1
|
Cai Y, Shang L, Zhou F, Zhang M, Li J, Wang S, Lin Q, Huang J, Yang S. Macrophage pyroptosis and its crucial role in ALI/ARDS. Front Immunol 2025; 16:1530849. [PMID: 40028334 PMCID: PMC11867949 DOI: 10.3389/fimmu.2025.1530849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a severe clinical syndrome characterized by high morbidity and mortality, primarily due to lung injury. However, the pathogenesis of ALI/ARDS remains a complex issue. In recent years, the role of macrophage pyroptosis in lung injury has garnered extensive attention worldwide. This paper reviews the mechanism of macrophage pyroptosis, discusses its role in ALI/ARDS, and introduces several drugs and intervening measures that can regulate macrophage pyroptosis to influence the progression of ALI/ARDS. By doing so, we aim to enhance the understanding of the mechanism of macrophage pyroptosis in ALI/ARDS and provide novel insights for its treatment.
Collapse
Affiliation(s)
- Yuju Cai
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifeng Lin
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianghua Huang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Chen S, Wen L, Wu Y, Xiao S, Lai Y, Ou J, Shen Y. Circular RNA circ-CARD8 regulates alveolar macrophage pyroptosis through the miR-580-3p/CARD8 pathway in acute lung injury. PLoS One 2024; 19:e0314936. [PMID: 39705232 DOI: 10.1371/journal.pone.0314936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024] Open
Abstract
Pyroptosis is linked to the development of acute lung injury (ALI), and circular RNAs (circRNAs) play a role in ALI-related inflammation. However, the mechanisms by which circRNAs contribute to macrophage pyroptosis in ALI remain unclear. This study constructed an in vitro ALI model by inducing THP-1 cells with phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS). The expression and potential mechanism of circ-CARD8 in macrophage pyroptosis were then investigated. The interaction between circ-CARD8, hsa-miR-580-3p, and caspase recruitment domain family member 8 (CARD8) was confirmed through luciferase reporter assays and RNA-binding protein immunoprecipitation. Our data showed that circ-CARD8 was expressed at low levels. Meanwhile, the pyroptotic proteins caspase-1 and GSDMD, along with the secretion of chemokine (C-C motif) ligand 18 and interleukin 1 beta, were upregulated in the ALI cell model. Overexpression of circ-CARD8 reversed macrophage pyroptosis, whereas inhibition of circ-CARD8 promoted it. Furthermore, the expression of miR-580-3p, a downstream microRNA that binds to circ-CARD8, was reduced upon circ-CARD8 overexpression and increased following its inhibition. Additionally, overexpression of miR-580-3p suppressed the expression of CARD8, a downstream target of miR-580-3p, thereby promoting macrophage pyroptosis. The inhibition of miR-580-3p reversed the effect of circ-CARD8 silencing on macrophage pyroptosis and CARD8 expression. Therefore, our study confirms that the low expression of circ-CARD8 reduces the sponge adsorption of miR-580-3p, increasing its expression, which in turn targets and inhibits CARD8, ultimately promoting macrophage pyroptosis induced by LPS in THP-1 cells.
Collapse
Affiliation(s)
- Sida Chen
- Respiratory Department, Longgang Central Hospital, Shenzhen, China
| | - Ling Wen
- Respiratory Department, Longgang Central Hospital, Shenzhen, China
| | - Yumei Wu
- Yadi Sancun Community Health Service Center, Shenzhen Pingle Orthopaedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Shan Xiao
- Respiratory Department, Longgang Central Hospital, Shenzhen, China
| | - Yuting Lai
- Respiratory Department, Longgang Central Hospital, Shenzhen, China
| | - Jintao Ou
- Respiratory Department, Longgang Central Hospital, Shenzhen, China
| | - Yan Shen
- Respiratory Department, Longgang Central Hospital, Shenzhen, China
| |
Collapse
|
3
|
Wang J, Yue XQ, Li YT, Jiang M, Liu JC, Zhao ZG, Niu CY. ANALYSIS AND IDENTIFICATION OF FERROPTOSIS-RELATED GENE SIGNATURE FOR ACUTE LUNG INJURY. Shock 2024; 61:728-739. [PMID: 37878471 DOI: 10.1097/shk.0000000000002247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Background: Recent studies have shown that ferroptosis is involved in the evolution of acute lung injury (ALI), a serious respiratory pathological process leading to death. However, the regulatory mechanisms underlying ferroptosis in ALI remain largely unknown. The current study analyzed and identified a ferroptosis-related gene signature for ALI. Methods: Key genes associated with ferroptosis in ALI were identified by bioinformatics analysis. GSE104214, GSE18341, and GSE17355 datasets were downloaded from the Gene Expression Omnibus database. The signature genes were screened by least absolute shrinkage and selection operator regression, and the key genes of ALI were screened by weighted correlation network analysis (WGCNA), followed by immune infiltration analysis and functional enrichment analysis. In addition, mRNA expression of key genes in the lungs of mice with hemorrhagic shock (HS) and sepsis was verified. Results: A total of 2,132 differential genes were identified by various analyses, and 9 characteristic genes were detected using Lasso regression. We intersected nine signature genes with WGCNA module genes and finally determined four key genes ( PROK2 , IL6 , TNF , SLC7A11 ). All four key genes were closely correlated with immune cells and regulatory genes of ALI, and the expression of the four genes was significantly different in the lung tissues of HS and sepsis models. Besides, the ferroptosis-related molecules GPX4 and ACSL4 showed remarkable difference in these models. Conclusion: These results indicate that PROK2 , IL6 , TNF , and SLC7A11 may be key regulatory targets of ferroptosis during ALI. This study proved that ferroptosis is a common pathophysiological process in three ALI models.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Qi Yue
- Institute of Microcirculation, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Yu-Ting Li
- Institute of Microcirculation, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Miao Jiang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Jun-Chao Liu
- The First Affiliated Hospital, Hebei North University, Zhangjiakou, China
| | | | | |
Collapse
|
4
|
Hu Z, Li J, Zhang F, Jacob A, Wang P. A NOVEL OLIGONUCLEOTIDE MRNA MIMIC ATTENUATES HEMORRHAGE-INDUCED ACUTE LUNG INJURY. Shock 2024; 61:630-637. [PMID: 38300836 PMCID: PMC11009070 DOI: 10.1097/shk.0000000000002309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ABSTRACT Hemorrhagic shock (HS) is accompanied by a pronounced activation of the inflammatory response in which acute lung injury (ALI) is one of the most frequent consequences. Among the pivotal orchestrators of this inflammatory cascade, extracellular cold-inducible RNA-binding protein (eCIRP) emerges as a noteworthy focal point, rendering it as a promising target for the management of inflammation and tissue injury. Recently, we have reported that oligonucleotide poly(A) mRNA mimic termed A 12 selectively binds to the RNA binding region of eCIRP and inhibits eCIRP binding to its receptor TLR4. Furthermore, in vivo administration of eCIRP induces lung injury in healthy mice and that mouse deficient in CIRP showed protection from inflammation-associated lung injury. We hypothesize that A 12 inhibits systemic inflammation and ALI in HS. To test the impacts of A 12 on systemic and lung inflammation, extent of inflammatory cellular infiltration and resultant lung damage were evaluated in a mouse model of HS. Male mice were subjected to controlled hemorrhage with a mean arterial pressure of 30 mm Hg for 90 min and then resuscitated with Ringer's lactate solution containing phosphate-buffered saline (vehicle) or A 12 at a dose of 4 nmol/g body weight (treatment). The infusion volume was twice that of the shed blood. At 4 h after resuscitation, mice were euthanized, and blood and lung tissues were harvested. Blood and tissue markers of inflammation and injury were evaluated. Serum markers of injury (lactate dehydrogenase, alanine transaminase, and blood urea nitrogen) and inflammation (TNF-α, IL-6) were increased after HS and A 12 treatment significantly decreased their levels. A 12 treatment also decreased lung levels of TNF-α, MIP-2, and KC mRNA expressions. Lung histological injury score, neutrophil infiltration (Ly6G staining and myeloperoxidase activity), and lung apoptosis were significantly attenuated after A 12 treatment. Our study suggests that the capacity of A 12 in attenuating HS-induced ALI and may provide novel perspectives in developing efficacious pharmaceutics for improving hemorrhage prognosis.
Collapse
Affiliation(s)
- Zhijian Hu
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Jingsong Li
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Fangming Zhang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, United States
| |
Collapse
|
5
|
Shivling Mali A, Honc O, Hejnova L, Novotny J. Opioids Alleviate Oxidative Stress via the Nrf2/HO-1 Pathway in LPS-Stimulated Microglia. Int J Mol Sci 2023; 24:11089. [PMID: 37446267 DOI: 10.3390/ijms241311089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Opioids are known to have antioxidant effects and to modulate microglial function under certain conditions. It has been previously shown that opioid ligands can effectively inhibit the release of proinflammatory cytokines when stimulated with lipopolysaccharide (LPS) and convert microglia to an anti-inflammatory polarization state. Here, we used C8-B4 cells, the mouse microglial cell line activated by LPS as a model to investigate the anti-inflammatory/antioxidant potential of selected opioid receptor agonists (DAMGO, DADLE, and U-50488). We found that all of these ligands could exert cytoprotective effects through the mechanism affecting LPS-induced ROS production, NADPH synthesis, and glucose uptake. Interestingly, opioids elevated the level of reduced glutathione, increased ATP content, and enhanced mitochondrial respiration in microglial cells exposed to LPS. These beneficial effects were associated with the upregulation of the Nrf2/HO-1 pathway. The present results indicate that activation of opioid signaling supports the preservation of mitochondrial function with concomitant elimination of ROS in microglia and suggest that an Nrf2/HO-1 signaling pathway-dependent mechanism is involved in the antioxidant efficacy of opioids. Opioid receptor agonists may therefore be considered as agents to suppress oxidative stress and inflammatory responses of microglia.
Collapse
Affiliation(s)
- Akash Shivling Mali
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Honc
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| |
Collapse
|