1
|
Korandová Z, Pecina P, Pecinová A, Koňaříková E, Tesařová M, Houštěk J, Hansíková H, Ptáčková H, Zeman J, Honzík T, Mráček T. Cryopreserved PBMCs can be used for the analysis of mitochondrial respiration and serve as a diagnostic tool for mitochondrial diseases. Anal Biochem 2025; 698:115745. [PMID: 39645068 DOI: 10.1016/j.ab.2024.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Mitochondrial diseases are severe, inherited metabolic disorders that affect the paediatric population. They affect the functioning of mitochondrial oxidative phosphorylation (OXPHOS) apparatus either directly or indirectly. Since mutations in mtDNA are responsible for only 25 % of paediatric cases and next-generation sequencing does not always provide a conclusive diagnosis, the biochemical approach still represents a valuable tool in diagnostics. Mitochondrial defects can be identified in tissue biopsies (muscle or skin). However, they also often manifest in peripheral blood cells. We developed a protocol for isolation and cryopreservation of peripheral blood mononuclear cells (PBMCs) from 5 ml of children's blood using Ficoll centrifugation which can be utilised for subsequent functional measurements on thawed samples. Furthermore, we evaluated the diagnostic utility of the optimised high-resolution oxygraphy protocol using digitonin-permeabilized cryopreserved PBMCs on 47 samples from patients with confirmed or suspected mitochondrial disease. Overall, the diagnosis was confirmed in 72 % of cases, while the analysis of cryopreserved PBMCs provided a false negative outcome in 13 % of cases. Our study demonstrates a sensitive, fast, and non-invasive approach for the diagnostics of various types of mitochondrial disorders, especially those of nuclear genetic origin manifesting in paediatric patients.
Collapse
Affiliation(s)
- Zuzana Korandová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliška Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Tesařová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Josef Houštěk
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Ptáčková
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Mráček
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Sartori LF, Tsemberis E, Hernandez T, Luchette K, Zhang D, Farooqi S, Bush J, McCann JC, Balamuth F, Weiss SL. Distinct mitochondrial respiration profiles in pediatric patients with febrile illness versus sepsis. Pediatr Res 2024:10.1038/s41390-024-03420-z. [PMID: 39095577 DOI: 10.1038/s41390-024-03420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Mitochondrial dysfunction, linked to sepsis-related organ failure, is unknown in febrile illness. METHODS Prospective study of children in an Emergency Department (ED) with febrile illness or without infection (ED controls); secondary analysis of ICU patients with sepsis or without infection (ICU controls). Mitochondrial oxygen consumption measured in peripheral blood mononuclear cells using respirometry, with primary outcome of spare respiratory capacity (SRC). Mitochondrial content measured as citrate synthase (CS: febrile illness and ED controls) and mitochondrial to nuclear DNA ratio (mtDNA:nDNA: all groups). RESULTS SRC was lower in febrile illness (6.7 ± 3.0 pmol/sec/106 cells) and sepsis (5.7 ± 4.7) than ED/PICU controls (8.5 ± 3.7; both p < 0.05), but not different between febrile illness and sepsis (p = 0.26). Low SRC was driven by increased basal respiration in febrile illness and decreased maximal uncoupled respiration in sepsis. Differences were no longer significant after adjustment for patient demographics. Febrile illness demonstrated lower CS activity than ED controls (p = 0.07) and lower mtDNA:nDNA than both ED/PICU controls and sepsis (both p < 0.05). CONCLUSION Mitochondrial SRC was reduced in both febrile illness and sepsis, but due to distinct mitochondrial profiles and impacted by demographics. Further work is needed to determine if mitochondrial profiles could differentiate febrile illness from early sepsis. IMPACT STATEMENT Mitochondrial dysfunction has been linked to organ failure in sepsis, but whether mitochondrial alterations are evident in febrile illness without sepsis is unknown. In our study, while mitochondrial spare respiratory capacity (SRC), an index of cellular bioenergetic reserve under stress, was reduced in children with both febrile illness and sepsis compared to children without infections, low SRC was driven by increased basal respiration in febrile illness compared with decreased maximal uncoupled respiration in sepsis. Additional research is needed to understand if distinct mitochondrial profiles could be used to differentiate febrile illness from early sepsis in children.
Collapse
Affiliation(s)
- Laura F Sartori
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Elena Tsemberis
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tyne Hernandez
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katherine Luchette
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donglan Zhang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jenny Bush
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John C McCann
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fran Balamuth
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott L Weiss
- Nemours Children's Health, Wilmington, DE, USA
- Sidney Kimmel Medical College - Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Li J, Yao Y, Lei X, Bao J, An S, Hu H, Sha T, Huang Q, Li T, Zeng Z, Wang X, Cai S. SIRTUIN 5 ALLEVIATES EXCESSIVE MITOCHONDRIAL FISSION VIA DESUCCINYLATION OF ATPASE INHIBITORY FACTOR 1 IN SEPSIS-INDUCED ACUTE KIDNEY INJURY. Shock 2024; 62:235-244. [PMID: 38754030 DOI: 10.1097/shk.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Sepsis-induced acute kidney injury (SAKI) poses a significant clinical challenge with high morbidity and mortality. Excessive mitochondrial fission has been identified as the central pathogenesis of sepsis-associated organ damage, which is also implicated in the early stages of SAKI. Sirtuin 5 (SIRT5) has emerged as a central regulator of cellular mitochondrial function; however, its role in the regulation of sepsis-induced excessive mitochondrial fission in kidney and the underlying mechanism remains unclear. In this study, SAKI was modeled in mice through cecal ligation and puncture, and in human renal tubular epithelial (HK-2) cells stimulated with lipopolysaccharide (LPS), to mimic the cell SAKI model. Our findings revealed that septic mice with a SIRT5 knockout exhibited shortened survival times and elevated levels of renal injury compared to wild-type mice, suggesting the significant involvement of SIRT5 in SAKI pathophysiology. Additionally, we observed that SIRT5 depletion led to increased renal mitochondrial fission, while the use of a mitochondrial fission inhibitor (Mdivi-1) reversed the detrimental effects caused by SIRT5 depletion, emphasizing the pivotal role of SIRT5 in preventing excessive mitochondrial fission. In vitro experiments demonstrated that the overexpression of SIRT5 effectively mitigated the adverse effects of LPS on HK-2 cells viability and mitochondrial fission. Conversely, downregulation of SIRT5 decreased HK-2 cells viability and exacerbated LPS-induced mitochondrial fission. Mechanistically, the protective function of SIRT5 may be in part, ascribed to its desuccinylating action on ATPase inhibitory factor 1. In conclusion, this study provides novel insights into the underlying mechanisms of SAKI, suggesting the possibility of identifying future drug targets in terms of improved mitochondrial dynamics by SIRT5.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Wang
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Jariyasakoolroj T, Chattipakorn SC, Chattipakorn N. Potential biomarkers used for risk estimation of pediatric sepsis-associated organ dysfunction and immune dysregulation. Pediatr Res 2024:10.1038/s41390-024-03289-y. [PMID: 38834784 DOI: 10.1038/s41390-024-03289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 05/11/2024] [Indexed: 06/06/2024]
Abstract
Pediatric sepsis is a serious issue globally and is a significant cause of illness and death among infants and children. Refractory septic shock and multiple organ dysfunction syndrome are the primary causes of mortality in children with sepsis. However, there is incomplete understanding of mechanistic insight of sepsis associated organ dysfunction. Biomarkers present during the body's response to infection-related inflammation can be used for screening, diagnosis, risk stratification/prognostication, and/or guidance in treatment decision-making. Research on biomarkers in children with sepsis can provide information about the risk of poor outcomes and sepsis-related organ dysfunction. This review focuses on clinically used biomarkers associated with immune dysregulation and organ dysfunction in pediatric sepsis, which could be useful for developing precision medicine strategies in pediatric sepsis management in the future. IMPACT: Sepsis is a complex syndrome with diverse clinical presentations, where organ dysfunction is a key factor in morbidity and mortality. Early detection of organ complications is vital in sepsis management, and potential biomarkers offer promise for precision medicine in pediatric cases. Well-designed studies are needed to identify phase-specific biomarkers and improve outcomes through more precise management.
Collapse
Affiliation(s)
- Theerapon Jariyasakoolroj
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Atreya MR, Piraino G, Cvijanovich NZ, Fitzgerald JC, Weiss SL, Bigham MT, Jain PN, Schwarz AJ, Lutfi R, Nowak J, Thomas NJ, Baines T, Haileselassie B, Zingarelli B. SERUM HUMANIN IN PEDIATRIC SEPTIC SHOCK-ASSOCIATED MULTIPLE-ORGAN DYSFUNCTION SYNDROME. Shock 2024; 61:83-88. [PMID: 37917869 PMCID: PMC10842252 DOI: 10.1097/shk.0000000000002266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
ABSTRACT Background: Multiple-organ dysfunction syndrome disproportionately contributes to pediatric sepsis morbidity. Humanin (HN) is a small peptide encoded by mitochondrial DNA and thought to exert cytoprotective effects in endothelial cells and platelets. We sought to test the association between serum HN (sHN) concentrations and multiple-organ dysfunction syndrome in a prospectively enrolled cohort of pediatric septic shock. Methods: Human MT-RNR2 ELISA was used to determine sHN concentrations on days 1 and 3. The primary outcome was thrombocytopenia-associated multiorgan failure (TAMOF). Secondary outcomes included individual organ dysfunctions on day 7. Associations across pediatric sepsis biomarker (PERSEVERE)-based mortality risk strata and correlation with platelet and markers of endothelial activation were tested. Results: One hundred forty subjects were included in this cohort, of whom 39 had TAMOF. The concentration of sHN was higher on day 1 relative to day 3 and among those with TAMOF phenotype in comparison to those without. However, the association between sHN and TAMOF phenotype was not significant after adjusting for age and illness severity in multivariate models. In secondary analyses, sHN was associated with presence of day 7 sepsis-associated acute kidney injury ( P = 0.049). Furthermore, sHN was higher among those with high PERSEVERE-mortality risk strata and correlated with platelet counts and several markers of endothelial activation. Conclusion: Future investigation is necessary to validate the association between sHN and sepsis-associated acute kidney injury among children with septic shock. Furthermore, mechanistic studies that elucidate the role of HN may lead to therapies that promote organ recovery through restoration of mitochondrial homeostasis among those critically ill.
Collapse
Affiliation(s)
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, 45229, OH, USA
| | | | | | - Scott L Weiss
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Parag N Jain
- Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam J Schwarz
- Children's Hospital of Orange County, Orange, CA 92868, USA
| | - Riad Lutfi
- Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Jeffrey Nowak
- Children's Hospital and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Neal J Thomas
- Penn State Hershey Children's Hospital, Hershey, PA 17033, USA
| | - Torrey Baines
- University of Florida Health Shands Children's Hospital, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
6
|
Robles MC, Heard TC, Chao T, Alcover K, Wagner A, Akers KS, Burmeister DM. DIAGNOSTIC VALUE OF MITOCHONDRIAL DNA AND PERIPHERAL BLOOD MONONUCLEAR CELL RESPIROMETRY FOR BURN-RELATED SEPSIS. Shock 2023; 59:294-299. [PMID: 36730861 DOI: 10.1097/shk.0000000000002025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Background: Sepsis is the leading cause of mortality among burn patients that survive acute resuscitation. Clinical criteria have poor diagnostic value for burn-induced sepsis, making it difficult to diagnose. Protein biomarkers (e.g., procalcitonin) have been examined with limited success. We aimed to explore other biomarkers related to mitochondria (mitochondrial DNA [mtDNA]) and mitochondrial function of peripheral blood mononuclear cells (PBMCs) for sepsis diagnosis in burn patients. Methods: We conducted a follow-up analysis of a single center, prospective observational study of subjects (n = 10 healthy volunteers, n = 24 burn patients) to examine the diagnostic value of mtDNA and PBMC respirometry. Patients were enrolled regardless of sepsis status and followed longitudinally. Patient samples were classified as septic or not based on empiric clinical criteria. Isolated PBMCs were loaded into a high-resolution respirometer, and circulating mtDNA was measured with a PCR-based assay. Sequential Organ Failure Assessment (SOFA) criteria were also compared. Results: The SOFA criteria comparing septic versus before/nonseptic patients revealed significantly higher heart rate ( P = 0.012) and lower mean arterial pressure ( P = 0.039) in burn sepsis. MtDNA was significantly elevated in septic burn patients compared with healthy volunteers ( P < 0.0001) and nonseptic patients ( P < 0.0001), with no significant difference between healthy volunteers and nonseptic burn patients ( P = 0.187). The area under the ROC curve (AUC) for mtDNA was 0.685 (95% confidence interval = 0.50-0.86). For PBMC respirometry, burn patients exhibited increased routine and maximal respiration potential compared with healthy volunteers. However, no difference was found between nonseptic and septic patient samples. A subanalysis revealed a significant mortality difference in PBMC respirometry after sepsis diagnosis, wherein survivors had higher routine respiration ( P = 0.003) and maximal respiration ( P = 0.011) compared with nonsurvivors. Conclusion: Our findings reveal that mtDNA may have diagnostic value for burn sepsis, whereas PBMC respirometry is nonspecifically elevated in burns, but may have value in mortality prognosis. A larger, multisite study is warranted for further validity of the diagnostic value of mtDNA and PBMC respirometry as biomarkers for prognosis of sepsis and outcomes in burn patients.
Collapse
Affiliation(s)
| | - Tiffany C Heard
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX
| | - Tony Chao
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX
| | | | - Amanda Wagner
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX
| | - Kevin S Akers
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX
| | | |
Collapse
|
7
|
He L, Yang D, Ding Q, Su Y, Ding N. Association Between Lactate and 28-Day Mortality in Elderly Patients with Sepsis: Results from MIMIC-IV Database. Infect Dis Ther 2023; 12:459-472. [PMID: 36520327 PMCID: PMC9925625 DOI: 10.1007/s40121-022-00736-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION This study aimed to explore the association of serum lactate with clinical outcomes in elderly patients with sepsis based on data from the MIMIC-IV database. METHODS All elderly patients with sepsis (age ≥ 65 years) were included. Different models were constructed for exploring the relationships between lactate and 28-day mortality. A two-segment linear regression model was performed to verify the threshold effects of lactate on clinical outcomes and smooth curve fitting was performed. RESULTS A total of 4199 elderly patients with sepsis were included. The 28-day mortality was 32.22% (n = 1395). After adjustment for all potential cofounders, for each 1 mmol/l increment in lactate, the odds ratio (OR) of 28-day mortality was 1.23 (95% CI 1.18-1.28, P < 0.0001). Smooth fitting curves indicated a non-linear positive relationship between lactate and 28-day mortality. The turning point of lactate level was 5.7 mmol/l: at ≤ 5.7 mmol/l, with each 1 mmol/l increment in lactate, the risk of 28-day mortality increased significantly (OR 1.32, 95% CI 1.25-1.38, P < 0.0001); the significantly positive relationship was still present at lactate > 5.7 mmol/l (OR 1.10, 95% CI 1.04-1.18, P = 0.0019). The area under the ROC curve (AUC) of lactate was 0.618 (95% CI 0.599-0.635) and the cutoff value of lactate was 2.4 mmol/l with a sensitivity of 0.483 and a specificity of 0.687. CONCLUSION In elderly patients with sepsis, a non-linear positive relationship was discovered between serum lactate and 28-day mortality. Physicians should be alert to lactate assessment at admission and pay more attention to those patients with higher levels of lactate.
Collapse
Affiliation(s)
- Liudang He
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, No. 161 Shaoshan South Road, Changsha, 410004, Hunan, China
| | - Donghua Yang
- Department of Nursing, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Qiong Ding
- Department of Nursing, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yingjie Su
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, No. 161 Shaoshan South Road, Changsha, 410004, Hunan, China
| | - Ning Ding
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, No. 161 Shaoshan South Road, Changsha, 410004, Hunan, China.
| |
Collapse
|
8
|
McCall CE, Zhu X, Zabalawi M, Long D, Quinn MA, Yoza BK, Stacpoole PW, Vachharajani V. Sepsis, pyruvate, and mitochondria energy supply chain shortage. J Leukoc Biol 2022; 112:1509-1514. [PMID: 35866365 PMCID: PMC9796618 DOI: 10.1002/jlb.3mr0322-692rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/04/2023] Open
Abstract
Balancing high energy-consuming danger resistance and low energy supply of disease tolerance is a universal survival principle that often fails during sepsis. Our research supports the concept that sepsis phosphorylates and deactivates mitochondrial pyruvate dehydrogenase complex control over the tricarboxylic cycle and the electron transport chain. StimulatIng mitochondrial energetics in septic mice and human sepsis cell models can be achieved by inhibiting pyruvate dehydrogenase kinases with the pyruvate structural analog dichloroacetate. Stimulating the pyruvate dehydrogenase complex by dichloroacetate reverses a disruption in the tricarboxylic cycle that induces itaconate, a key mediator of the disease tolerance pathway. Dichloroacetate treatment increases mitochondrial respiration and ATP synthesis, decreases oxidant stress, overcomes metabolic paralysis, regenerates tissue, organ, and innate and adaptive immune cells, and doubles the survival rate in a murine model of sepsis.
Collapse
Affiliation(s)
- Charles E. McCall
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Xuewei Zhu
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Manal Zabalawi
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - David Long
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Matthew A. Quinn
- Department of Pathology – Comparative MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Barbara K. Yoza
- Department of SurgeryWake Forest School of MedicineWinston SalemNCUSA
| | - Peter W. Stacpoole
- Department of Medicine and BiochemistryUniversity of Florida Medical SchoolGainesvilleFloridaUSA
| | - Vidula Vachharajani
- Department of Critical Care MedicineCleveland Clinic Lerner College of Medicine of CWRUClevelandOhioUSA
| |
Collapse
|