| |
Collapse
|
23
|
3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications. Int J Dent 2016; 2016:1239842. [PMID: 27366149 PMCID: PMC4913015 DOI: 10.1155/2016/1239842] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/17/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration.
Collapse
|
24
|
The Effect of Crown-to-Implant Ratio on the Clinical Performance of Extra-Short Locking-Taper Implants. J Craniofac Surg 2016; 27:675-81. [DOI: 10.1097/scs.0000000000002562] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
25
|
Garagiola U, Grigolato R, Soldo R, Bacchini M, Bassi G, Roncucci R, De Nardi S. Computer-aided design/computer-aided manufacturing of hydroxyapatite scaffolds for bone reconstruction in jawbone atrophy: a systematic review and case report. Maxillofac Plast Reconstr Surg 2016; 38:2. [PMID: 26767187 PMCID: PMC4700069 DOI: 10.1186/s40902-015-0048-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 01/13/2023] Open
Abstract
Background We reviewed the biological and mechanical properties of porous hydroxyapatite (HA) compared to other synthetic materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) was also evaluated to estimate its efficacy with clinical and radiological assessments. Method A systematic search of the electronic literature database of the National Library of Medicine (PubMed-MEDLINE) was performed for articles published in English between January 1985 and September 2013. The inclusion criteria were (1) histological evaluation of the biocompatibility and osteoconductivity of porous HA in vivo and in vitro, (2) evaluation of the mechanical properties of HA in relation to its porosity, (3) comparison of the biological and mechanical properties between several biomaterials, and (4) clinical and radiological evaluation of the precision of CAD/CAM techniques. Results HA had excellent osteoconductivity and biocompatibility in vitro and in vivo compared to other biomaterials. HA grafts are suitable for milling and finishing, depending on the design. In computed tomography, porous HA is a more resorbable and more osteoconductive material than dense HA; however, its strength decreases exponentially with an increase in porosity. Conclusions Mechanical tests showed that HA scaffolds with pore diameters ranging from 400 to 1200 μm had compressive moduli and strength within the range of the human craniofacial trabecular bone. In conclusion, using CAD/CAM techniques for preparing HA scaffolds may increase graft stability and reduce surgical operating time.
Collapse
Affiliation(s)
- Umberto Garagiola
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Roberto Grigolato
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Rossano Soldo
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Gianluca Bassi
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Rachele Roncucci
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | |
Collapse
|
26
|
Posterior atrophic mandible rehabilitation with onlay allograft created with CAD-CAM procedure: a case report. IMPLANT DENT 2015; 23:22-8. [PMID: 24378654 DOI: 10.1097/id.0000000000000023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Implant rehabilitation of the atrophic right posterior mandible in a 48-year-old woman using dehydrated homologous bone block, shaped with a computer aided design-computer aided manufacturing (CAD-CAM) system, to avoid harvesting of autologous bone block and to assure a perfect fitting of the block above the alveolar crest. RESULTS After 7 months, 6.09, 7.36, and 8.08 mm (mean, 7.18 mm) of total horizontal bone gain was observed at sites 6, 12, and 18 mm posterior to the right mental foramen, respectively. CONCLUSIONS The use of a bone block with CAD-CAM system for alveolar ridge augmentation is a valuable alternative to autograft because it reduces time, cost, and complications for the patients. Data from a computerized tomographic scan can be used to shape a precise 3-dimensional homologous bone block using a CAD-CAM system.
Collapse
|
27
|
Sheikh Z, Sima C, Glogauer M. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation. MATERIALS 2015. [PMCID: PMC5455762 DOI: 10.3390/ma8062953] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-224-7490
| | - Corneliu Sima
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; E-Mail:
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
| |
Collapse
|
28
|
Custom-Made Computer-Aided-Design/Computer-Aided-Manufacturing Biphasic Calcium-Phosphate Scaffold for Augmentation of an Atrophic Mandibular Anterior Ridge. Case Rep Dent 2015; 2015:941265. [PMID: 26064701 PMCID: PMC4442008 DOI: 10.1155/2015/941265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
This report documents the clinical, radiographic, and histologic outcome of a custom-made computer-aided-design/computer-aided-manufactured (CAD/CAM) scaffold used for the alveolar ridge augmentation of a severely atrophic anterior mandible. Computed tomographic (CT) images of an atrophic anterior mandible were acquired and modified into a 3-dimensional (3D) reconstruction model; this was transferred to a CAD program, where a custom-made scaffold was designed. CAM software generated a set of tool-paths for the manufacture of the scaffold on a computer-numerical-control milling machine into the exact shape of the 3D design. A custom-made scaffold was milled from a synthetic micromacroporous biphasic calcium phosphate (BCP) block. The scaffold closely matched the shape of the defect: this helped to reduce the time for the surgery and contributed to good healing. One year later, newly formed and well-integrated bone was clinically available, and two implants (AnyRidge, MegaGen, Gyeongbuk, South Korea) were placed. The histologic samples retrieved from the implant sites revealed compact mature bone undergoing remodelling, marrow spaces, and newly formed trabecular bone surrounded by residual BCP particles. This study demonstrates that custom-made scaffolds can be fabricated by combining CT scans and CAD/CAM techniques. Further studies on a larger sample of patients are needed to confirm these results.
Collapse
|
29
|
|
30
|
Mangano F, Macchi A, Shibli JA, Luongo G, Iezzi G, Piattelli A, Caprioglio A, Mangano C. Maxillary ridge augmentation with custom-made CAD/CAM scaffolds. A 1-year prospective study on 10 patients. J ORAL IMPLANTOL 2013; 40:561-9. [PMID: 23343341 DOI: 10.1563/aaid-joi-d-12-00122] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several procedures have been proposed to achieve maxillary ridge augmentation. These require bone replacement materials to be manually cut, shaped, and formed at the time of implantation, resulting in an expensive and time-consuming process. In the present study, we describe a technique for the design and fabrication of custom-made scaffolds for maxillary ridge augmentation, using three-dimensional computerized tomography (3D CT) and computer-aided design/computer-aided manufacturing (CAD/CAM). CT images of the atrophic maxillary ridge of 10 patients were acquired and modified into 3D reconstruction models. These models were transferred as stereolithographic files to a CAD program, where a virtual 3D reconstruction of the alveolar ridge was generated, producing anatomically shaped, custom-made scaffolds. CAM software generated a set of tool-paths for manufacture by a computer-numerical-control milling machine into the exact shape of the reconstruction, starting from porous hydroxyapatite blocks. The custom-made scaffolds were of satisfactory size, shape, and appearance; they matched the defect area, suited the surgeon's requirements, and were easily implanted during surgery. This helped reduce the time for surgery and contributed to the good healing of the defects.
Collapse
|