1
|
Wang F, Zhang Y, Sun M, Xia H, Jiang W, Zhang D, Yao S. CD177 + neutrophils exacerbate septic lung injury via the NETs/AIM2 pathway: An experimental and bioinformatics study. Int Immunopharmacol 2025; 151:114292. [PMID: 40007380 DOI: 10.1016/j.intimp.2025.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is one of the most common complications of sepsis. However, the underlying mechanisms and effective treatment strategies remain poorly understood. Immune cells are crucial in sepsis-induced lung injury, yet the heterogeneity of the immune cell populations involved in this context is not well characterized. METHODS This study established a Cecal Ligation and Puncture (CLP) mouse model and employed single-cell sequencing along with molecular biology experimental methods to identify the primary functional subgroups of immune cells associated with sepsis-induced ALI, thereby elucidating the key mechanisms related to sepsis-induced ALI. RESULTS Our analysis revealed that, in comparison to normal mice, the top 100 differentially expressed genes (DEGs) in septic lung tissue during the acute phase predominantly originate from neutrophils. Cd177 antigen (Cd177)+ neutrophils represent the predominant subpopulation of neutrophils in septic lung tissue. These cells exhibit unique pro-inflammatory and oxidative stress characteristics, and they are capable of producing excessive neutrophil extracellular traps (NETs). NETs can aggravate ALI by activating Absent in Melanoma 2 (AIM2) inflammasome. Furthermore, we discovered that melatonin could effectively inhibit the infiltration of Cd177+ neutrophils in septic lung tissue, reduce the expression levels of NETs, and diminish the activation of AIM2, thereby improving lung injury. CONCLUSION Our research provides novel insights and potential therapeutic targets for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Pain Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China
| | - Miaomiao Sun
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China
| | - Haifa Xia
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China
| | - Wenliang Jiang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China.
| | - Dingyu Zhang
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China.
| | - Shanglong Yao
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
2
|
Deng RM, Huang G, Wang T, Zhou J. Regulated programmed cell death in sepsis associated acute lung injury: From pathogenesis to therapy. Int Immunopharmacol 2025; 148:114111. [PMID: 39832461 DOI: 10.1016/j.intimp.2025.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Sepsis associated acute lung injury (SALI) is a common complication in patients with severe sepsis and a disease with high morbidity and mortality in ICU patients. The main mechanism of SALI is pulmonary hypoperfusion due to hypotension and shock caused by sepsis, which leads to ischemic necrosis of alveolar endothelial cells and eventually lung failure. At present, SALI therapy mainly includes antibiotic therapy, fluid resuscitation, transfusion products and vasoactive drugs, but these strategies are not satisfactory. Therefore, focusing on the role of different cell death patterns in SALI may help in the search for effective treatments. Understanding the molecular mechanisms of SALI and identifying pathways that inhibit lung cell death are critical to developing effective drug therapies to prevent the progression of SALI. Cell death is controlled by programmed cell death (PCD) pathways, including apoptosis, necroptosis, ferroptosis, pyroptosis and autophagy. There is growing evidence that PCD plays an important role in the pathogenesis of SALI, and inhibitors of various types of PCD represent a promising therapeutic strategy. Therefore, understanding the role and mechanism of PCD in SALI is conducive to our understanding of its pathological mechanism, and is of great significance for the treatment of SALI. In this article, we discuss recent advances in the role of PCD in SALI, show how different signaling pathways (such as NF-κB, PI3K/Akt, mTOR, and Nrf2) regulate PCD to regulate SALI development, and discuss the associations between various types of PCD. The aim is to explore the molecular mechanism behind SALI and to find new targets for SALI therapy.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Guiming Huang
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Tingting Wang
- Department of Anaesthesia, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, PR China
| | - Juan Zhou
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
3
|
Li H, Wang X, Liang X, Meng M, Zhang H, Li Z, Lin Y, Li J, Ma C. Verapamil inhibits ferroptosis in septic acute lung injury by blocking L-type calcium channels. Biochem Biophys Res Commun 2025; 744:151202. [PMID: 39708394 DOI: 10.1016/j.bbrc.2024.151202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), result from pulmonary edema and alveolar-capillary barrier disruption due to inflammation, often triggered by conditions like sepsis. Sepsis-induced ALI (SALI) involves extensive damage to vascular endothelium and alveolar epithelium, leading to respiratory failure. Our study explores ferroptosis, an iron-dependent cell death pathway, and calcium dysregulation in SALI. Elevated cytosolic calcium early in ferroptosis exacerbates lipid peroxidation and cellular damage. We investigated verapamil, a calcium channel blocker, and found it reduces calcium influx, alleviates iron overload, and decreases oxidative stress, protecting against ferroptosis-induced apoptosis in lung cells. These insights suggest targeting ferroptosis pathways, including calcium and iron homeostasis, may offer new therapeutic strategies for SALI, potentially improving outcomes in ALI/ARDS.
Collapse
Affiliation(s)
- Hongru Li
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Xuan Wang
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China; Diagnostic Center of Infections, The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
| | - Xiangyang Liang
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China; School and Hospital of Stomatology, Hebei Medical University, 383 Zhongshan East Road, Shijiazhuang, Hebei, PR China.
| | - Meiqi Meng
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Haixia Zhang
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Zixin Li
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Yushan Lin
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Jihong Li
- Diagnostic Center of Infections, The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
| | - Cuiqing Ma
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
4
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
5
|
Guo N, Xia Y, He N, Cheng H, Zhang L, Liu J. IRGM Deficiency Exacerbates Sepsis-Induced Acute Lung Injury by Inhibiting Autophagy Through the AKT/mTOR Signaling Pathway. J Inflamm Res 2024; 17:10255-10272. [PMID: 39654860 PMCID: PMC11626208 DOI: 10.2147/jir.s496687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Background Sepsis is a life-threatening condition characterized by organ dysfunction due to an impaired immune response to infection. The lungs are highly susceptible to infection, often resulting in acute lung injury (ALI). The immune-related GTPase M (IRGM) and its murine homolog Irgm1 mediate autophagy and are implicated in inflammatory diseases, yet their roles in sepsis-induced ALI remain unclear. Methods We used RNA sequencing and bioinformatics to explore IRGM regulation. Sepsis-induced ALI was modeled in mice using cecal ligation and puncture (CLP). An in vitro model was created by stimulating A549 cells with lipopolysaccharide (LPS). Results In A549 cells, LPS treatment induced upregulation of IRGM expression and enhanced autophagy levels. IRGM knockdown exacerbated LPS-induced ALI, characterized by suppressed autophagy and increased apoptosis, along with significantly elevated levels of p-AKT and p-mTOR. Further investigation revealed that treatment with the AKT inhibitor MK2206 effectively reversed the autophagy inhibition caused by IRGM knockdown and reduced apoptosis. These findings suggest that the AKT/mTOR signaling pathway plays a crucial role in IRGM-mediated protection against sepsis-related ALI. Conclusion This study identifies the protective role of IRGM in sepsis-induced ALI and reveals that IRGM mitigates ALI by promoting autophagy through inhibition of the AKT/mTOR pathway. These findings provide insights into the pathogenesis of sepsis-related ALI and highlight IRGM as a potential therapeutic target.
Collapse
Affiliation(s)
- Na Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Yu Xia
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Nannan He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Huixin Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Lei Zhang
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu Province, People’s Republic of China
| | - Jian Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|
6
|
Yumoto T, Coopersmith CM. Targeting AMP-activated protein kinase in sepsis. Front Endocrinol (Lausanne) 2024; 15:1452993. [PMID: 39469575 PMCID: PMC11513325 DOI: 10.3389/fendo.2024.1452993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a global health challenge marked by limited clinical options and high mortality rates. AMP-activated protein kinase (AMPK) is a cellular energy sensor that mediates multiple crucial metabolic pathways that may be an attractive therapeutic target in sepsis. Pre-clinical experimental studies have demonstrated that pharmacological activation of AMPK can offer multiple potential benefits during sepsis, including anti-inflammatory effects, induction of autophagy, promotion of mitochondrial biogenesis, enhanced phagocytosis, antimicrobial properties, and regulation of tight junction assembly. This review aims to discuss the existing evidence supporting the therapeutic potential of AMPK activation in sepsis management.
Collapse
Affiliation(s)
- Tetsuya Yumoto
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Shen Y, He Y, Pan Y, Liu L, Liu Y, Jia J. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury. Front Pharmacol 2024; 15:1415145. [PMID: 39161900 PMCID: PMC11330786 DOI: 10.3389/fphar.2024.1415145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a major cause of death among patients with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment methods and strategies to protect against ALI were discussed, which could provide an experimental basis for the clinical treatment of sepsis-induced ALI. Recent studies have found that an imbalance in autophagy, ferroptosis, and pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating these death mechanisms can improve lung injuries caused by LPS or CLP. This article summarized and reviewed the mechanisms and regulatory networks of autophagy, ferroptosis, and pyroptosis and their important roles in the process of LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above mechanisms and their effects, describes their dilemma and prospects, and provides new perspectives for the future treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Yao Shen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yingying He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Pan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
9
|
Xu Y, Xin J, Sun Y, Wang X, Sun L, Zhao F, Niu C, Liu S. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment. Pharmaceuticals (Basel) 2024; 17:472. [PMID: 38675431 PMCID: PMC11054595 DOI: 10.3390/ph17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by widespread lung dysfunction, is associated with significant morbidity and mortality due to the lack of effective pharmacological treatments available clinically. Small-molecule compounds derived from natural products represent an innovative source and have demonstrated therapeutic potential against sepsis-induced ALI. These natural small molecules may provide a promising alternative treatment option for sepsis-induced ALI. This review aims to summarize the pathogenesis of sepsis and potential therapeutic targets. It assembles critical updates (from 2014 to 2024) on natural small molecules with therapeutic potential against sepsis-induced ALI, detailing their sources, structures, effects, and mechanisms of action.
Collapse
Affiliation(s)
- Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| |
Collapse
|
10
|
Zhao J, Liang Q, Fu C, Cong D, Wang L, Xu X. Autophagy in sepsis-induced acute lung injury: Friend or foe? Cell Signal 2023; 111:110867. [PMID: 37633477 DOI: 10.1016/j.cellsig.2023.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening syndrome with high mortality and morbidity, resulting in a heavy burden on family and society. As a key factor that maintains cellular homeostasis, autophagy is regarded as a self-digesting process by which damaged organelles and useless proteins are recycled for cell metabolism, and it thus plays a crucial role during physiological and pathological processes. Recent studies have indicated that autophagy is involved in the pathophysiological process of sepsis-induced ALI, including cell apoptosis, inflammation, and mitochondrial dysfunction, which indicates that regulating autophagy may be beneficial for this disease. However, the role of autophagy in the etiology and treatment of sepsis-induced ALI is not well characterized. This review summarizes the autophagy-related signaling pathways in sepsis-induced ALI, as well as focuses on the dual role of autophagy and its regulation by non-coding RNAs during disease progression, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Jiayao Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qun Liang
- Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chenfei Fu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Didi Cong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Long Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaoxin Xu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
11
|
Liang H, Liu G, Fan Q, Nie Z, Xie S, Zhang R. Limonin, a novel AMPK activator, protects against LPS-induced acute lung injury. Int Immunopharmacol 2023; 122:110678. [PMID: 37481848 DOI: 10.1016/j.intimp.2023.110678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
AMP-activated protein kinase (AMPK) activation plays crucial roles in the treatment of many oxidative stress- and inflammation-induced diseases, including acute lung injury (ALI). Limonin is a naturally occurring tetracyclic triterpenoid extracted from the plants of Rutaceae and Meliaceae. Limonin also serves as an AMPK activator with anti-inflammatory and anti-oxidation effects. However, the potential beneficial effects of limonin on ALI and the possible mechanisms have never been disclosed till now. Here, the effects of limonin on lipopolysaccharide (LPS)-induced ALI in C57 BL/6 mice, plus bone marrow-derived macrophages (BMDM) stimulated with LPS to induce in vitro ALI model were investigated. Limonin significantly improved pulmonary function and alleviated lung pathological injury in LPS-induced mice. Meanwhile, limonin also markedly decreased inflammation and oxidative stress in lung tissues from LPS-treated mice. In vitro experiments also unveiled that limonin could decrease inflammation and oxidative stress in LPS-induced BMDM in a concentration-dependent manner. Mechanically, limonin could promote the activation of AMPKα and upregulate the expression of nuclear factor erythroid 2-related factor 2 (NRF2) in lung tissues and BMDM. Pharmacological inhibition of AMPKα by Compound C or AMPKα knockout could abolish the pulmonary protection from limonin during ALI. In conclusion, limonin mediates the activation of AMPKα/NRF2 pathway, providing an attractive therapeutic target for ALI in the future.
Collapse
Affiliation(s)
- Hui Liang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaoli Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qinglu Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhihao Nie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
12
|
Wang Z, Wang Z. The role of macrophages polarization in sepsis-induced acute lung injury. Front Immunol 2023; 14:1209438. [PMID: 37691951 PMCID: PMC10483837 DOI: 10.3389/fimmu.2023.1209438] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Sepsis presents as a severe infectious disease frequently documented in clinical settings. Characterized by its systemic inflammatory response syndrome, sepsis has the potential to trigger multi-organ dysfunction and can escalate to becoming life-threatening. A common fallout from sepsis is acute lung injury (ALI), which often progresses to acute respiratory distress syndrome (ARDS). Macrophages, due to their significant role in the immune system, are receiving increased attention in clinical studies. Macrophage polarization is a process that hinges on an intricate regulatory network influenced by a myriad of signaling molecules, transcription factors, epigenetic modifications, and metabolic reprogramming. In this review, our primary focus is on the classically activated macrophages (M1-like) and alternatively activated macrophages (M2-like) as the two paramount phenotypes instrumental in sepsis' host immune response. An imbalance between M1-like and M2-like macrophages can precipitate the onset and exacerbate the progression of sepsis. This review provides a comprehensive understanding of the interplay between macrophage polarization and sepsis-induced acute lung injury (SALI) and elaborates on the intervention strategy that centers around the crucial process of macrophage polarization.
Collapse
Affiliation(s)
| | - Zhong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Canagliflozin protects against sepsis capillary leak syndrome by activating endothelial α1AMPK. Sci Rep 2021; 11:13700. [PMID: 34211080 PMCID: PMC8249425 DOI: 10.1038/s41598-021-93156-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Sepsis capillary leak syndrome (SCLS) is an independent prognostic factor for poor sepsis outcome. We previously demonstrated that α1AMP-activated protein kinase (α1AMPK) prevents sepsis-induced vascular hyperpermeability by mechanisms involving VE-cadherin (VE-Cad) stabilization and activation of p38 mitogen activated protein kinase/heat shock protein of 27 kDa (p38MAPK/HSP27) pathway. Canagliflozin, a sodium-glucose co-transporter 2 inhibitor, has recently been proven to activate AMPK in endothelial cells. Therefore, we hypothesized that canagliflozin could be of therapeutic potential in patients suffering from SCLS. We herein report that canagliflozin, used at clinically relevant concentrations, counteracts lipopolysaccharide-induced vascular hyperpermeability and albumin leakage in wild-type, but not in endothelial-specific α1AMPK-knockout mice. In vitro, canagliflozin was demonstrated to activate α1AMPK/p38MAPK/HSP27 pathway and to preserve VE-Cad’s integrity in human endothelial cells exposed to human septic plasma. In conclusion, our data demonstrate that canagliflozin protects against SCLS via an α1AMPK-dependent pathway, and lead us to consider novel therapeutic perspectives for this drug in SCLS.
Collapse
|
14
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc+10.3389/fcell.2021.664896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2024] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc 10.3389/fcell.2021.664896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,*Correspondence: Jia-feng Wang,
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,Xiao-ming Deng,
| |
Collapse
|
16
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.3389/fcell.2021.664896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-Long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-Xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-Feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-Ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
17
|
Overexpression of Limb Bud and Heart Alleviates Sepsis-Induced Acute Lung Injury via Inhibiting the NLRP3 Inflammasome. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4084371. [PMID: 33553423 PMCID: PMC7847343 DOI: 10.1155/2021/4084371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
Objective Sepsis is a leading cause of acute lung injury (ALI). This study attempted to investigate the effects of limb bud and heart (LBH) on the development of sepsis-induced ALI and its underlying mechanism of action. Methods The sepsis-induced ALI mouse model was established by cecal ligation and puncture (CLP). The lung injury score and lung wet/dry weight (W/D) ratio were used to evaluate the lung injury. In vitro, ALI was simulated by lipopolysaccharide (LPS) treatment in A549 cells. The mRNA expression of LBH, NLRP3, ASC, and proinflammatory cytokines was measured by qRT-PCR. The viability of LPS-induced A549 cells was analyzed by MTT assay. Furthermore, western blot was performed to detect the protein expression of LBH, NLRP3, and ASC. LPS-induced A549 cells were treated with MCC950 (NLRP3 inflammasome inhibitor) to confirm the effect of LBH on NLRP3 inflammasome. Results The mRNA and protein expression of LBH was decreased in sepsis-induced ALI. LBH overexpression reduced the lung injury score, lung W/D ratio, expression of proinflammatory cytokines, and NLRP3 inflammasome activation in sepsis-induced ALI mouse model. Additionally, LBH upregulation increased the viability, while it decreased the proinflammatory cytokine expression and NLRP3 inflammasome activation of LPS-induced A549 cells. Moreover, MCC950 reversed the promoting effects of LBH silencing on proinflammatory cytokine expression and NLRP3 inflammasome activation in LPS-induced A549 cells. Conclusions LBH alleviated lung injury in sepsis-induced ALI mouse model by inhibiting inflammation and NLRP3 inflammasome, and restrained the inflammation by inhibiting NLRP3 inflammasome in LPS-induced A549 cells, providing a novel therapeutic target for ALI.
Collapse
|
18
|
Angé M, Castanares-Zapatero D, De Poortere J, Dufeys C, Courtoy GE, Bouzin C, Quarck R, Bertrand L, Beauloye C, Horman S. α1AMP-Activated Protein Kinase Protects against Lipopolysaccharide-Induced Endothelial Barrier Disruption via Junctional Reinforcement and Activation of the p38 MAPK/HSP27 Pathway. Int J Mol Sci 2020; 21:ijms21155581. [PMID: 32759774 PMCID: PMC7432762 DOI: 10.3390/ijms21155581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular hyperpermeability is a determinant factor in the pathophysiology of sepsis. While, AMP-activated protein kinase (AMPK) is known to play a role in maintaining endothelial barrier function in this condition. Therefore, we investigated the underlying molecular mechanisms of this protective effect. α1AMPK expression and/or activity was modulated in human dermal microvascular endothelial cells using either α1AMPK-targeting small interfering RNA or the direct pharmacological AMPK activator 991, prior to lipopolysaccharide (LPS) treatment. Western blotting was used to analyze the expression and/or phosphorylation of proteins that compose cellular junctions (zonula occludens-1 (ZO-1), vascular endothelial cadherin (VE-Cad), connexin 43 (Cx43)) or that regulate actin cytoskeleton (p38 MAPK; heat shock protein 27 (HSP27)). Functional endothelial permeability was assessed by in vitro Transwell assays, and quantification of cellular junctions in the plasma membrane was assessed by immunofluorescence. Actin cytoskeleton remodeling was evaluated through actin fluorescent staining. We consequently demonstrate that α1AMPK deficiency is associated with reduced expression of CX43, ZO-1, and VE-Cad, and that the drastic loss of CX43 is likely responsible for the subsequent decreased expression and localization of ZO-1 and VE-Cad in the plasma membrane. Moreover, α1AMPK activation by 991 protects against LPS-induced endothelial barrier disruption by reinforcing cortical actin cytoskeleton. This is due to a mechanism that involves the phosphorylation of p38 MAPK and HSP27, which is nonetheless independent of the small GTPase Rac1. This results in a drastic decrease of LPS-induced hyperpermeability. We conclude that α1AMPK activators that are suitable for clinical use may provide a specific therapeutic intervention that limits sepsis-induced vascular leakage.
Collapse
Affiliation(s)
- Marine Angé
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Diego Castanares-Zapatero
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
- Division of Intensive Care, Cliniques Universitaires Saint Luc, 1200 Brussels, Belgium
| | - Julien De Poortere
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Cécile Dufeys
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Guillaume E. Courtoy
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (G.E.C.); (C.B.)
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (G.E.C.); (C.B.)
| | - Rozenn Quarck
- Department of Chronic Diseases & Metabolism (CHROMETA), Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium;
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
- Division of Cardiology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
- Correspondence: ; Tel.: +32-2-764-55-66
| |
Collapse
|
19
|
Rana U, Callan E, Entringer B, Michalkiewicz T, Joshi A, Parchur AK, Teng RJ, Konduri GG. AMP-Kinase Dysfunction Alters Notch Ligands to Impair Angiogenesis in Neonatal Pulmonary Hypertension. Am J Respir Cell Mol Biol 2020; 62:719-731. [PMID: 32048878 PMCID: PMC7258820 DOI: 10.1165/rcmb.2019-0275oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Decreased angiogenesis contributes to persistent pulmonary hypertension of the newborn (PPHN); mechanisms remain unclear. AMPK (5'AMP activated protein kinase) is a key regulator of cell metabolism. We investigated the hypothesis that a decrease in AMPK function leads to mitochondrial dysfunction and altered balance of notch ligands delta-like 4 (DLL4) and Jagged 1 (Jag1) to impair angiogenesis in PPHN. Studies were done in fetal lambs with PPHN induced by prenatal ductus arteriosus constriction and gestation-matched control lambs. PPHN lambs were treated with saline or AMPK agonist metformin. Angiogenesis was assessed in lungs with micro-computed tomography angiography and histology. AMPK function; expression of mitochondrial electron transport chain (ETC) complex proteins I-V, Dll4, and Jag1; mitochondrial number; and in vitro angiogenesis function were assessed in pulmonary artery endothelial cells (PAEC) from control and PPHN lambs. AMPK function was decreased in PPHN PAEC and lung sections. Expression of mitochondrial transcription factor, PGC-1α, ETC complex proteins I-V, and mitochondrial number were decreased in PPHN. In vitro angiogenesis of PAEC and capillary number and vessel volume fraction in the lung were decreased in PPHN. Expression of DLL4 was increased and Jag1 was decreased in PAEC from PPHN lambs. AMPK agonists A769662 and metformin increased the mitochondrial complex proteins and number, in vitro angiogenesis, and Jag1 levels and decreased DLL4 levels in PPHN PAEC. Infusion of metformin in vivo increased the vessel density in PPHN lungs. Decreased AMPK function contributes to impaired angiogenesis in PPHN by altered balance of notch ligands in PPHN.
Collapse
Affiliation(s)
- Ujala Rana
- Department of Pediatrics and Children’s Research Institute, and
| | - Emily Callan
- Department of Pediatrics and Children’s Research Institute, and
| | | | | | - Amit Joshi
- Department of Radiology and Center for Imaging, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Abdul K. Parchur
- Department of Radiology and Center for Imaging, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ru-Jeng Teng
- Department of Pediatrics and Children’s Research Institute, and
| | | |
Collapse
|
20
|
Yu-Wung Yeh D, Wang JJ. Curcumin Attenuates Hemorrhagic Shock and Blood Replenish Resuscitation-induced Impairment of Pulmonary Barrier Function by Increasing SIRT1 and Reducing Malondialdehyde and TNF-α Contents and Neutrophil Infiltration in Lung in a Dose-Dependent Fashion. Transplant Proc 2020; 52:1875-1879. [PMID: 32360040 DOI: 10.1016/j.transproceed.2020.01.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/10/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Acute lung injury (ALI) is a critical complication subsequent to hemorrhage shock and resuscitation (HSR) that frequently leads to multiple organ failure. Collective evidence suggested that the activation of pulmonary nicotinamide adenine dinucleotide-dependent deacetylase sirtuin-1 (SIRT1) plays a critical role in inhibiting the production of reactive oxygen species (ROS) and tumor necrosis factor (TNF)-α, as well as the protection against ALI. Curcumin is a potent activator of SIRT1 and possesses antioxidative and anti-inflammatory effects. In this study, we aim to investigate the dose-dependent protective effectiveness of curcumin pretreatment against HSR-induced ALI. METHODS Studies were conducted on Sprague-Dawley male rats in 5 groups: sham-operated, HSR, and HSR pretreated with 50, 200, or 400 mg/kg of curcumin. Curcumin was treated orally for 4 days and 1 hour before HSR induction. HSR was induced by decreasing the mean aortic pressure (MAP) to 40 mm Hg for 60 min through drawing blood from the left femoral artery, followed by blood replenish and leaving for another 120 min. At the end of HSR, the severity of ALI was assessed by pulmonary barrier function, via pulmonary filtration coefficient (Kfc) evaluated using isolated a perfused lung model, lung weight-to-body weight ratio (LW/BW), lung wet-to-dry weight ratio (W/D), and lavage protein concentration (PCBAL). We also examined the level of lung inflammation by lavage TNF-α and differential neutrophil count, and oxidative stress by lavage malondialdehyde (MDA). RESULTS HSR significantly increased Kfc, LW/BW, W/D, and PCBAL; decreased pulmonary SIRT1; and increased lavage TNF-α and MDA contents and differential neutrophil count (P < .05). Curcumin pretreatment demonstrated lung protection efficacy with improved pulmonary barrier function, increased lung SIRT1, and reduced pulmonary oxidative stress and lung inflammation in a dose-dependent fashion. CONCLUSIONS Curcumin pretreatment protects against HSR-induced pulmonary function impairment by increasing tissue SIRT1, which reduced lavage MDA and TNF-α and differential neutrophil count in a dose-dependent fashion.
Collapse
Affiliation(s)
- Diana Yu-Wung Yeh
- Division of Chest Medicine, Internal Medicine, Shin Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China
| | - Jiun-Jr Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China.
| |
Collapse
|
21
|
Kikuchi S, Piraino G, O'Connor M, Wolfe V, Ridings K, Lahni P, Zingarelli B. Hepatocyte-Specific Deletion of AMPKα1 Results in Worse Outcomes in Mice Subjected to Sepsis in a Sex-Specific Manner. Front Immunol 2020; 11:210. [PMID: 32117320 PMCID: PMC7031478 DOI: 10.3389/fimmu.2020.00210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Alterations in the energy homeostasis contribute to sepsis-mediated multiple organ failure. The liver plays a central role in metabolism and participates to the innate immune and inflammatory responses of sepsis. Several clinical and experimental studies have suggested that females are less susceptible to the adverse outcome of sepsis. However, underlying mechanisms of organ damage in sepsis remain largely undefined. AMP-activated protein kinase (AMPK) is an important regulator of mitochondrial quality control. The AMPK catalytic α1 isoform is abundantly expressed in the liver. Here, we determined the role of hepatocyte AMPKα1 in sepsis by using hepatocyte-specific AMPKα1 knockout mice (H-AMPKα1 KO) generated with Cre-recombinase expression under the control of the albumin promoter. Using a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP), we observed that male H-AMPKα1 KO mice had higher plasma levels of tumor necrosis factor-α and interleukin-6 and exhibited a more severe liver and lung injury than male H-AMPKα1 WT mice, as evaluated by histology and neutrophil infiltration at 18 h after CLP. Plasma levels of interleukin-10 and the keratinocyte-derived chemokine were similarly elevated in both KO and WT male mice. At transmission electron microscopy analysis, male H-AMPKα1 KO mice exhibited higher liver mitochondrial damage, which was associated with a significant decrease in liver ATP levels when compared to WT mice at 18 h after sepsis. Mortality rate was significantly higher in the male H-AMPKα1 KO group (91%) when compared to WT mice (60%) at 7 days after CLP. Female H-AMPKα1 WT mice exhibited a similar degree of histological liver and lung injury, but significantly milder liver mitochondrial damage and higher autophagy when compared to male WT mice after CLP. Interestingly, H-AMPKα1 KO female mice had lower organ neutrophil infiltration, lower liver mitochondrial damage and lower levels of cytokines than WT female mice. There was no significant difference in survival rate between WT and KO mice in the female group. In conclusion, our study demonstrates that AMPKα1 is a crucial hepatoprotective enzyme during sepsis. Furthermore, our results suggest that AMPK-dependent liver metabolic functions may influence the susceptibility to multiple organ injury in a sex-dependent manner.
Collapse
Affiliation(s)
- Satoshi Kikuchi
- Department of Emergency Medicine, Ehime University, Toon, Japan
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael O'Connor
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vivian Wolfe
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Kiana Ridings
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
22
|
Guo L, Zhang C, Gao Q, Hou B, Liu L, Yang H, Jiang X. Chloropupukeananin and Pestalofone C Regulate Autophagy through AMPK and Glycolytic Pathway. Chem Biodivers 2020; 17:e1900583. [DOI: 10.1002/cbdv.201900583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Longfang Guo
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of Sciences Beijing 100101 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Caining Zhang
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of Sciences Beijing 100101 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Quan Gao
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of Sciences Beijing 100101 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Bolin Hou
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of Sciences Beijing 100101 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of Sciences Beijing 100101 P. R. China
| | - Huaiyi Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of Sciences Beijing 100101 P. R. China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of Sciences Beijing 100101 P. R. China
| |
Collapse
|
23
|
What'd New in Shock, November 2019? Shock 2019; 52:477-480. [PMID: 31613864 DOI: 10.1097/shk.0000000000001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Yin X, Xin H, Mao S, Wu G, Guo L. The Role of Autophagy in Sepsis: Protection and Injury to Organs. Front Physiol 2019; 10:1071. [PMID: 31507440 PMCID: PMC6716215 DOI: 10.3389/fphys.2019.01071] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory disease with infection, and autophagy has been shown to play an important role in sepsis. This review summarizes the main regulatory mechanisms of autophagy in sepsis and its latest research. Recent studies have shown that autophagy can regulate innate immune processes and acquired immune processes, and the regulation of autophagy in different immune cells is different. Mitophagy can select damaged mitochondria and remove it to deal with oxidative stress damage. The process of mitophagy is regulated by other factors. Non-coding RNA is also an important factor in the regulation of autophagy. In addition, more and more studies in recent years have shown that autophagy plays different roles in different organs. It tends to be protective in the lungs, heart, kidneys, and brain, and tends to be damaging in skeletal muscle. We also mentioned that some drugs can regulate autophagy. The process of modulating autophagy through drug intervention appears to be a new potential hope for the treatment of sepsis.
Collapse
Affiliation(s)
- Xin Yin
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huang Xin
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Mao
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangping Wu
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liheng Guo
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomed Pharmacother 2019; 118:109363. [PMID: 31545277 DOI: 10.1016/j.biopha.2019.109363] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/04/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Alveolar epithelial barrier dysfunction in response to inflammatory reaction contributes to pulmonary edema in acute lung injury(ALI).Irisin,a newly-found myokine,exerts the anti-inflammatory effects. This study aims to investigate the protective effects of irisin on lipopolysaccharide (LPS)-induced ALIin vivo and in vitro, and to explore its underlying mechanism. METHODS Male SD rats and A549 cells were divided into 4 groups: control group, LPS group, Irisin pretreated group, and Irisin/Compound C(a special inhibitor of AMPK)-treated group. The ALI model was established by intravenous injection of LPS in rats, and LPS challenge in A549 cells. Pulmonary specimens were harvested for microscopic examination of the pathological changes, and the expression of AMPK,SIRT1,NF-κB, p66Shc and caspase-3 in lung tissues. The pulmonary permeability were examined by wet/dry lung weight ratio(W/D) and lung permeability index(LPI). The apoptotic index, and the expression of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), monocyte chemoattractant activating protein-1 (MCP-1), tight junctions (occludin,ZO-1) were determined both in lung tissue and A549 cells. RESULTS Irisin alleviated lung histological changes and decreased pulmonary microvascular permeability in LPS-induced rats. Irisin up-regulated the expression of occludin, ZO-1,AMPK,SIRT1, down-regulated the expression of TNF-α,IL-1β,MCP-1,NF-κB, p66Shc caspase-3, and decreased the apoptotic index in LPS-induced rats and A549 cells. All these protective effects of irisin could be reversed by Compound C. CONCLUSION Irisin improved LPS-induced alveolar epithelial barrier dysfunction via suppressing inflammation and apoptosis, and this protective effect might be mediated by activating AMPK/SIRT1 pathways.
Collapse
|
26
|
Wu B, Miao X, Ye J, Pu X. The Protective Effects of Protease Inhibitor MG-132 on Sepsis-Induced Acute Lung Rats and Its Possible Mechanisms. Med Sci Monit 2019; 25:5690-5699. [PMID: 31366881 PMCID: PMC6688517 DOI: 10.12659/msm.915743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The aim of the present study was to investigate the protective effects of protease inhibitor MG-132 on sepsis-induced acute lung injury rats. Material/Methods Sprague Dawley rats were employed to induce sepsis by cecal ligation and puncture (CLP) method. Rats were divided into 4 groups: control, sham, model (CLP), and MG-132. Histopathology observation was detected by hematoxylin and eosin staining. The ratio of wet lung to dry lung (W/D) was calculated. In addition, the levels of inflammatory factors in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Also, superoxide dismutase (SOD) and malondialdehyde (MDA) levels were evaluated. Western blotting was performed to measure the expression of hypoxia-inducible factor-1 α (HIF-1α). In order to assess the role of HIF-1α, YC-1, the inhibitor of HIF-1α, was used to treat the rats. The expression of phosphor-mTOR (p-mTOR), p-4EBP1, and p-EIF4E were evaluated by western blotting. Results Obvious pathological injury and increasing ratio of W/D in the model group were observed. Both pathological injury and W/D were improved in the MG-132 group, and the greatest improvement could be seen in the YC-1+MG-132 group. Furthermore, the MDA levels in the MG-132 group was decreased, accompanied by an increase in SOD levels. The level of HIF-1α was increased in the model group while a decreased was detected in the MG-132 group. The levels of inflammatory factors were high in the model group, whereas the opposite result was found in the MG-132 group, and the lowest in were in the YC-1+MG-132 group. Furthermore, the expression levels of p-mTOR, p-4EBP1, and p-EIF4E proteins were downregulated in the MG-132 group compared to the model group, and the lowest was in the YC-1+MG-132 group. Conclusions Our study suggested that MG-132 was able to protect against acute lung injury via inhibition of HIF-1α mediated mTOR/4EBP1/EIF4E pathway.
Collapse
Affiliation(s)
- Bingbing Wu
- Department of Intensive Care Unit, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Xiaoli Miao
- Department of Intensive Care Unit, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Jilu Ye
- Department of Intensive Care Unit, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Xuehua Pu
- Department of Intensive Care Unit, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| |
Collapse
|
27
|
Protective effect of Cordyceps sinensis extract on lipopolysaccharide-induced acute lung injury in mice. Biosci Rep 2019; 39:BSR20190789. [PMID: 31186277 PMCID: PMC6591570 DOI: 10.1042/bsr20190789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/05/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background: To study the protective effect of Cordyceps sinensis extract (Dong Chong Xia Cao in Chinese [DCXC]) on experimental acute lung injury (ALI) mice. Methods and results: ALI model was induced by intratracheal-instilled lipopolysaccharide (LPS, 2.4 mg/kg) in BALB/c male mice. The mice were administrated DCXC (ig, 10, 30, 60 mg/kg) in 4 and 8 h after receiving LPS. Histopathological section, wet/dry lung weight ratio and myeloperoxidase activity were detected. Bronchoalveolar lavage fluid (BALF) was collected for cell count, the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and nitric oxide (NO) in BALF was detected by ELISA, the protein and mRNA expression of nuclear factor-κB p65 (NF-κB p65), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung tissue was detected by Western blot and RT-PCR. The result showed that DCXC could reduce the degree of histopathological injury, wet/dry weight ratio (W/D ratio) and myeloperoxidase activity (P<0.05) with a dose-dependent manner. The increased number of total cells, neutrophils and macrophages in BALF were significantly inhibited by DCXC treatment (P<0.05). The increased levels of TNF-α, IL-1β, IL-6 and NO in BALF after LPS administration was significantly reduced by DCXC (P<0.05). In addition, the increased protein and mRNA levels of iNOS, COX-2 and NF-κB p65 DNA binding ability in LPS group were dose-dependently reduced by DCXC treatment (P<0.05). Conclusion: DCXC could play an anti-inflammatory and antioxidant effect on LPS-induced ALI through inhibiting NF-κB p65 phosphorylation, and the expression of COX-2 and iNOS in lung. The result showed that DCXC has a potential protective effect on the ALI.
Collapse
|