1
|
Bertens CA, Seymour DJ, Penner GB. Validation of an in vivo dual permeability marker technique to characterize regional gastrointestinal tract permeability in mid lactation Holstein cows during short-term feed restriction. J Dairy Sci 2024:S0022-0302(24)01103-2. [PMID: 39218063 DOI: 10.3168/jds.2024-25142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
This study evaluated the impact of short-term feed restriction in lactating dairy cows on regional permeability of the gastrointestinal tract (GIT), and the recovery of DMI, ruminal pH, and milk yield. In addition, sampling methods for a novel dual marker technique to characterize total GIT and post ruminal permeability were validated. Six ruminally cannulated lactating Holstein cows were blocked by parity (3 primiparous, 3 multiparous; 189 DIM ± 25.2) and enrolled in a crossover design. Experimental periods included a 5-d baseline phase (BASE), 5-d challenge phase (CHAL), and 2 weeks of recovery (REC1 and REC2). During CHAL cows received either 100% ad libitum feed intake (AL) or 40% of ad libitum feed intake (FR). To assess, total-tract and post-ruminal permeability, equimolar doses of Cr-EDTA and Co-EDTA were infused on d 3 of CHAL into the rumen and abomasum (0.369 mmol/kg BW). Following infusions, total urine and feces were collected every 8 h over 96 h, and blood samples were collected at h 0, 1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, and 64. The plasma area under the curve (AUC) for Cr and Co were calculated. By design, DMI for FR was reduced by 60% during CHAL and remained 19% lower than AL during REC1 but was not different from AL in REC2. Mean ruminal pH for FR was greatest during CHAL and the least during REC1, with no differences detected between AL and FR in REC2. The duration that pH was < 5.8 was the least for FR during CHAL and greatest during REC1 which were different from AL and were no longer different between treatments in REC2. Milk yield was the least for FR during CHAL and REC1 and no longer different from AL in REC2. Feed restriction reduced milk fat, protein, and lactose yields by 26, 31% and 31%, respectively. Plasma Cr AUC was 34% greater and Co AUC tended to be 35% greater for FR than AL on d 3 of CHAL. Urinary Cr recovery after 48-h was not affected by treatment; however, urinary Co recovery was 36% greater for FR than AL. Positive correlations between plasma AUC and urinary recovery for Cr and Co were detected. It was determined that blood samples collected at h 2, 8, 20, 40, and 48 could predict the total plasma Cr and Co AUC within 1.9% and 6.2%, respectively. In summary, short-term FR in lactating dairy cows increases permeability of the total GIT and may increase permeability of the post-ruminal regions with more than 60% of the permeability occurring post-ruminally. After FR, cows experienced low ruminal pH and a sustained reduction in milk yield. When utilizing Cr- and Co-EDTA to evaluate regional GIT permeability, plasma AUC can be used as an alternate to urinary Cr and Co excretion. In addition, blood samples collected at h 2, 8, 20, 40, and 48 result in adequate prediction accuracy, at least when comparing GIT permeability for lactating dairy cows exposed to AL and FR.
Collapse
Affiliation(s)
- C A Bertens
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - D J Seymour
- Trouw Nutrition R&D, P.O. Box 200, 5830 AE Boxmeer, the Netherlands; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, ON, Canada N1G 2W1
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8.
| |
Collapse
|
2
|
Daniels RC, Tiba MH, Cummings B, Yap YR, Ansari S, McCracken B, Sun Y, Jennaro T, Ward KR, Stringer KA. Redox Potential Correlates with Changes in Metabolite Concentrations Attributable to Pathways Active in Oxidative Stress Response in Swine Traumatic Shock. Shock 2022; 57:282-290. [PMID: 35670453 PMCID: PMC10314677 DOI: 10.1097/shk.0000000000001944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Oxidation-reduction (redox) reactions, and the redox potential (RP) that must be maintained for proper cell function, lie at the heart of physiologic processes in critical illness. Imbalance in RP reflects systemic oxidative stress, and whole blood RP measures have been shown to correlate with oxygen debt level over time in swine traumatic shock. We hypothesize that RP measures reflect changing concentrations of metabolites involved in oxidative stress. To test this hypothesis, we compared blood and urine RP with concentrations of multiple metabolites in a swine traumatic shock model to identify meaningful RP-metabolite relationships. METHODS Seven swine were subjected to traumatic shock. Mixed venous (MV) RP, urine RP, and concurrent MV and urine metabolite concentrations were assessed at baseline, max O 2 Debt (80 mL/kg), end resuscitation, and 2 h post-resuscitation. RP was measured at collection via open circuit potential using nanoporous gold electrodes with Ag/AgCl reference and a ParstatMC potentiostat. Metabolite concentrations were measured by quantitative 1 H-NMR spectroscopy. MV and urine RP were compared with time-matched metabolites across all swine. LASSO regression with leave-one-out cross validation was used to determine meaningful RP/metabolite relationships. Metabolites had to maintain magnitude and direction of coefficients across 6 or more swine to be considered as having a meaningful relationship. KEGG IDs of these metabolites were uploaded into Metscape for pathway identification and evaluation for physiologic function. RESULTS Meaningful metabolite relationships (and mean coefficients across cross-validation folds) with MV RP included: choline (-6.27), ATP (-4.39), glycine (5.93), ADP (1.84), glucose (15.96), formate (-13.09), pyruvate (6.18), and taurine (-7.18). Relationships with urine RP were: betaine (4.81), urea (4.14), glycine (-2.97), taurine (10.32), 3-hydroxyisobutyrate (-7.67), N-phenylacetylglycine, PAG (-14.52), hippurate (12.89), and formate (-5.89). These meaningful metabolites were found to scavenge extracellular peroxide (pyruvate), inhibit ROS and activate cellular antioxidant defense (taurine), act as indicators of antioxidant mobilization against oxidative stress (glycine + PAG), and reflect renal hydroxyl radical trapping (hippurate), among other activities. CONCLUSIONS Real-time RP measures demonstrate significant relationships with metabolites attributable to metabolic pathways involved in systemic responses to oxidative stress, as well as those involved in these processes. These data support RP measures as a feasible, biologically relevant marker of oxidative stress. As a direct measure of redox state, RP may be a useful biomarker and clinical tool in guiding diagnosis and therapy in states of increased oxidative stress and may offer value as a marker for organ injury in these states as well.
Collapse
Affiliation(s)
- Rodney C. Daniels
- Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI
| | - M. Hakam Tiba
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Brandon Cummings
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Yan Rou Yap
- Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Sardar Ansari
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Brendan McCracken
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Yihan Sun
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Teddy Jennaro
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Kevin R. Ward
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Kathleen A. Stringer
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Neural Pericytes: A genomic archival state programmed by CHromatin topology. Eur J Cell Biol 2022; 101:151211. [DOI: 10.1016/j.ejcb.2022.151211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
|
4
|
Daniels RC, Jun H, Davenport RD, Collinson MM, Ward KR. Using redox potential as a feasible marker for banked blood quality and the state of oxidative stress in stored red blood cells. J Clin Lab Anal 2021; 35:e23955. [PMID: 34424578 PMCID: PMC8529126 DOI: 10.1002/jcla.23955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/16/2021] [Accepted: 07/12/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Stored red blood cells (RBCs) may undergo oxidative stress over time, with functional changes affecting oxygen delivery. Central to these changes are oxidation-reduction (redox) reactions and redox potential (RP) that must be maintained for cell function. RP imbalance can lead to oxidative stress that may contribute to storage lesions. This study's purpose was to identify changes in RP over time in banked RBCs, and among RBCs of similar age. METHODS Multiple random RBC segments from RBC units were tested (n = 32), ranging in age from 5 to 40 days, at 5-day intervals. RP was recorded by measuring open circuit potential of RBCs using nanoporous gold electrodes with Ag/AgCl reference. RP measures were also performed on peripheral venous blood from 10 healthy volunteers. RP measures were compared between RBC groups, and with volunteer blood. RESULTS Stored RBCs show time-dependent RP increases. There were significant differences in Day 5 RP compared to all other groups (p ≤ 0.005), Day 10-15 vs. ages ≥ Day 20 (p ≤ 0.025), Day 20-25 vs. Day 40 (p = 0.039), and all groups compared to healthy volunteers. RP became more positive over time suggesting ongoing oxidation as RBCs age; however, storage time alone was not predictive of RP measured in a particular unit/segment. CONCLUSIONS There are significant differences in RP between freshly stored RBCs and all others, with RP becoming more positive over time. However, storage time alone does not predict RP, indicating RP screening may be an important measure of RBC oxidative stress and serve as an RBC quality marker.
Collapse
Affiliation(s)
- Rodney C Daniels
- Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hyesun Jun
- Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA
| | - Robertson D Davenport
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Kevin R Ward
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Goroncharovskaya IV, Evseev AK, Shabanov AK, Denisenko O, Kuzovlev AN, Klychnikova EV, Tazina EV, Petrikov SS. Electrochemical Methods for Assessment of Polytrauma Outcomes. ELECTROANAL 2021. [DOI: 10.1002/elan.202060356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Irina V. Goroncharovskaya
- N. V. Sklifosovsky Research Institute for Emergency Medicine Bolshaya Sukharevskaya Sq. 3, Bld. 1 129090 Moscow Russia
| | - Anatoly K. Evseev
- N. V. Sklifosovsky Research Institute for Emergency Medicine Bolshaya Sukharevskaya Sq. 3, Bld. 1 129090 Moscow Russia
| | - Aslan K. Shabanov
- N. V. Sklifosovsky Research Institute for Emergency Medicine Bolshaya Sukharevskaya Sq. 3, Bld. 1 129090 Moscow Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology 25 Petrovka Str., Build. 2 107031 Moscow Russia
| | - Oleg Denisenko
- University of Washington 850 Republican St. 98109 Seattle WA United States
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology 25 Petrovka Str., Build. 2 107031 Moscow Russia
| | - Elena V. Klychnikova
- N. V. Sklifosovsky Research Institute for Emergency Medicine Bolshaya Sukharevskaya Sq. 3, Bld. 1 129090 Moscow Russia
| | - Elizaveta V. Tazina
- N. V. Sklifosovsky Research Institute for Emergency Medicine Bolshaya Sukharevskaya Sq. 3, Bld. 1 129090 Moscow Russia
| | - Sergey S. Petrikov
- N. V. Sklifosovsky Research Institute for Emergency Medicine Bolshaya Sukharevskaya Sq. 3, Bld. 1 129090 Moscow Russia
| |
Collapse
|
6
|
Freeman CJ, Ullah B, Islam MS, Collinson MM. Potentiometric Biosensing of Ascorbic Acid, Uric Acid, and Cysteine in Microliter Volumes Using Miniaturized Nanoporous Gold Electrodes. BIOSENSORS-BASEL 2020; 11:bios11010010. [PMID: 33379137 PMCID: PMC7823660 DOI: 10.3390/bios11010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
Potentiometric redox sensing is a relatively inexpensive and passive approach to evaluate the overall redox state of complex biological and environmental solutions. The ability to make such measurements in ultra-small volumes using high surface area, nanoporous electrodes is of particular importance as such electrodes can improve the rates of electron transfer and reduce the effects of biofouling on the electrochemical signal. This work focuses on the fabrication of miniaturized nanoporous gold (NPG) electrodes with a high surface area and a small footprint for the potentiometric redox sensing of three biologically relevant redox molecules (ascorbic acid, uric acid, and cysteine) in microliter volumes. The NPG electrodes were inexpensively made by attaching a nanoporous gold leaf prepared by dealloying 12K gold in nitric acid to a modified glass capillary (1.5 mm id) and establishing an electrode connection with copper tape. The surface area of the electrodes was ~1.5 cm2, providing a roughness factor of ~16 relative to the geometric area of 0.09 cm2. Scanning electron microscopy confirmed the nanoporous framework. A linear dependence between the open-circuit potential (OCP) and the logarithm of concentration (e.g., Nernstian-like behavior) was obtained for all three redox molecules in 100 μL buffered solutions. As a first step towards understanding a real system, the response associated with changing the concentration of one redox species in the presence of the other two was examined. These results show that at NPG, the redox potential of a solution containing biologically relevant concentrations of ascorbic acid, uric acid, and cysteine is strongly influenced by ascorbic acid. Such information is important for the measurement of redox potentials in complex biological solutions.
Collapse
Affiliation(s)
- Christopher J. Freeman
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;
| | - Borkat Ullah
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
| | - Md. Shafiul Islam
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
| | - Maryanne M. Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
- Correspondence:
| |
Collapse
|
7
|
Jammes Y, Adjriou N, Kipson N, Criado C, Charpin C, Rebaudet S, Stavris C, Guieu R, Fenouillet E, Retornaz F. Altered muscle membrane potential and redox status differentiates two subgroups of patients with chronic fatigue syndrome. J Transl Med 2020; 18:173. [PMID: 32306967 PMCID: PMC7168976 DOI: 10.1186/s12967-020-02341-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background In myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), altered membrane excitability often occurs in exercising muscles demonstrating muscle dysfunction regardless of any psychiatric disorder. Increased oxidative stress is also present in many ME/CFS patients and could affect the membrane excitability of resting muscles. Methods Seventy-two patients were examined at rest, during an incremental cycling exercise and during a 10-min post-exercise recovery period. All patients had at least four criteria leading to a diagnosis of ME/CFS. To explore muscle membrane excitability, M-waves were recorded during exercise (rectus femoris (RF) muscle) and at rest (flexor digitorum longus (FDL) muscle). Two plasma markers of oxidative stress (thiobarbituric acid reactive substance (TBARS) and oxidation–reduction potential (ORP)) were measured. Plasma potassium (K+) concentration was also measured at rest and at the end of exercise to explore K+ outflow. Results Thirty-nine patients had marked M-wave alterations in both the RF and FDL muscles during and after exercise while the resting values of plasma TBARS and ORP were increased and exercise-induced K+ outflow was decreased. In contrast, 33 other patients with a diagnosis of ME/CFS had no M-wave alterations and had lower baseline levels of TBARS and ORP. M-wave changes were inversely proportional to TBARS and ORP levels. Conclusions Resting muscles of ME/CFS patients have altered muscle membrane excitability. However, our data reveal heterogeneity in some major biomarkers in ME/CFS patients. Measurement of ORP may help to improve the diagnosis of ME/CFS. Trial registration Ethics Committee “Ouest II” of Angers (May 17, 2019) RCB ID: number 2019-A00611-56
Collapse
Affiliation(s)
- Yves Jammes
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France.,Department of Internal Medicine, European Hospital, Marseille, France
| | - Nabil Adjriou
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Nathalie Kipson
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Christine Criado
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Caroline Charpin
- Department of Internal Medicine, European Hospital, Marseille, France
| | | | - Chloé Stavris
- Department of Internal Medicine, European Hospital, Marseille, France
| | - Régis Guieu
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Emmanuel Fenouillet
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France.,Institut National des Sciences Biologiques, CNRS, Paris, France
| | | |
Collapse
|
8
|
Khan RK, Yadavalli VK, Collinson MM. Flexible Nanoporous Gold Electrodes for Electroanalysis in Complex Matrices. ChemElectroChem 2019. [DOI: 10.1002/celc.201900894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rezaul K. Khan
- Department of Chemistry Virginia Commonwealth University Richmond, VA 23284-2006
| | - Vamsi K. Yadavalli
- Department of Chemical and Life Science Engineering Virginia Commonwealth University Richmond, VA 23284
| | - Maryanne M Collinson
- Department of Chemistry Virginia Commonwealth University Richmond, VA 23284-2006
| |
Collapse
|
9
|
Thoracic trauma in military settings: a review of current practices and recommendations. Curr Opin Anaesthesiol 2019; 32:227-233. [PMID: 30817399 DOI: 10.1097/aco.0000000000000694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW To examine current literature on thoracic trauma related to military combat and to explore its relevance to the civilian population. RECENT FINDINGS Damage control resuscitation (DCR) has improved the management of hemorrhaging trauma patients. Permissive hypotension below 110 mmHg and antifibrinolytic use during DCR is widely accepted, whereas the use of freeze-dried plasma and whole blood is gaining popularity. The Modified Physiologic Triaging Tool can be used for primary triage and it may have applications in civilian trauma systems. Although Tactical Combat Casualty Care protocol recommends the Cric-Key device for surgical cricothyroidotomies, other devices may offer comparable performance. Recommendations for regional anesthesia after blunt trauma are not well defined. Increasing amounts of evidence favor the use of extracorporeal membrane oxygenation for refractory hypoxemia and resuscitative endovascular balloon occlusion of the aorta (REBOA) for severe hemorrhage. REBOA outcomes are potentially improved by partial occlusion and small 7 Fr catheters. SUMMARY The Global War on Terror has provided opportunities to better understand and treat thoracic trauma in military settings. Trauma registries and other data sources have contributed to significant advancements in the management of thoracic trauma in military and civilian populations.
Collapse
|
10
|
Khan RK, Gadiraju SP, Kumar M, Hatmaker GA, Fisher BJ, Natarajan R, Reiner JE, Collinson MM. Redox Potential Measurements in Red Blood Cell Packets Using Nanoporous Gold Electrodes. ACS Sens 2018; 3:1601-1608. [PMID: 30080040 DOI: 10.1021/acssensors.8b00498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The redox potential of packed red blood cells (RBCs) was measured over a 56-day storage period using a newly developed potentiometric methodology consisting of a nanoporous gold electrode and a silver chloride coated silver reference electrode. Both milliliter- and microliter-sized volumes were separately evaluated. The addition of Vitamin C (VitC) in differing doses to the packed RBCs was also assessed as a means to improve redox stability and prolong storage duration. For RBCs containing only saline, the open-circuit potential (OCP) was ∼ -80 mV vs Ag/AgCl and drifted slightly with time; greater differences were also noted between different electrodes. The addition of exogenous VitC to the RBC shifts the OCP to more negative values, stabilizes the redox potential, and improves reproducibly between different electrodes due to the poising of blood. Over the 56-day storage period, the redox potential of the RBCs increased slightly, which can be attributed to change in pH and/or increasing oxidative stress during storage. Cyclic voltammograms acquired after open-circuit potential measurements showed a characteristic peak attributed to the oxidation of VitC. This peak decreased during storage with a time constant of 20.8 days. Likewise, the intercellular concentration of VitC increased with a time constant of 20.2 days as measured using a fluorescence assay. Collectively, these results demonstrate the usefulness of electrochemical measurements in the study of stored blood products.
Collapse
Affiliation(s)
- Rezaul Karim Khan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Shanmuka P. Gadiraju
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Megh Kumar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Grace A. Hatmaker
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Bernard J. Fisher
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Ramesh Natarajan
- Clinical Investigation Department and Department of Emergency Medicine, Combat Trauma Research Group, Naval Medical Center Portsmouth, Portsmouth, Virginia 23708-2197, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Maryanne M. Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
11
|
Stanojcic M, Jeschke MG. What's New in Shock, March 2018? Shock 2018; 49:239-242. [PMID: 29432388 DOI: 10.1097/shk.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Surgery, Division of Plastic Surgery, University of Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|