1
|
Baucom MR, Wallen TE, Price AD, England LG, Schuster RM, Goodman MD. Tranexamic Acid Administration Does Not Alter Inflammation After Traumatic Brain Injury, Regardless of Timing. J Surg Res 2024; 302:106-115. [PMID: 39094257 DOI: 10.1016/j.jss.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Tranexamic acid (TXA) administered early after traumatic brain injury (TBI) can decrease morbidity and mortality. The purpose of this study is to determine if the timing of TXA administration after TBI affects postinjury inflammatory markers or phosphorylated tau (p-tau) levels within the hippocampus. METHODS Male mice (9-11 wk) were split into six groups based on injury and timing of TXA administration (n = 5 per group): Sham, TBI-only, 100 mg/kg TXA-only, TBI + TXA 10 min, TBI + TXA 1 h, and TBI + TXA 6 h. Moderate concussive TBI was induced via weight drop. Serum and brain homogenates were collected at 6 and 24 h postinjury and analyzed for 14 inflammatory cytokines via multiplex enzyme-linked immunosorbent assay. Serum was analyzed for glial fibrillary acidic protein levels. Additional cohorts were survived to 30 d for hippocampal p-tau quantification using immunohistochemistry. RESULTS Serum levels of interleukin (IL) 1β (IL-1β), IL-3, IL-12, IL-17, monocyte chemoattractant protein-1, granulocyte-macrophage colony-stimulating factor, and regulated on activation, normal T-cell expressed and secreted were elevated in TBI mice compared to sham mice at 24 h. Levels of IL-1β and monocyte chemoattractant protein-1 were lower in 6-h TXA-treated mice than 1-h TXA-treated mice following TBI. IL-12 and macrophage inflammatory protein-1α levels were decreased in 6-h TXA-treated mice compared to 10-min TXA-treated mice. Administration of TXA at 10 min and 6 h but not 1 h postTBI reduced serum glial fibrillary acidic protein levels compared to TBI-only mice. Hippocampal p-tau accumulation was increased after TBI but not reduced by TXA administration. CONCLUSIONS Our results demonstrate that neither early nor delayed administration of TXA conveyed significant systemic or cerebral benefit in cytokine levels following TBI. Further research should be conducted to assess blood brain barrier integrity and neurobehavioral recovery following TXA administration postTBI.
Collapse
Affiliation(s)
- Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Taylor E Wallen
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Adam D Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Lisa G England
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | | |
Collapse
|
2
|
Jae J, Li Y, Sun C, Allan A, Basmaji J, Chilton S, Simsam MH, Kao R, Owen A, Parry N, Priestap F, Rochwerg B, Smith S, Turgeon AF, Vogt K, Walser E, Iansavitchene A, Ball I. Preclinical Studies on Mechanisms Underlying the Protective Effects of Propranolol in Traumatic Brain Injury: A Systematic Review. J Neuroimmune Pharmacol 2024; 19:33. [PMID: 38900343 DOI: 10.1007/s11481-024-10121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/21/2024] [Indexed: 06/21/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity amongst trauma patients. Its treatment is focused on minimizing progression to secondary injury. Administration of propranolol for TBI maydecrease mortality and improve functional outcomes. However, it is our sense that its use has not been universally adopted due to low certainty evidence. The literature was reviewed to explore the mechanism of propranolol as a therapeutic intervention in TBI to guide future clinical investigations. Medline, Embase, and Scopus were searched for studies that investigated the effect of propranolol on TBI in animal models from inception until June 6, 2023. All routes of administration for propranolol were included and the following outcomes were evaluated: cognitive functions, physiological and immunological responses. Screening and data extraction were done independently and in duplicate. The risk of bias for each individual study was assessed using the SYCLE's risk of bias tool for animal studies. Three hundred twenty-three citations were identified and 14 studies met our eligibility criteria. The data suggests that propranolol may improve post-TBI cognitive and motor function by increasing cerebral perfusion, reducing neural injury, cell death, leukocyte mobilization and p-tau accumulation in animal models. Propranolol may also attenuate TBI-induced immunodeficiency and provide cardioprotective effects by mitigating damage to the myocardium caused by oxidative stress. This systematic review demonstrates that propranolol may be therapeutic in TBI by improving cognitive and motor function while regulating T lymphocyte response and levels of myocardial reactive oxygen species. Oral or intravenous injection of propranolol following TBI is associated with improved cerebral perfusion, reduced neuroinflammation, reduced immunodeficiency, and cardio-neuroprotection in preclinical studies.
Collapse
Affiliation(s)
- James Jae
- Department of Medicine, Western University, London, ON, Canada
| | - Yilong Li
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Clara Sun
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alison Allan
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - John Basmaji
- Department of Medicine, Western University, London, ON, Canada
| | | | | | - Raymond Kao
- Department of Medicine, Western University, London, ON, Canada
- London Health Sciences Trauma Program, London, ON, Canada
- Office of Academic Military Medicine, Western University, London, ON, Canada
| | - Adrian Owen
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Neil Parry
- London Health Sciences Trauma Program, London, ON, Canada
- Office of Academic Military Medicine, Western University, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
| | - Fran Priestap
- London Health Sciences Trauma Program, London, ON, Canada
| | - Bram Rochwerg
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Shane Smith
- London Health Sciences Trauma Program, London, ON, Canada
- Office of Academic Military Medicine, Western University, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
| | - Alexis F Turgeon
- CHU de Québec - Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Québec City, Québec, Canada
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, Québec City, Québec, Canada
| | - Kelly Vogt
- London Health Sciences Trauma Program, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
| | - Eric Walser
- Department of Medicine, Western University, London, ON, Canada
- Office of Academic Military Medicine, Western University, London, ON, Canada
| | - Alla Iansavitchene
- Health Sciences Library, London Health Sciences Center, London, ON, Canada
| | - Ian Ball
- Department of Medicine, Western University, London, ON, Canada.
- London Health Sciences Trauma Program, London, ON, Canada.
- Office of Academic Military Medicine, Western University, London, ON, Canada.
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada.
| |
Collapse
|
3
|
Baucom MR, Weissman N, Price AD, England L, Schuster RM, Pritts TA, Goodman MD. Syndecan-1 as the Effect or Effector of the Endothelial Inflammatory Response? J Surg Res 2024; 295:611-618. [PMID: 38096775 DOI: 10.1016/j.jss.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Syndecan-1 is a heparan sulfate proteoglycan found in the glycocalyx of vascular endothelial cells. Serum levels of syndecan-1 have repeatedly been demonstrated to increase following traumatic injury and shock, but it is unclear whether syndecan-1 plays an active role in the inflammatory response or is simply a biomarker of a state of hypoperfusion. The aim of this study was to identify the role of syndecan-1 role in the inflammatory process in the absence of trauma. METHODS Male mice were randomized into five groups (n = 3). Four groups received increasing concentrations of syndecan-1 (1, 10, 100, and 1000pg/mL per blood volume) and a fifth group was given normal saline as a control via intravenous injection. These concentrations were selected based on previous syndecan-1 enzyme-linked immunosorbent assay data acquired following induced hemorrhagic shock in mice resulting in serum levels of 10-6000 pg/mL. Mice from each group were sacrificed at 1-, 4-, and 24-h time points for serum biomarker evaluation. A multiplex enzyme-linked immunosorbent assay was performed to analyze proinflammatory cytokines and chemokines including interleukin (IL)-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, IL-17, monocyte chemoattractant protein-1, TNF-α, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, and normal T cell expressed and presumably secreted levels. Whole blood was analyzed via rotational thromboelastometry in a separate group of mice dosed with syndecan-1 at 1000 pg/mL and compared to sham mice at 1 h. RESULTS Tumor necrosis factor-α was significantly elevated in the 1000 pg/mL group compared to sham animals. There were no significant changes in IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, monocyte chemoattractant protein--1, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, or normal T cell expressed and presumably secretedat 1, 4, and 24 h for any group when compared to mice receiving saline alone. No significant differences were noted in coagulability between the 1000 pg/mL syndecan-1 group and shams at 1 h CONCLUSIONS: Inflammatory cytokine concentrations did not change with increasing dosage of syndecan-1 within mice at any timepoint, except for an acute change in tumor necrosis factor-α which was transient. Based on our results, syndecan-1 appears to be a biomarker for inflammation rather than an active participant in eliciting an inflammatory response. Further research will focus on the role of syndecan-1 following hemorrhagic shock.
Collapse
Affiliation(s)
- Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Adam D Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Lisa England
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
4
|
Ho JW, Dawood ZS, Taylor ME, Liggett MR, Jin G, Jaishankar D, Nadig SN, Bharat A, Alam HB. THE NEUROENDOTHELIAL AXIS IN TRAUMATIC BRAIN INJURY: MECHANISMS OF MULTIORGAN DYSFUNCTION, NOVEL THERAPIES, AND FUTURE DIRECTIONS. Shock 2024; 61:346-359. [PMID: 38517237 DOI: 10.1097/shk.0000000000002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Severe traumatic brain injury (TBI) often initiates a systemic inflammatory response syndrome, which can potentially culminate into multiorgan dysfunction. A central player in this cascade is endotheliopathy, caused by perturbations in homeostatic mechanisms governed by endothelial cells due to injury-induced coagulopathy, heightened sympathoadrenal response, complement activation, and proinflammatory cytokine release. Unique to TBI is the potential disruption of the blood-brain barrier, which may expose neuronal antigens to the peripheral immune system and permit neuroinflammatory mediators to enter systemic circulation, propagating endotheliopathy systemically. This review aims to provide comprehensive insights into the "neuroendothelial axis" underlying endothelial dysfunction after TBI, identify potential diagnostic and prognostic biomarkers, and explore therapeutic strategies targeting these interactions, with the ultimate goal of improving patient outcomes after severe TBI.
Collapse
Affiliation(s)
- Jessie W Ho
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zaiba Shafik Dawood
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Meredith E Taylor
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Marjorie R Liggett
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang Jin
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dinesh Jaishankar
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Satish N Nadig
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Ankit Bharat
- Department of Surgery, Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hasan B Alam
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
5
|
Eisinger EC, Forsythe L, Joergensen S, Murali S, Cannon JW, Reilly PM, Kim PK, Kaufman EJ. Thromboembolic Complications Following Perioperative Tranexamic Acid Administration. J Surg Res 2024; 293:676-684. [PMID: 37839099 DOI: 10.1016/j.jss.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/25/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION The antifibrinolytic tranexamic acid (TXA) may reduce death in trauma; however, outcomes associated with TXA use in patients without proven hyperfibrinolysis remain unclear. We analyzed the associations of empirically administered TXA, hypothesizing that TXA use would correlate to lower transfusion totals but increased thromboembolic complications. METHODS This retrospective cohort study compared trauma patients started on massive transfusion protocol at a Level I trauma center from 2016 to 2021 who either did or did not receive TXA. Our primary outcome was in-hospital mortality. Venous thromboembolism (VTE; pulmonary embolism or deep vein thrombosis), transfusion volumes, and coagulation measures were considered secondarily. Descriptive statistics, univariate analyses, and multivariable logistic regression were used to evaluate differences in outcomes. RESULTS TXA patients presented with lower systolic blood pressure (100 versus 119.5 mmHg, P = 0.009), trended toward higher injury severity (ISS of 25 versus 20, P = 0.057), and were likelier to have undergone thoracotomy or laparotomy (89 versus 71%, P = 0.002). After adjusting for age, mechanism, presenting vitals, and operation, TXA was not significantly associated with mortality or VTE. TXA patients had larger volumes of packed red blood cells, platelets, and plasma transfused within 4- and 24-h (P ≤ 0.002). No differences in clot stability, captured via thromboelastography, were noted. CONCLUSIONS Despite no differences in mortality or VTE between patients who did and did not receive TXA, there were significant differences in transfusion totals. TXA patients had worse presenting physiology and likely had more severe bleeding. This absence of adverse outcomes supports TXA's safety. Nevertheless, further inquiry into the precise mechanism of TXA may help guide its empiric use, allowing for more targeted application.
Collapse
Affiliation(s)
- Ella C Eisinger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Liam Forsythe
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Shyam Murali
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Traumatology, Surgical Critical Care, and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeremy W Cannon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Traumatology, Surgical Critical Care, and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick M Reilly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Traumatology, Surgical Critical Care, and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick K Kim
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Traumatology, Surgical Critical Care, and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elinore J Kaufman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Traumatology, Surgical Critical Care, and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|