1
|
McMahan RH, Boe D, Giesy LE, Najarro KM, Khair S, Walrath T, Frank DN, Kovacs EJ. Advanced Age Worsens Respiratory Function and Pulmonary Inflammation After Burn Injury and This Correlates With Changes in the Fecal Microbiome in Mice. J Burn Care Res 2025; 46:53-60. [PMID: 38837704 DOI: 10.1093/jbcr/irae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 06/07/2024]
Abstract
Cutaneous burn injury in the elderly is associated with poor clinical outcomes and increased pulmonary-related complications. We and others have shown that burn injury triggers a cascade of inflammatory mediators which increase gut permeability and dysbiosis of the fecal microbiota and this is more dramatic in the aged. Since crosstalk between intestinal microbes and the lung, termed the "gut-lung axis," impacts immunity and homeostasis in the airway, we hypothesized that the increased intestinal dysbiosis in age and burn injury may contribute to excessive pulmonary inflammation and poor prognosis after injury. To explore this hypothesis, we used a clinically relevant murine model of burn injury in which young and aged mice are subjected to a 12% TBSA dorsal scald burn or sham injury. About 24 h after injury, lung function was assessed and lungs and feces were collected for analysis of inflammatory mediators and fecal microbial species. The results show that, when compared to younger mice, burn injury in aged mice triggers a decline in respiratory function and exacerbates pulmonary inflammation. In addition to heightened levels of the neutrophil recruiting chemokine CXCL1, aged mice displayed a profound increase in the pro-inflammatory protein, calprotectin, in the lung after burn injury. Comparison of the fecal microbiome and inflammatory markers in the lung revealed unique, age-dependent, correlation patterns between individual taxa and pulmonary inflammation. Taken together, these findings suggest that the postburn dysbiosis of the gut flora in aged mice may contribute to the changes in pulmonary inflammatory profiles.
Collapse
Affiliation(s)
- Rachel H McMahan
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
| | - Devin Boe
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren E Giesy
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kevin M Najarro
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
| | - Shanawaj Khair
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Travis Walrath
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth J Kovacs
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
| |
Collapse
|
2
|
Walrath T, Najarro KM, Giesy LE, Khair S, Orlicky DJ, McMahan RH, Kovacs EJ. Reducing the excessive inflammation after burn injury in aged mice by maintaining a healthier intestinal microbiome. FASEB J 2024; 38:e70065. [PMID: 39305117 PMCID: PMC11465428 DOI: 10.1096/fj.202401020r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines. Herein, we use our clinically relevant model of scald burn injury in young and aged mice to determine whether cohousing aged mice with young mice or giving aged mice oral gavage of fecal material from young mice is sufficient to alter the microbiome of the aged mice and protect them from inflammation in the ileum and the lungs. Aged burn injured mice have less DNA expression of Bacteroidetes in the feces and an unhealthy Firmicutes/Bacteroidetes ratio. Both Bacteroidetes and the ratio of these two phyla are restored in aged burn injured by prior cohousing for a month with younger mice but not fecal transfer from young mice. This shift in the microbiome coincides with heightened expression of danger-associated molecular patterns (DAMP), and pro-inflammatory cytokine interleukin-6 (il6) in the ileum and lung of aged, burn injured mice, and heightened antimicrobial peptide camp in the lung. Cohousing reverses DAMP expression in the ileum and lung, and cathelicidin-related antimicrobial peptide protein (camp) in the lung, while fecal transfer heightened DAMPs while reducing camp in the lung, and also increased IL-6 protein in the lungs. These results highlight the importance of the intestinal microbiome in mediating inflammation within the gut-lung axis, giving insights into potential future treatments in the clinic.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin M. Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lauren E. Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel H. McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
| |
Collapse
|
3
|
Hoisington AJ, Choy K, Khair S, Dyamenahalli KU, Najarro KM, Wiktor AJ, Frank DN, Burnham EL, McMahan RH, Kovacs EJ. Recent alcohol intake impacts microbiota in adult burn patients. Alcohol 2024; 118:25-35. [PMID: 38604285 PMCID: PMC11179986 DOI: 10.1016/j.alcohol.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Alcohol use is associated with an increased incidence of negative health outcomes in burn patients due to biological mechanisms that include a dysregulated inflammatory response and increased intestinal permeability. This study used phosphatidylethanol (PEth) in blood, a direct biomarker of recent alcohol use, to investigate associations between a recent history of alcohol use and the fecal microbiota, short chain fatty acids, and inflammatory markers in the first week after a burn injury for nineteen participants. Burn patients were grouped according to PEth levels of low or high and differences in the overall fecal microbial community were observed between these cohorts. Two genera that contributed to the differences and had higher relative abundance in the low PEth burn patient group were Akkermansia, a mucin degrading bacteria that improves intestinal barrier function, and Bacteroides, a potentially anti-inflammatory bacteria. There was no statistically significant difference between levels of short chain fatty acids or intestinal permeability across the two groups. To our knowledge, this study represents the first report to evaluate the effects of burn injury and recent alcohol use on early post burn microbiota dysbiosis, inflammatory response, and levels of short chain fatty acids. Future studies in this field are warranted to better understand the factors associated with negative health outcomes and develop interventional trials.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Veteran Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA; Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, USA
| | - Kevin Choy
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kiran U Dyamenahalli
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin M Najarro
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA
| | - Arek J Wiktor
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel N Frank
- GI and Liver Innate Immune Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ellen L Burnham
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Alcohol Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA
| | - Elizabeth J Kovacs
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Veteran Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Alcohol Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|