1
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Bai Y, Bai J, Lu P, Jing YM, Zheng WC, Wang LY, Wang JH, Wang F. Hirudin ameliorates myocardial ischemia-reperfusion injury in a rat model of hemorrhagic shock and resuscitation: roles of NLRP3-signaling pathway. Mol Cell Biochem 2024; 479:63-72. [PMID: 36988778 DOI: 10.1007/s11010-023-04717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Severe hemorrhage shock and resuscitation (HSR) has been reported to induce myocardial ischemia-reperfusion injury (MIRI), resulting in a poor prognosis. Hirudin, an effective thrombin inhibitor, can offer protection against MIRI. This study aimed to determine if hirudin administration ameliorates HSR-induced MIRI and the underlying mechanism. A rat model of HSR was established by bleeding rats to a mean arterial blood pressure of 30-35 mmHg for 45 min and then resuscitating them with all the shed blood through the left femoral vein. After HSR, 1 mg/kg of hirudin was administrated immediately. At 24 h after HSR, the cardiac injury was assessed using serum CK-MB, cTnT, hematoxylin-eosin (HE) staining, echocardiography, M1-polarized macrophages, and pyroptosis-associated factors, including cleaved caspase-1, Gasdermin D (GSDMD) N-terminal, IL-1β, and IL-18 were measured by immunofluorescence and western blot assays. Nigericin, a unique agonist, was utilized to evaluate the responsibilities of NLRP3 signaling. Under the HSR condition, rats exhibited a significant increase in myocardial injury score, an elevation of serum cTnT, CK-MB levels, an aggrandization of M1-polarized macrophages, an upregulation of pyroptosis-associated factors, including cleaved caspase-1, GSDMD N-terminal, IL-1β, and IL-18, but a significant decrease in left ventricular ejection fraction (EF%) and a reduction of left ventricular fractional shortening (FS%), while hirudin administration partially restored the changes. However, the NLRP3 agonist nigericin reversed the cardioprotective effects of hirudin. We determined the cardioprotective effects of hirudin against HSR-induced MIRI. The mechanism may involve the inhibition of NLRP3-induced pyroptosis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Peng Lu
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, China
| | - Yu-Mo Jing
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jian-Hua Wang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Feng Wang
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
3
|
Li J, Huang Y, Ma T, Liu Y, Luo Y, Gao L, Li Z, Ye Z. Carbon Monoxide Releasing Molecule-3 Alleviates Oxidative Stress and Apoptosis in Selenite-Induced Cataract in Rats via Activating Nrf2/HO-1 Pathway. Curr Eye Res 2023; 48:919-929. [PMID: 37395371 DOI: 10.1080/02713683.2023.2232569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE This study investigated the protective effect of carbon monoxide releasing molecule-3 (CORM-3), the classical donor of carbon monoxide, on selenite-induced cataract in rats and explore its possible mechanism. METHODS Sprague-Dawley rat pups treated with sodium selenite (Na2SeO3) were chosen as the cataract model. Fifty rat pups were randomly divided into 5 groups: Control group, Na2SeO3 (3.46 mg/kg) group, low-dose CORM-3 (8 mg/kg/d) + Na2SeO3 group, high-dose CORM-3 (16 mg/kg/d) + Na2SeO3 group, and inactivated CORM-3 (iCORM-3) (8 mg/kg/d) + Na2SeO3 group. The protective effect of CORM-3 was tested by lens opacity scores, hematoxylin and eosin staining, TdT-mediated dUTP nick-end labeling assay, and enzyme-linked immunosorbent assay. Besides, quantitative real-time PCR and western blotting were used for mechanism validation. RESULTS Na2SeO3 induced nuclear cataract rapidly and stably, and the achievement ratio of Na2SeO3 group was 100%. CORM-3 alleviated lens opacity of selenite-induced cataract and attenuated the morphological changes of the rat lens. The levels of antioxidant enzymes GSH and SOD in rat lens were also increased by CORM-3 treatment. CORM-3 significantly reduced the ratio of apoptotic lens epithelial cells, besides, CORM-3 decreased the expression of Cleaved Caspase-3 and Bax induced by selenite and increased the expression of Bcl-2 in rat lens inhibited by selenite. Moreover, Nrf-2 and HO-1 were upregulated and Keap1 was downregulated after CORM-3 treatment. While iCORM-3 did not exert the same effect as CORM-3. CONCLUSIONS Exogenous CO released from CORM-3 alleviates oxidative stress and apoptosis in selenite-induced rat cataract via activating Nrf2/HO-1 pathway. CORM-3 may serve as a promising preventive and therapeutic strategy for cataract.
Collapse
Affiliation(s)
- Jinglan Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yating Liu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yu Luo
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Zhang LM, Xin Y, Song RX, Zheng WC, Hu JS, Wang JX, Wu ZY, Zhang DX. CORM-3 alleviates the intestinal injury in a rodent model of hemorrhage shock and resuscitation: roles of GFAP-positive glia. J Mol Histol 2023; 54:271-282. [PMID: 37335421 DOI: 10.1007/s10735-023-10133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Hemorrhagic shock and resuscitation (HSR) can induce severe intestinal damages, thereby leading to sepsis and long-term complications including dysbacteriosis and pulmonary injury. The NOD-like receptor protein 3 (NLRP3) inflammasome facilitates inflammation-associated cell recruitment in the gastrointestinal tract, and participates in many inflammatory bowel diseases. Previous studies have shown that exogenous carbon monoxide (CO) exerts neuroprotective effects against pyroptosis after HSR. We aimed to investigate whether carbon monoxide-releasing molecules-3 (CORM-3), an exogenous CO compound, could attenuate HSR-induced intestinal injury and the potential underlying mechanism.Rats were subjected to a HSR model by bleeding and re-infusion. Following resuscitation, 4 mg/kg of CORM-3 was administered intravenously into femoral vein. At 24 h and 7 d after HSR modeling, the pathological changes in intestinal tissues were evaluated by H&E staining. The intestinal pyroptosis, glial fibrillary acidic protein (GFAP)-positive glial pyroptosis, DAO (diamine oxidase) content, intestine tight junction proteins including zonula occludens-1 (ZO-1) and claudin-1 were further detected by immunofluorescence, western blot and chemical assays at 7 d after HSR. CORM-3 administration led to significantly mitigated HSR-induced intestinal injury, aggravation of intestinal pyroptosis indicated by cleaved caspase-1, IL-1β and IL-18, upregulation of GFAP-positive glial pyroptosis, decreased intensity of ZO-1 and claudin-1 in the jejunum, and increased of DAO in the serum. Nigericin, an agonist of NLRP3, significantly reversed the protective effects of CORM-3. CORM-3 alleviates the intestinal barrier dysfunction in a rodent model of HSR, and the potential mechanism may be associated with inhibition of NLRP3-associated pyroptosis. CORM-3 administration could be a promising therapeutic strategy for intestinal injury after hemorrhagic shock.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China.
| | - Yue Xin
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Jin-Shu Hu
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Jie-Xia Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Shijiazhuang, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Shijiazhuang, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
5
|
Liu XY, Wei DG, Li RS. Ghrelin attenuates inflammation in diabetic lung disease by TLR4 pathway in vivo and in vitro. BMJ Open Diabetes Res Care 2023; 11:11/2/e003027. [PMID: 37085277 PMCID: PMC10123865 DOI: 10.1136/bmjdrc-2022-003027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/11/2023] [Indexed: 04/23/2023] Open
Abstract
INTRODUCTION Diabetic lung disease is already known as one of the diabetes complications, but report on its therapeutic strategy is rare. The present study aimed to add novel therapeutic strategy for diabetic lung disease, to reveal the protective effect of ghrelin on diabetic lung disease both in vivo and in vitro, and to discuss its probable molecular mechanism. RESEARCH DESIGN AND METHODS Diabetic mice and 16HBE cells were our research objects. We surveyed the effect of ghrelin on streptozotocin-induced lung tissue morphology changes by H&E staining. Furthermore, the changes of proinflammatory cytokines (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)) were detected by ELISA. To expound the molecular mechanism, we detected critical proteins of TLR4 pathway and observed their changes by immunohistochemistry (IHC), real-time PCR and western blot analysis in vivo and in vitro, respectively. RESULTS The results of H&E staining showed that pathological alterations of the lung induced by hyperglycemia were ameliorated by ghrelin. The results of ELISA demonstrated that the elevated levels of IL-1β and TNF-α induced by hyperglycemia turned to decrease in the lung after ghrelin treatment. In the results of IHC, real-time PCR and western blot analysis, we found that the TLR4 pathway was elevated by hyperglycemia or high glucose and is remarkably inhibited by the treatment of ghrelin both in vivo and in vitro. CONCLUSIONS Ghrelin could inhibit inflammation of diabetic lung disease by regulating the TLR4 pathway. This study might affect research on diabetic lung disease, and the therapeutic potential of ghrelin for diabetic lung disease is worth considering.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dong-Guang Wei
- Department of Pulmonary and Critical Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Rong-Shan Li
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Shi J, Tang Y, Liang F, Liu L, Liang N, Yang X, Zhang N, Yi Z, Zhong Y, Wang W, Zhao K. NLRP3 inflammasome contributes to endotoxin-induced coagulation. Thromb Res 2022; 214:8-15. [PMID: 35421682 DOI: 10.1016/j.thromres.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Excessive activation of the coagulation cascades leads to life-threatening disseminated intravascular coagulation (DIC) in sepsis. Two recent studies by our group and others have both demonstrated the noncanonical inflammasome is pivotal for the endotoxin or gram-negative bacterial-induced coagulation. Based on this, we further evaluated the function of the NLRP3 inflammasome, the most studied inflammasome, in endotoxin-induced coagulation. MATERIALS AND METHODS We established an endotoxin-induced coagulation model by intraperitoneal injection of sublethal doses of LPS in mice. Mice were sacrificed 8 h after injection and blood was collected for thrombin-antithrombin (TAT), plasminogen activator inhibitor-1 (PAI-1), prothrombin time (PT), D-dimer, IL-1β and tissue factor (TF) measurements by commercial ELISA. Lungs and livers were examined via HE staining images to determine injury scores and immunohistochemistry for TF expression and fibrin deposits. The role of NLRP3 activation was evaluated in wild-type (WT), Nlrp3-/-, Asc-/- (apoptosis-associated speck-like protein containing a CARD), Caspase-11-/- mice and 30 min after treatment with MCC950, a potent inhibitor of NLRP3. Western blotting and Q-PCR were performed to assess TF expression in the lungs and livers. To uncover the different effects of NLRP3 and Caspase-11, we also compared the time-dependent IL-1β release in LPS-treated Nlrp3-/- and Caspase-11-/- mice. Correlation analysis of TAT, PAI-1 were estimated the relationship of coagulation and release of IL-1β, as well as IL-1β and TF. RESULTS Inhibition of NLRP3 by MCC950 as well as NLRP3 or ASC deficiency decreased TAT, PAI-1, PT, D-dimer, and TF levels in blood and impaired the thrombus formation and fibrin deposition, as well as declined expression of TF in the liver and lung in endotoxin-induced coagulation but not caspase-11 deficiency. Impressively, IL-1β release is increased in LPS-treated Caspase-11-/- mice, but not in Nlrp3-/- mice. Moreover, the correlation analysis is indicated that downstream of the NLRP3 inflammasome, IL-1β expression, is positively correlated with TAT, PAI-1 and TF in blood circulation. CONCLUSIONS The NLRP3 inflammasome contributes to endotoxin-induced coagulation by promoting TF expression at least in part through the induction of IL-1β release. These findings broadened our understanding of the mechanism of coagulation and implicated a possible therapeutic strategy for preventing coagulation in sepsis.
Collapse
Affiliation(s)
- Jie Shi
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Liang
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liping Liu
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ni Liang
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyu Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhonjie Yi
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenhua Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
8
|
Zeineddin A, Dong JF, Wu F, Terse P, Kozar RA. What's New in Shock, June 2021? Shock 2021; 55:697-699. [PMID: 33989263 DOI: 10.1097/shk.0000000000001800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Ahmad Zeineddin
- Shock Trauma Center and the University of Maryland School of Medicine, Baltimore, Maryland
| | - Jing-Fei Dong
- Bloodworks Research Institute and Hematology Division, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Feng Wu
- Shock Trauma Center and the University of Maryland School of Medicine, Baltimore, Maryland
| | - Pranaya Terse
- Shock Trauma Center and the University of Maryland School of Medicine, Baltimore, Maryland
| | - Rosemary A Kozar
- Shock Trauma Center and the University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Modulation of Diverse Procoagulant Venom Activities by Combinations of Platinoid Compounds. Int J Mol Sci 2021; 22:ijms22094612. [PMID: 33924780 PMCID: PMC8124986 DOI: 10.3390/ijms22094612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023] Open
Abstract
Procoagulant snake venoms have been inhibited by the ruthenium containing compounds CORM-2 and RuCl3 separately, presumably by interacting with critical histidine or other sulfur-containing amino acids on key venom enzymes. However, combinations of these and other platinoid containing compounds could potentially increase, decrease or not affect the procoagulant enzyme function of venom. Thus, the purpose of this investigation was to determine if formulations of platinoid compounds could inhibit venom procoagulant activity and if the formulated compounds interacted to enhance inhibition. Using a human plasma coagulation kinetic model to assess venom activity, six diverse venoms were exposed to various combinations and concentrations of CORM-2, CORM-3, RuCl3 and carboplatin (a platinum containing compound), with changes in venom activity determined with thrombelastography. The combinations of CORM-2 or CORM-3 with RuCl3 were found to enhance inhibition significantly, but not in all venoms nor to the same extent. In sharp contrast, carboplatin-antagonized CORM-2 mediated the inhibition of venom activity. These preliminary results support the concept that platinoid compounds may inhibit venom enzymatic activity at the same or different molecular sites and may antagonize inhibition at the same or different sites. Further investigation is warranted to determine if platinoid formulations may serve as potential antivenoms.
Collapse
|
10
|
Wang W, Cao Z, Liang H, Zhao C, Gong B, Hu J. Effect of low-dose ethanol on NLRP3 inflammasome in diabetes-induced lung injury. Exp Anim 2021; 70:364-371. [PMID: 33814530 PMCID: PMC8390306 DOI: 10.1538/expanim.20-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To observe the changes in NLR family pyrin domain containing 3 (NLRP3) inflammasome in a rat model of diabetes-induced lung injury, and investigate the effect of low-dose ethanol on the production of NLRP3 inflammasome. The type I diabetic mellitus (DM) rat model was established, and the rats were divided into four groups: normal control group (CON group), low-dose ethanol group (EtOH group), diabetes group (DM group) and DM+EtOH group. The rats were fed for 6 and 12 weeks, respectively. The ratio of lung wet weight/body weight (lung/body coefficient) was calculated, and the changes of pulmonary morphology and fibrosis were observed by HE and Masson staining. The changes in pulmonary ultra-structure were examined by electron microscopy. The expressions of mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) and NLRP3 inflammasome key factors, NLRP3, ASC and caspase-1 proteins were detected by western blot. Compared with the CON group, the lung/body coefficient was increased (P<0.05), lung fibrosis occurred, ALDH2 protein expression was decreased, and NLRP3, ASC and caspase-1 protein expressions were increased in the DM rats (P<0.05). Compared with the DM group, the lung/body coefficient and fibrosis degree were decreased, ALDH2 protein expression was increased (P<0.05), and NLRP3, ASC and caspase-1 protein expressions were decreased in the DM+EtOH group (P<0.05). Hence, low-dose ethanol increased ALDH2 protein expression and alleviated diabetes-induced lung injury by inhibiting the production of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Wenlian Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China.,Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital of Nanjing University of Chinese Medicine, 1-1 Zhongfu Road, Jiangsu 210000, P.R. China
| | - Zhenzhen Cao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China
| | - Huan Liang
- Department of Physiology, Bengbu Medical College, 2600 Donghai Avenue, Anhui 233030, P.R. China.,Bengbu Medical College Key Laboratory of Cardiovascular and cerebrovascular Diseases, Bengbu Medical College, 2600 Donghai Avenue, Anhui 233030, P.R. China
| | - Chengling Zhao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China
| | - Beilei Gong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China
| | - Junfeng Hu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Road, Anhui 233004, P.R. China
| |
Collapse
|