1
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Williams JG, Jones RL, Yunger TL, Lahni PM, Yehya N, Varisco BM. Comparison of 16 Pediatric Acute Respiratory Distress Syndrome-Associated Plasma Biomarkers With Changing Lung Injury Severity. Pediatr Crit Care Med 2024; 25:e31-e40. [PMID: 37382480 PMCID: PMC10755079 DOI: 10.1097/pcc.0000000000003311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Pediatric acute respiratory distress syndrome (PARDS) is a source of substantial morbidity and mortality in the PICU, and different plasma biomarkers have identified different PARDS and ARDS subgroups. We have a poor understanding of how these biomarkers change over time and with changing lung injuries. We sought to determine how biomarker levels change over PARDS course, whether they are correlated, and whether they are different in critically ill non-PARDS patients. DESIGN Two-center prospective observational study. SETTING Two quaternary care academic children's hospitals. PATIENTS Subjects under 18 years of age admitted to the PICU who were intubated and met the Second Pediatric Acute Lung Injury Consensus Conference-2 PARDS diagnostic criteria and nonintubated critically ill subjects without apparent lung disease. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Plasma samples were obtained on study days 1, 3, 7, and 14. The levels of 16 biomarkers were measured using a fluorometric bead-based assay. Compared with non-PARDS subjects, on day 1 PARDS subjects had increased concentrations of tumor necrosis factor-alpha, interleukin (IL)-8, interferon-γ, IL17, granzyme B, soluble intercellular adhesion molecule-1 (sICAM1), surfactant protein D, and IL18 but reduced matrix metalloproteinase 9 (MMP-9) concentrations (all p < 0.05). Day 1 biomarker concentrations and PARDS severity were not correlated. Over PARDS course, changes in 11 of the 16 biomarkers positively correlated with changing lung injury with sICAM1 ( R = 0.69, p = 2.2 × 10 -16 ) having the strongest correlation. By Spearman rank correlation of biomarker concentrations in PARDS subjects, we identified two patterns. One had elevations of plasminogen activator inhibitor-1, MMP-9, and myeloperoxidase, and the other had higher inflammatory cytokines. CONCLUSIONS sICAM1 had the strongest positive correlation with worsening lung injury across all study time points suggesting that it is perhaps the most biologically relevant of the 16 analytes. There was no correlation between biomarker concentration on day 1 and day 1 PARDS severity; however, changes in most biomarkers over time positively correlated with changing lung injury. Finally, in day 1 samples, 7 of the 16 biomarkers were not significantly different between PARDS and critically ill non-PARDS subjects. These data highlight the difficulty of using plasma biomarkers to identify organ-specific pathology in critically ill patients.
Collapse
Affiliation(s)
- James G Williams
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Rhonda L Jones
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Toni L Yunger
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Patrick M Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Nadir Yehya
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Brian M Varisco
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
3
|
Wang S, Baldi BG. Editorial: Reviews in pulmonary medicine 2022. Front Med (Lausanne) 2023; 10:1296581. [PMID: 38111696 PMCID: PMC10726117 DOI: 10.3389/fmed.2023.1296581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Affiliation(s)
- Shuibang Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Bruno Guedes Baldi
- Pulmonary Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
4
|
Negrin LL, Hajdu S. Serum Angiopoietin-2 level increase differs between polytraumatized patients with and without central nervous system injuries. Sci Rep 2023; 13:19338. [PMID: 37935720 PMCID: PMC10630405 DOI: 10.1038/s41598-023-45688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Since endothelial cells rapidly release Angiopoietin-2 (Ang-2) in response to vascular injury and inflammatory stimuli, we aimed to investigate if its serum levels increase in polytraumatized patients. Our cohort study evaluated 28 blunt polytrauma survivors (mean age, 38.4 years; median ISS, 34) who were directly admitted to our level I trauma center in 2018. We assessed the serum Ang-2 level at admission and on days 1, 3, 5, 7, and 10 during hospitalization. Ang-2 was released into the circulation immediately after polytrauma. At admission (day 0), it amounted to 8286 ± 5068 pg/mL, three-and-a-half times the reference value of 2337 ± 650 pg/mL assessed in a healthy control group. Subgroup analysis provided a higher mean Ang-2 level in the CNSI group combining all patients suffering a brain or spinal cord injury compared to the non-CNSI group solely on day 0 [11083 ± 5408 pg/mL versus 3963 ± 2062 pg/mL; p < 0.001]. Whereas the mean Ang-2 level increased only in the non-CNSI group from day 0 to day 3 (p = 0.009), the respective curves showed similar continuous decreases starting with day 3. Multivariate logistic regression analysis revealed an association between the Ang-2 day 0 level and the presence of a CNSI (OR = 1.885; p = 0.048). ROC analysis provided a cutoff level of 5352 pg/mL. In our study group, serum Ang-2 levels assessed at admission differed between polytraumatized patients with and without brain or spinal cord injuries. Based on our findings, we consider serum Ang-2 levels an effective biomarker candidate for indicating CNSI in these patients at admission, worthy of further evaluation in large multicenter studies.
Collapse
Affiliation(s)
- Lukas L Negrin
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Stefan Hajdu
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
5
|
Price DR, Benedetti E, Krumsiek J. Authors' Reply. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1337-1338. [PMID: 36064256 PMCID: PMC9439708 DOI: 10.1016/j.ajpath.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Affiliation(s)
- David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York.
| | - Elisa Benedetti
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, New York; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Jan Krumsiek
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, New York; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| |
Collapse
|
6
|
Price DR, Benedetti E, Hoffman KL, Gomez-Escobar L, Alvarez-Mulett S, Capili A, Sarwath H, Parkhurst CN, Lafond E, Weidman K, Ravishankar A, Cheong JG, Batra R, Büyüközkan M, Chetnik K, Easthausen I, Schenck EJ, Racanelli AC, Outtz Reed H, Laurence J, Josefowicz SZ, Lief L, Choi ME, Schmidt F, Borczuk AC, Choi AMK, Krumsiek J, Rafii S. Angiopoietin 2 Is Associated with Vascular Necroptosis Induction in Coronavirus Disease 2019 Acute Respiratory Distress Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1001-1015. [PMID: 35469796 PMCID: PMC9027298 DOI: 10.1016/j.ajpath.2022.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022]
Abstract
Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.
Collapse
Affiliation(s)
- David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Elisa Benedetti
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Katherine L Hoffman
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Luis Gomez-Escobar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York
| | - Sergio Alvarez-Mulett
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York
| | - Allyson Capili
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Christopher N Parkhurst
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Elyse Lafond
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Karissa Weidman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Arjun Ravishankar
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Jin Gyu Cheong
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Richa Batra
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Mustafa Büyüközkan
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Kelsey Chetnik
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Imaani Easthausen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Edward J Schenck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Alexandra C Racanelli
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Hasina Outtz Reed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Jeffrey Laurence
- Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Steven Z Josefowicz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Lindsay Lief
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Mary E Choi
- Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York; Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York; Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Jan Krumsiek
- Institute of Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York.
| | - Shahin Rafii
- Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York; Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
7
|
Zhu J, Li J, Chung CS, Lomas-Neira JL, Ayala A. Patho-Mechanisms for Hemorrhage/Sepsis-Induced Indirect Acute Respiratory Distress Syndrome: A Role for Lung TIE1 and Its Regulation by Neutrophils. Shock 2022; 57:608-615. [PMID: 34907117 PMCID: PMC8916968 DOI: 10.1097/shk.0000000000001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Severe hemorrhage (Hem) has been shown to be causal for the development of extra-pulmonary/indirect acute respiratory distress syndrome (iARDS) and is associated with severe endothelial cell (EC) injury. EC growth factors, Angiopoietin (Ang)-1 and -2, maintain vascular homeostasis via tightly regulated competitive interaction with the tyrosine kinase receptor, Tie2, expressed on ECs. OBJECTIVE Since it has been reported that the orphan receptor, Tie1, may be able to play a role in Ang:Tie2 signaling; we chose to examine Tie1's capacity to alter the lung Ang:Tie2 interaction in response to the sequential insults of shock/sepsis (cecal ligation and puncture [CLP]), culminating in iARDS. METHODS Male mice were subjected to Hem alone or sequential Hem followed 24 hours later by CLP that induces iARDS. Changes in lung and/or plasma levels of Tie1, Tie2, Ang-1, Ang-2, various systemic cytokine/chemokines and indices of lung injury/inflammation were then determined. The role of Tie1 was established by intravenous administration of Tie1 specific or control siRNA at 1 h post-Hem. Alternatively, the contribution of neutrophils was assessed by pre-treating mice with anti-neutrophil antibody depletion 48 h prior to Hem. RESULTS Lung tissue levels of Tie1 expression elevated over the first 6 to 24 h post-Hem alone. Subsequently, we found that treatment of Hem/CLP mice with Tie1-specific siRNA not only decreased Tie1 expression in lung tissue compared to control siRNA, but, suppressed the rise in lung inflammatory cytokines, lung MPO and the rise in lung protein leak. Finally, much as we have previously shown that neutrophil interaction with resident pulmonary vascular ECs contribute significantly to Ang-2 release and EC dysfunction, central to the development of iARDS. Here, we report that depletion of neutrophils also decreased lung tissue Tie1 expression and increased Tie2 activation in Hem/CLP mice. CONCLUSION Together, these data imply that shock-induced increased expression of Tie1 can contribute to EC activation by inhibiting Ang:Tie2 interaction, culminating in EC dysfunction and the development of iARDS.
Collapse
Affiliation(s)
- Jiali Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital & the Alpert School of Medicine at Brown University, Providence, RI 02830, USA
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital & the Alpert School of Medicine at Brown University, Providence, RI 02830, USA
| | - Joanne L. Lomas-Neira
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital & the Alpert School of Medicine at Brown University, Providence, RI 02830, USA
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital & the Alpert School of Medicine at Brown University, Providence, RI 02830, USA
| |
Collapse
|
8
|
Liu Z, Liu D, Wang Z, Zou Y, Wang H, Li X, Zheng D, Zhou G. Association between inflammatory biomarkers and acute respiratory distress syndrome or acute lung injury risk : A systematic review and meta-analysis. Wien Klin Wochenschr 2021; 134:24-38. [PMID: 34860273 PMCID: PMC8813738 DOI: 10.1007/s00508-021-01971-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/16/2021] [Indexed: 11/29/2022]
Abstract
Background The relationship between acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) and levels of certain inflammatory factors remains controversial. The purpose of this meta-analysis was to summarize the available studies evaluating the association between levels of inflammatory factors and ARDS/ALI incidence. Methods We searched the PubMed, EmBase, and Cochrane databases for studies published up to July 2017. For each inflammatory factor, a random effects model was employed to pool results from different studies. Results We identified 63 studies that included 6243 patients in our meta-analysis. Overall, the results indicated that the levels of angiopoietin (ANG)-2 (standard mean difference, SMD: 1.34; P < 0.001), interleukin (IL)-1β (SMD: 0.92; P = 0.012), IL‑6 (SMD: 0.66; P = 0.005), and tumor necrosis factor (TNF)-α (SMD: 0.98; P = 0.001) were significantly higher in patients with ARDS/ALI than in unaffected individuals. No significant differences were observed between patients with ARDS/ALI and unaffected individuals in terms of the levels of IL‑8 (SMD: 0.61; P = 0.159), IL-10 (SMD: 1.10; P = 0.231), and plasminogen activator inhibitor (PAI)-1 (SMD: 0.70; P = 0.060). Conclusions ARDS/ALI is associated with a significantly elevated levels of ANG‑2, IL-1β, IL‑6, and TNF‑α, but not with IL‑8, IL-10, and PAI‑1 levels. Supplementary Information The online version of this article (10.1007/s00508-021-01971-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenfeng Liu
- Department of Respiratory Medicine, Zunyi Honghuagang District People's Hospital, 185 Wanli Road, HongHuagang District, 563000, Guizhou, China.,Department of Respiratory Medicine, the Third Affiliated Hospital of Zunyi Medical University, 98 Fenghuang Road, Huichuan District, 563000, Guizhou, China
| | - Daishun Liu
- Department of Respiratory Medicine, the Third Affiliated Hospital of Zunyi Medical University, 98 Fenghuang Road, Huichuan District, 563000, Guizhou, China
| | - Zhihua Wang
- Department of Respiratory Medicine, Teaching Hospital of Zunyi Medical College, 134 LinJiapo Road, HongHuagang District, 563000, Guizhou, China
| | - Yugang Zou
- Department of Respiratory Medicine, the Third Affiliated Hospital of Zunyi Medical University, 98 Fenghuang Road, Huichuan District, 563000, Guizhou, China
| | - Haixia Wang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, 215153, Jiangsu, China
| | - Xiao Li
- Department of Respiratory Medicine, Teaching Hospital of Zunyi Medical College, 134 LinJiapo Road, HongHuagang District, 563000, Guizhou, China
| | - Deliang Zheng
- Department of Respiratory Medicine, Teaching Hospital of Zunyi Medical College, 134 LinJiapo Road, HongHuagang District, 563000, Guizhou, China
| | - Guoqi Zhou
- Department of Respiratory Medicine, Teaching Hospital of Zunyi Medical College, 134 LinJiapo Road, HongHuagang District, 563000, Guizhou, China.
| |
Collapse
|
9
|
Bonnesen B, Jensen JUS, Jeschke KN, Mathioudakis AG, Corlateanu A, Hansen EF, Weinreich UM, Hilberg O, Sivapalan P. Management of COVID-19-Associated Acute Respiratory Failure with Alternatives to Invasive Mechanical Ventilation: High-Flow Oxygen, Continuous Positive Airway Pressure, and Noninvasive Ventilation. Diagnostics (Basel) 2021. [DOI: doi.org/10.3390/diagnostics11122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Patients admitted to hospital with coronavirus disease 2019 (COVID-19) may develop acute respiratory failure (ARF) with compromised gas exchange. These patients require oxygen and possibly ventilatory support, which can be delivered via different devices. Initially, oxygen therapy will often be administered through a conventional binasal oxygen catheter or air-entrainment mask. However, when higher rates of oxygen flow are needed, patients are often stepped up to high-flow nasal cannula oxygen therapy (HFNC), continuous positive airway pressure (CPAP), bilevel positive airway pressure (BiPAP), or invasive mechanical ventilation (IMV). BiPAP, CPAP, and HFNC may be beneficial alternatives to IMV for COVID-19-associated ARF. Current evidence suggests that when nasal catheter oxygen therapy is insufficient for adequate oxygenation of patients with COVID-19-associated ARF, CPAP should be provided for prolonged periods. Subsequent escalation to IMV may be implemented if necessary.
Collapse
|
10
|
Bonnesen B, Jensen JUS, Jeschke KN, Mathioudakis AG, Corlateanu A, Hansen EF, Weinreich UM, Hilberg O, Sivapalan P. Management of COVID-19-Associated Acute Respiratory Failure with Alternatives to Invasive Mechanical Ventilation: High-Flow Oxygen, Continuous Positive Airway Pressure, and Noninvasive Ventilation. Diagnostics (Basel) 2021; 11:2259. [PMID: 34943496 PMCID: PMC8700515 DOI: 10.3390/diagnostics11122259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Patients admitted to hospital with coronavirus disease 2019 (COVID-19) may develop acute respiratory failure (ARF) with compromised gas exchange. These patients require oxygen and possibly ventilatory support, which can be delivered via different devices. Initially, oxygen therapy will often be administered through a conventional binasal oxygen catheter or air-entrainment mask. However, when higher rates of oxygen flow are needed, patients are often stepped up to high-flow nasal cannula oxygen therapy (HFNC), continuous positive airway pressure (CPAP), bilevel positive airway pressure (BiPAP), or invasive mechanical ventilation (IMV). BiPAP, CPAP, and HFNC may be beneficial alternatives to IMV for COVID-19-associated ARF. Current evidence suggests that when nasal catheter oxygen therapy is insufficient for adequate oxygenation of patients with COVID-19-associated ARF, CPAP should be provided for prolonged periods. Subsequent escalation to IMV may be implemented if necessary.
Collapse
Affiliation(s)
- Barbara Bonnesen
- Department of Medicine, Section of Respiratory Medicine, Herlev and Gentofte Hospital, University of Copenhagen, 2200 Copenhagen, Denmark; (B.B.); (J.-U.S.J.)
| | - Jens-Ulrik Stæhr Jensen
- Department of Medicine, Section of Respiratory Medicine, Herlev and Gentofte Hospital, University of Copenhagen, 2200 Copenhagen, Denmark; (B.B.); (J.-U.S.J.)
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Klaus Nielsen Jeschke
- Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark; (K.N.J.); (E.F.H.)
| | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester M23 9LT, UK;
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Alexandru Corlateanu
- Department of Respiratory Medicine, State University of Medicine and Pharmacy “Nicolae Testemitanu”, 2004 Chisinau, Moldova;
| | - Ejvind Frausing Hansen
- Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark; (K.N.J.); (E.F.H.)
| | - Ulla Møller Weinreich
- Department of Respiratory Medicine, Aalborg University Hospital, University of Aalborg, 9100 Aalborg, Denmark;
- The Clinical Institute, Aalborg University, 9220 Aalborg, Denmark
| | - Ole Hilberg
- Department of Medicine, Little Belt Hospital, 7100 Vejle, Denmark;
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Pradeesh Sivapalan
- Department of Medicine, Section of Respiratory Medicine, Herlev and Gentofte Hospital, University of Copenhagen, 2200 Copenhagen, Denmark; (B.B.); (J.-U.S.J.)
| |
Collapse
|
11
|
Felsenstein S, Reiff AO. A hitchhiker's guide through the COVID-19 galaxy. Clin Immunol 2021; 232:108849. [PMID: 34563684 PMCID: PMC8461017 DOI: 10.1016/j.clim.2021.108849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023]
Abstract
Numerous reviews have summarized the epidemiology, pathophysiology and the various therapeutic aspects of Coronavirus disease 2019 (COVID-19), but a practical guide on "how to treat whom with what and when" based on an understanding of the immunological background of the disease stages remains missing. This review attempts to combine the current knowledge about the immunopathology of COVID-19 with published evidence of available and emerging treatment options. We recognize that the information about COVID-19 and its treatment is rapidly changing, but hope that this guide offers those on the frontline of this pandemic an understanding of the host response in COVID-19 patients and supports their ongoing efforts to select the best treatments tailored to their patient's clinical status.
Collapse
Affiliation(s)
- Susanna Felsenstein
- University of Liverpool, Faculty of Health and Life Sciences, Brownlow Hill, Liverpool, L69 3GB, United Kingdom.
| | - Andreas Otto Reiff
- Arthritis & Rheumatic Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States.
| |
Collapse
|
12
|
Li F, Yin R, Guo Q. Circulating angiopoietin-2 and the risk of mortality in patients with acute respiratory distress syndrome: a systematic review and meta-analysis of 10 prospective cohort studies. Ther Adv Respir Dis 2021; 14:1753466620905274. [PMID: 32043429 PMCID: PMC7013116 DOI: 10.1177/1753466620905274] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Angiopoietin-2 (Ang-2), as one of the ligands of endothelial receptor Tie2, is known to be significant for vessel maturation and stabilization after birth. Previous studies showed the relationship between Ang-2 level and the risk of mortality in patients with acute respiratory distress syndrome (ARDS). However, the link between circulating Ang-2 and the risk of mortality in patients with ARDS varied in different investigations. RESULTS We performed a systematic review and meta-analysis of all available cohort studies regarding the association between baseline circulating Ang-2 and mortality in patients with ARDS. Among the 10 eligible studies, pooled odds ratio (OR) showed that high Ang-2 level contributed to ARDS mortality [OR = 1.56, 95% confidence interval (CI): 1.30-1.89, I2 = 76.2%]. Stratified analysis revealed that higher circulating Ang-2 was related to a 30% higher risk in the high-quality scores group (OR = 1.68, 95% CI: 1.33-2.68, I2 = 62.4%). The I2 of the bad compliance group decreased from 76.2% to 8.5%, which suggested that compliance is a significant source of heterogeneity. This association may be blunted by potential bias, although the results was not meaningfully changed by omitting only one study at a time. Further subgroup analysis and meta-regression support that compliance of patients also affects the results significantly, compared with the publication year, follow-up duration, the samples, or population characteristics. CONCLUSION Participants with higher baseline Ang-2 were at a higher risk for future risk of mortality in patients with ARDS. Higher circulating Ang-2 levels could independently predict the risk of mortality in patients with ARDS. However, further large scale prospective cohorts or even interventional studies are warranted to evaluate the diagnostic power of Ang-2 and its causative role on ARDS outcome. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Fengyuan Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rulan Yin
- Department of Nursing, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiang Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 899# Pinghai Road, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
13
|
Hu J, Liu L, Zeng X, Wang K, Wang H, Zeng Z, Cao Y, Gao L, Cheng M, Wang T, Wen F. Prognostic Value of Angiopoietin-like 4 in Patients with Acute Respiratory Distress Syndrome. Shock 2021; 56:403-411. [PMID: 33900712 DOI: 10.1097/shk.0000000000001734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that plays an important role in endothelial injury and the inflammatory response. Experimental models have implicated ANGPTL4 in acute respiratory distress syndrome (ARDS), but its impact on the progression of ARDS is unclear. METHODS Paired bronchoalveolar lavage fluid (BALF) and serum samples were obtained from patients with ARDS (n = 56) within 24 h of diagnosis and from control subjects (n = 32). ANGPTL4, angiopoietin-2, interleukin (IL)-6, and TNF-α levels were measured by magnetic Luminex assay. BALF albumin (BA) and serum albumin (SA) were evaluated by enzyme-linked immunosorbent assay. RESULTS BALF and serum ANGPTL4 concentrations were higher in patients with ARDS than in controls and were even higher in non-survivors than in survivors. The serum ANGPTL4 level was higher in indirect (extrapulmonary) ARDS than in direct (pulmonary) ARDS. Furthermore, BALF and serum ANGPTL4 levels correlated well with angiopoietin-2, IL-6, and TNF-α levels in BALF and serum. BALF ANGPTL4 was positively correlated with the BA/SA ratio (an indicator of pulmonary vascular permeability), and serum ANGPTL4 was associated with the severity of multiple organ dysfunction syndrome based on SOFA and APACHE II scores. Moreover, serum ANGPTL4 was better able to predict 28-day ARDS-related mortality (AUC 0.746, P < 0.01) than the APACHE II score or PaO2/FiO2 ratio. Serum ANGPTL4 was identified as an independent risk factor for mortality in a univariate Cox regression model (P < 0.001). CONCLUSION ANGPTL4 levels were elevated in patients with ARDS and significantly correlated with disease severity and mortality. ANGPTL4 may be a novel prognostic biomarker in ARDS.
Collapse
Affiliation(s)
- Jun Hu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xianghu Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ke Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yufang Cao
- Department of Critical Care Medicine, Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Lijuan Gao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mengxin Cheng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Sivapalan P, Bonnesen B, Jensen JU. Novel Perspectives Regarding the Pathology, Inflammation, and Biomarkers of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 22:E205. [PMID: 33379178 PMCID: PMC7796016 DOI: 10.3390/ijms22010205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/29/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammation of the lung resulting from damage to the alveolar-capillary membrane, and it is diagnosed using a combination of clinical and physiological variables. ARDS develops in approximately 10% of hospitalised patients with pneumonia and has a mortality rate of approximately 40%. Recent research has identified several biomarkers associated with ARDS pathophysiology, and these may be useful for diagnosing and monitoring ARDS. They may also highlight potential therapeutic targets. This review summarises our current understanding of those clinical biomarkers: (1) biomarkers of alveolar and bronchiolar injury, (2) biomarkers of endothelial damage and coagulation, and (3) biomarkers for treatment responses.
Collapse
Affiliation(s)
- Pradeesh Sivapalan
- Respiratory Medicine Section, Department of Internal Medicine, Herlev and Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark; (B.B.); (J.-U.J.)
| | | | | |
Collapse
|
15
|
Vassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE. Endothelial Damage in Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21228793. [PMID: 33233715 PMCID: PMC7699909 DOI: 10.3390/ijms21228793] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
The pulmonary endothelium is a metabolically active continuous monolayer of squamous endothelial cells that internally lines blood vessels and mediates key processes involved in lung homoeostasis. Many of these processes are disrupted in acute respiratory distress syndrome (ARDS), which is marked among others by diffuse endothelial injury, intense activation of the coagulation system and increased capillary permeability. Most commonly occurring in the setting of sepsis, ARDS is a devastating illness, associated with increased morbidity and mortality and no effective pharmacological treatment. Endothelial cell damage has an important role in the pathogenesis of ARDS and several biomarkers of endothelial damage have been tested in determining prognosis. By further understanding the endothelial pathobiology, development of endothelial-specific therapeutics might arise. In this review, we will discuss the underlying pathology of endothelial dysfunction leading to ARDS and emerging therapies. Furthermore, we will present a brief overview demonstrating that endotheliopathy is an important feature of hospitalised patients with coronavirus disease-19 (COVID-19).
Collapse
Affiliation(s)
- Alice G. Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
- 2nd Department of Critical Care, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece
- Correspondence: or ; Tel.: +30-2107-235-521
| |
Collapse
|
16
|
Dong X, Zhu Z, Wei Y, Ngo D, Zhang R, Du M, Huang H, Lin L, Tejera P, Su L, Chen F, Ahasic AM, Thompson BT, Meyer NJ, Christiani DC. Plasma Insulin-like Growth Factor Binding Protein 7 Contributes Causally to ARDS 28-Day Mortality: Evidence From Multistage Mendelian Randomization. Chest 2020; 159:1007-1018. [PMID: 33189655 DOI: 10.1016/j.chest.2020.10.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND ARDS is a devastating syndrome with heterogeneous subtypes, but few causal biomarkers have been identified. RESEARCH QUESTION Would multistage Mendelian randomization identify new causal protein biomarkers for ARDS 28-day mortality? STUDY DESIGN AND METHODS Three hundred moderate to severe ARDS patients were selected randomly from the Molecular Epidemiology of ARDS cohort for proteomics analysis. Orthogonal projections to latent structures discriminant analysis was applied to detect the association between proteins and ARDS 28-day mortality. Candidate proteins were analyzed using generalized summary data-based Mendelian randomization (GSMR). Protein quantitative trait summary statistics were retrieved from the Efficiency and safety of varying the frequency of whole blood donation (INTERVAL) study (n = 2,504), and a genome-wide association study for ARDS was conducted from the Identification of SNPs Predisposing to Altered Acute Lung Injury Risk (iSPAAR) consortium study (n = 534). Causal mediation analysis detected the role of platelet count in mediating the effect of protein on ARDS prognosis. RESULTS Plasma insulin-like growth factor binding protein 7 (IGFBP7) moderately increased ARDS 28-day mortality (OR, 1.11; 95% CI, 1.04-1.19; P = .002) per log2 increase. GSMR analysis coupled with four other Mendelian randomization methods revealed IGFBP7 as a causal biomarker for ARDS 28-day mortality (OR, 2.61; 95% CI, 1.33-5.13; P = .005). Causal mediation analysis indicated that the association between IGFBP7 and ARDS 28-day mortality is mediated by platelet count (OR, 1.03; 95% CI, 1.02-1.04; P = .01). INTERPRETATION We identified plasma IGFBP7 as a novel causal protein involved in the pathogenesis of ARDS 28-day mortality and platelet function in ARDS, a topic for further experimental and clinical investigation.
Collapse
Affiliation(s)
- Xuesi Dong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Zhaozhong Zhu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yongyue Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Debby Ngo
- Pulmonary, Critical Care & Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Ruyang Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mulong Du
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Huang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijuan Lin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Paula Tejera
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Amy M Ahasic
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Section of Pulmonary and Critical Care Medicine, Norwalk Hospital, Nuvance Health, Norwalk, CT
| | - B Taylor Thompson
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
17
|
Significance of Serum Angiopoietin-2 in Patients with Hemorrhage in Adult-Onset Moyamoya Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8209313. [PMID: 32802878 PMCID: PMC7424502 DOI: 10.1155/2020/8209313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/18/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
Background Moyamoya disease (MMD) is a progressive occlusive cerebrovascular disease that is characterized by abnormal angiogenesis at the base of the brain. This pathological abnormal angiogenesis is susceptible to disturbances, including spontaneous hemorrhage and vasogenic edema. However, the underlying mechanisms of pathological angiogenesis and occurrence of hemorrhage are unclear. Angiopoietins play a fundamental role in the pathophysiology of central nervous system disorders in angiogenesis. This study was aimed at examining whether angiopoietins are associated with formation of abnormal collateral vessels and the occurrence of hemorrhage in adult-onset moyamoya disease (HMMD). Methods A total of 27 consecutive adult patients with HMMD were enrolled from June 2011 to May 2017. Serum levels of angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) were examined by enzyme-linked immunosorbent assay. Patients with HMMD were compared with those with spontaneous hemorrhage (controls) and nonhemorrhagic-onset MMD (NHMMD). Results Serum Ang-2 levels were significantly higher in patients with adult HMMD than in those with spontaneous hemorrhage and NHMMD. The ROC curve identified that a baseline serum Ang-2 level > 1230 ng/ml may be associated with adult HMMD with 88.39% sensitivity and 70.37% specificity (area under the curve (AUC), 0.89; 95% CI, 0.808-0.973; P < 0.001). Moreover, serum Ang-2 levels were significantly elevated in stages II, III, and IV. In subgroup analysis of a high and low degree of moyamoya vessels, serum Ang-2 levels were significantly higher in the high moyamoya vessel group than in the low moyamoya vessel group. Serum Ang-2 levels were also significantly higher in the low moyamoya vessel group compared with the control group. Serum Ang-1 levels were not significantly different among the groups. Conclusion Increased serum Ang-2 levels may contribute to pathological abnormal angiogenesis and/or to the instability of vascular structure and function, thus causing brain hemorrhage in adult HMMD.
Collapse
|
18
|
Angiopoietin Level Trajectories in Toddlers With Severe Sepsis and Septic Shock and Their Effect on Capillary Endothelium. Shock 2020; 51:298-305. [PMID: 30286031 DOI: 10.1097/shk.0000000000001172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Angiopoietins are postulated diagnostic biomarkers in children and adults with severe sepsis and septic shock. The diagnostic value of angiopoietins in children less than 5 years old has not been established, nor has their effect on permeability in the capillary microvasculature. We aim to determine if levels of angiopoietin-1 or -2 (angpt-1, -2) are diagnostic for severe sepsis/shock in young children and whether they affect the permeability of cultured human dermal microvascular endothelial cells (HDMEC). DESIGN Prospective observational study of children < 5 years old. Patients were classified as non-systemic inflammatory response syndrome (SIRS), SIRS/sepsis and severe sepsis/septic shock. SETTING Tertiary care pediatric hospitals. PATIENTS Critically ill children. INTERVENTIONS None. MEASUREMENTS Plasma angpt-1 and -2 levels were measured with enzyme-linked immunoassays. Expression of angpt-2 in endothelial cells was assessed with quantitative polymerase chain reaction. Permeability changes in cultured HDMECs were assessed with transendothelial electrical resistance measurements. RESULTS Angpt-1 levels were significantly higher in younger children compared with levels found in previous study of older children across disease severity (all P < 0.001). Angpt-2 was significantly higher in this cohort with severe sepsis/septic shock compared with children without SIRS and SIRS/sepsis (all P < 0.003). Angpt-2/1 ratio was also elevated in children with severe sepsis/septic shock but an order of magnitude less than older children (P < 0.02, P = 0.002). Angpt-1 and -2 did not affect basal HDMEC permeability or modulate leak in isolation or in the presence of tumor necrosis factor (TNF). CONCLUSIONS Angpt-2 levels and the angpt-2/1 ratio are appropriate diagnostic biomarkers of severe sepsis/septic shock in children less than 5 years old. Neither angpt-1 nor -2 affects basal HDMEC permeability alone or modulates TNF induced capillary leak.
Collapse
|
19
|
Patry C, Doniga T, Lenz F, Viergutz T, Weiss C, Tönshoff B, Kalenka A, Yard B, Krebs J, Schaible T, Beck G, Rafat N. Increased mobilization of mesenchymal stem cells in patients with acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation. PLoS One 2020; 15:e0227460. [PMID: 31986159 PMCID: PMC6984734 DOI: 10.1371/journal.pone.0227460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/18/2019] [Indexed: 01/31/2023] Open
Abstract
Background The acute respiratory distress syndrome (ARDS) is characterized by pulmonary epithelial and endothelial barrier dysfunction and injury. In severe forms of ARDS, extracorporeal membrane oxygenation (ECMO) is often the last option for life support. Endothelial progenitor (EPC) and mesenchymal stem cells (MSC) can regenerate damaged endothelium and thereby improve pulmonary endothelial dysfunction. However, we still lack sufficient knowledge about how ECMO might affect EPC- and MSC-mediated regenerative pathways in ARDS. Therefore, we investigated if ECMO impacts EPC and MSC numbers in ARDS patients. Methods Peripheral blood mononuclear cells from ARDS patients undergoing ECMO (n = 16) and without ECMO support (n = 12) and from healthy volunteers (n = 16) were isolated. The number and presence of circulating EPC and MSC was detected by flow cytometry. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) were determined. Results In the ECMO group, MSC subpopulations were higher by 71% compared to the non-ECMO group. Numbers of circulating EPC were not significantly altered. During ECMO, VEGF and Ang2 serum levels remained unchanged compared to the non-ECMO group (p = 0.16), but Ang2 serum levels in non-survivors of ARDS were significantly increased by 100% (p = 0.02) compared to survivors. Conclusions ECMO support in ARDS is specifically associated with an increased number of circulating MSC, most likely due to enhanced mobilization, but not with a higher numbers of EPC or serum concentrations of VEGF and Ang2.
Collapse
Affiliation(s)
- Christian Patry
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Thalia Doniga
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Franziska Lenz
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tim Viergutz
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Armin Kalenka
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Hospital Bergstraße, Heppenheim, Germany
| | - Benito Yard
- Department of Medicine V, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jörg Krebs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Grietje Beck
- Department of Anaesthesiology and Intensive Care Medicine, Dr. Horst-Schmidt Clinic, Wiesbaden, Germany
| | - Neysan Rafat
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
- * E-mail:
| |
Collapse
|
20
|
Du Z, Tang CH, Li LJ, Kang L, Zhao J, Jin L, Wang CQ, Su CM. Angiopoietin-2 gene polymorphisms are biomarkers for the development and progression of colorectal cancer in Han Chinese. Int J Med Sci 2020; 17:97-102. [PMID: 31929743 PMCID: PMC6945552 DOI: 10.7150/ijms.37675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in Han Chinese and is characterized by low rates of early diagnosis and poor survival rates. Angiopoietin-2 (Ang2), an endothelial tyrosine kinase, is involved in CRC progression, but little is known about the association between single nucleotide polymorphisms (SNPs) and diagnosis or prognosis of CRC. This study reports on the association between 5 SNPs of the Angpt2 gene (rs2442598, rs734701, rs1823375, 11137037, and rs12674822) and CRC susceptibility as well as clinical outcomes in 379 patients with CRC and in 1,043 cancer-free healthy controls. Carriers of the CG allele at rs1823375 and those with the GT+TT allele of the variant rs12674822 were at greater risk of CRC than their respective wild-type counterparts. Moreover, carriers of the GT or GT+TT allele in rs12674822 were significantly more likely to have tumor involvement in both the colon and rectum compared with wild-type (GG) carriers, while 5-year progression-free survival was also significantly worse in those carrying the GT+TT allele in rs12674822 compared with wild-type carriers. Our study is the first to describe correlations between Angpt2 polymorphisms and CRC development and progression in people of Chinese Han ethnicity.
Collapse
Affiliation(s)
- Zhang Du
- Department of Anorectal Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Li-Jun Li
- Department of Anorectal Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Le Kang
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jin Zhao
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Lulu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Jagrosse ML, Dean DA, Rahman A, Nilsson BL. RNAi therapeutic strategies for acute respiratory distress syndrome. Transl Res 2019; 214:30-49. [PMID: 31401266 PMCID: PMC7316156 DOI: 10.1016/j.trsl.2019.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS), replacing the clinical term acute lung injury, involves serious pathophysiological lung changes that arise from a variety of pulmonary and nonpulmonary injuries and currently has no pharmacological therapeutics. RNA interference (RNAi) has the potential to generate therapeutic effects that would increase patient survival rates from this condition. It is the purpose of this review to discuss potential targets in treating ARDS with RNAi strategies, as well as to outline the challenges of oligonucleotide delivery to the lung and tactics to circumvent these delivery barriers.
Collapse
Affiliation(s)
| | - David A Dean
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Arshad Rahman
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York.
| |
Collapse
|
22
|
Carlton EF, Flori HR. Biomarkers in pediatric acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:505. [PMID: 31728358 DOI: 10.21037/atm.2019.09.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a heterogenous process resulting in a severe acute lung injury. A single indicator does not exist for PARDS diagnosis. Rather, current diagnosis requires a combination of clinical and physiologic variables. Similarly, there is little ability to predict the path of disease, identify those at high risk of poor outcomes or target therapies specific to the underlying pathophysiology. Biomarkers, a measured indicator of a pathologic state or response to intervention, have been studied in PARDS due to their potential in diagnosis, prognostication and measurement of therapeutic response. Additionally, PARDS biomarkers show great promise in furthering our understanding of specific subgroups or endotypes in this highly variable disease, and thereby predict which patients may benefit and which may be harmed by PARDS specific therapies. In this chapter, we review the what, when, why and how of biomarkers in PARDS and discuss future directions in this quickly changing landscape.
Collapse
Affiliation(s)
- Erin F Carlton
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Gutbier B, Neuhauß AK, Reppe K, Ehrler C, Santel A, Kaufmann J, Scholz M, Weissmann N, Morawietz L, Mitchell TJ, Aliberti S, Hippenstiel S, Suttorp N, Witzenrath M. Prognostic and Pathogenic Role of Angiopoietin-1 and -2 in Pneumonia. Am J Respir Crit Care Med 2019; 198:220-231. [PMID: 29447449 DOI: 10.1164/rccm.201708-1733oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE During pneumonia, pathogen-host interaction evokes inflammation and lung barrier dysfunction. Tie2 activation by angiopoietin-1 reduces, whereas Tie2 blockade by angiopoietin-2 increases, inflammation and permeability during sepsis. The role of angiopoietin-1/-2 in pneumonia remains unidentified. OBJECTIVES To investigate the prognostic and pathogenic impact of angiopoietins in regulating pulmonary vascular barrier function and inflammation in bacterial pneumonia. METHODS Serum angiopoietin levels were quantified in pneumonia patients of two independent cohorts (n = 148, n = 395). Human postmortem lung tissue, pneumolysin- or angiopoietin-2-stimulated endothelial cells, isolated perfused and ventilated mouse lungs, and mice with pneumococcal pneumonia were investigated. MEASUREMENTS AND MAIN RESULTS In patients with pneumonia, decreased serum angiopoietin-1 and increased angiopoietin-2 levels were observed as compared with healthy subjects. Higher angiopoietin-2 serum levels were found in patients with community-acquired pneumonia who died within 28 days of diagnosis compared with survivors. Receiver operating characteristic analysis revealed improved prognostic accuracy of CURB-65 for 28-day survival, intensive care treatment, and length of hospital stay if combined with angiopoietin-2 serum levels. In vitro, pneumolysin enhanced endothelial angiopoietin-2 release, angiopoietin-2 increased endothelial permeability, and angiopoietin-1 reduced pneumolysin-evoked endothelial permeability. Ventilated and perfused lungs of mice with angiopoietin-2 knockdown showed reduced permeability on pneumolysin stimulation. Increased pulmonary angiopoietin-2 and reduced angiopoietin-1 mRNA expression were observed in Streptococcus pneumoniae-infected mice. Finally, angiopoietin-1 therapy reduced inflammation and permeability in murine pneumonia. CONCLUSIONS These data suggest a central role of angiopoietin-1/-2 in pneumonia-evoked inflammation and permeability. Increased angiopoietin-2 serum levels predicted mortality and length of hospital stay, and angiopoietin-1 may provide a therapeutic target for severe pneumonia.
Collapse
Affiliation(s)
- Birgitt Gutbier
- 1 Division of Pulmonary Inflammation and.,2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne-Kathrin Neuhauß
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katrin Reppe
- 1 Division of Pulmonary Inflammation and.,2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin Ehrler
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - Markus Scholz
- 4 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Norbert Weissmann
- 5 Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Lars Morawietz
- 6 Pathology, Healthcare Center Fuerstenberg-Karree, Berlin, Germany
| | - Timothy J Mitchell
- 7 Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stefano Aliberti
- 8 Department of Pathophysiology and Transplantation, University of Milan, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; and
| | - Stefan Hippenstiel
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,9 CAPNETZ STIFTUNG, Hannover, Germany
| | - Martin Witzenrath
- 1 Division of Pulmonary Inflammation and.,2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,9 CAPNETZ STIFTUNG, Hannover, Germany
| | | |
Collapse
|
24
|
Tsai TY, Tu KH, Tsai FC, Nan YY, Fan PC, Chang CH, Tian YC, Fang JT, Yang CW, Chen YC. Prognostic value of endothelial biomarkers in refractory cardiogenic shock with ECLS: a prospective monocentric study. BMC Anesthesiol 2019; 19:73. [PMID: 31092199 PMCID: PMC6521489 DOI: 10.1186/s12871-019-0747-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) is often used in critical patients with severe myocardial failure. However, the mortality rate of patients on ECMO is often high. Recent studies have suggested that endothelial activation with subsequent vascular barrier breakdown is a critical pathogenic mechanism of organ damage and is related to the outcome of critical illness. This study aimed to determine whether endothelial biomarkers can be served as prognostic factors for the outcome of patients on ECMO. METHODS This prospective study enrolled 23 critically ill patients on veno-arterial ECMO in the intensive care units of a tertiary care hospital between March 2014 and February 2015. Serum samples were tested for thrombomodulin, angiopoietin (Ang)-1, Ang-2, and vascular endothelial growth factor (VEGF). Demographic, clinical, and laboratory data were also collected. RESULTS The overall mortality rate was 56.5%. The combination of Ang-2 at the time of ECMO support (day 0) and VEGF at day 2 had the ability to discriminate mortality (area under receiver operating characteristic curve [AUROC], 0.854; 95% confidence interval: 0.645-0.965). CONCLUSIONS In this study, we found that the combination of Ang-2 at day 0 and VEGF at day 2 was a modest model for mortality discrimination in this group of patients.
Collapse
Affiliation(s)
- Tsung-Yu Tsai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Hua Tu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Feng-Chun Tsai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiovascular Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Yun Nan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiovascular Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Chun Fan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hsiang Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Chung Tian
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ji-Tseng Fang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Wei Yang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No.222, Maijin Road, Anle District, Keelung, Taiwan.
| |
Collapse
|
25
|
Walborn A, Rondina M, Mosier M, Fareed J, Hoppensteadt D. Endothelial Dysfunction Is Associated with Mortality and Severity of Coagulopathy in Patients with Sepsis and Disseminated Intravascular Coagulation. Clin Appl Thromb Hemost 2019; 25:1076029619852163. [PMID: 31140293 PMCID: PMC6714948 DOI: 10.1177/1076029619852163] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023] Open
Abstract
The role of the endothelium in sepsis-associated disseminated intravascular coagulation (DIC) is multifaceted and may contribute substantially to disease severity and outcome. The purpose of this study was to quantify measures of endothelial function, including markers of activation (endocan, Angiopoietin-2 [Ang-2], and von Willebrand Factor), endogenous anticoagulants (tissue factor pathway inhibitor and protein C), and damage-associated factors (High Mobility Group Box 1 [HMGB-1]) in the plasma of patients with sepsis and DIC, and to determine the relationship of these factors with severity of illness and outcome. Plasma samples were collected from 103 adult patients with sepsis within 48 hours of intensive care unit admission. Biomarker levels were measured using commercially available, standardized methods. Disseminated intravascular coagulation was diagnosed according to the International Society of Thrombosis and Hemostasis scoring algorithm. Twenty-eight-day mortality was used as the primary end point. In this study, endothelial damage and dysfunction were associated with the severity of coagulopathy and mortality in DIC patients. Loss of the endogenous anticoagulant protein C and elevation in the vascular regulator Ang-2 were associated with the development of overt DIC. In addition to Ang-2 and protein C, endocan, a biomarker of endothelial activation, and HMGB-1, a mediator of endothelial damage and activation, were significantly associated with mortality. This underscores the contribution of the endothelium to the pathogenesis of sepsis-associated DIC.
Collapse
Affiliation(s)
- Amanda Walborn
- Departments of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Matthew Rondina
- Department of Internal Medicine and the Molecular Medicine Program, University of Utah and the GRECC, George E. Wahlen VAMC, Salt Lake City, UT, USA
| | - Michael Mosier
- General Surgery, The Oregon Clinic, Surgical and Burn Specialists at Emanuel, Portland, OR, USA
| | - Jawed Fareed
- Departments of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- Departments of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
26
|
König M, Nentwig A, Marti E, Mirkovitch J, Adamik KN, Schuller S. Evaluation of plasma angiopoietin-2 and vascular endothelial growth factor in healthy dogs and dogs with systemic inflammatory response syndrome or sepsis. J Vet Intern Med 2018; 33:569-577. [PMID: 30575998 PMCID: PMC6430886 DOI: 10.1111/jvim.15369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Angiopoietin‐2 (Ang‐2) and vascular endothelial growth factor (VEGF) are regulators of endothelial permeability. Objective Plasma concentrations of Ang‐2 and VEGF are increased in dogs with systemic inflammatory response syndrome (SIRS) and sepsis and are correlated with disease severity and outcome. Animals Healthy dogs (n = 18) and client‐owned dogs with SIRS (n = 34) or sepsis (n = 25). Methods Prospective observational study. Ang‐2 and VEGF concentrations in admission plasma samples were compared between healthy dogs and dogs with SIRS or sepsis, and between survivors and non‐survivors. Correlations with the acute patient physiologic and laboratory evaluation (APPLEfast) disease severity score were examined. Results Median Ang‐2 was significantly higher in dogs with SIRS (19.3; interquartile range [IQR]: 8.6‐25.7 ng/mL) and sepsis (21.2; IQR: 10.3‐30.1 ng/mL) compared to healthy dogs (7.6; IQR: 6.7‐9.8 ng/mL). Ang‐2 was significantly higher in non‐survivors (24.1; IQR: 11.9‐50.0 ng/mL) than survivors (10.2; IQR: 7.2‐21.5 ng/mL) but did not correlate with the APPLEfast score. Admission Ang‐2 predicted negative outcome in dogs with SIRS and sepsis with reasonable accuracy (area under the curve [AUC]: 0.75, confidence interval [CI]: 0.59‐0.85; sensitivity: 0.5, CI: 0.29‐0.71; specificity: 0.87, CI: 0.75‐0.95); differentiation between sepsis and SIRS was poor (AUC: 0.58). Plasma VEGF was significantly higher in dogs with sepsis (45; IQR: 14‐107.5 pg/mL) than in dogs with SIRS (3.3; IQR: 0‐35.6 pg/mL) or healthy dogs (0; IQR: 0 pg/mL; P = 0.008). VEGF was significantly (P = .0004) higher in non‐survivors (34.5; IQR: 0‐105.7 pg/mL) than in survivors (0; IQR: 0‐55.2 pg/mL). The ability of VEGF to predict a negative outcome was poor. Conclusions and Clinical Importance Ang‐2 may represent a useful additional prognostic marker in dogs with SIRS.
Collapse
Affiliation(s)
- Maya König
- Division of Small Animal Internal Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | | | - Eliane Marti
- Division of Experimental Clinical Research, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Jelena Mirkovitch
- Division of Experimental Clinical Research, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Katja-Nicole Adamik
- Emergency and Critical Care Group, Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Simone Schuller
- Division of Small Animal Internal Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Li S, Zhong M, Yuan Y, Zhang L. Differential roles of p38 MAPK and ERK1/2 in angiopoietin-2-mediated rat pulmonary microvascular endothelial cell apoptosis induced by lipopolysaccharide. Exp Ther Med 2018; 16:4729-4736. [PMID: 30546397 DOI: 10.3892/etm.2018.6810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
Angiopoietin-2 (Ang-2) is a Tie-2 ligand that destabilizes vascular structures, enhances vascular permeability and induces vascular regression and endothelial cell apoptosis. Although there is evidence for the involvement of the Ang/Tie2 axis in acute lung injury (ALI), the underlying mechanisms involved in Ang-2-induced cell apoptosis are not well understood. In this study, whether Ang-2 contributes to microvascular endothelial cell injury and mediates lipopolysaccharide (LPS)-induced endothelial cell apoptosis and its associated signaling pathways was investigated. Exposure of rat pulmonary microvascular endothelial cells (RPMVECs) to LPS, Ang-2 and related inhibitors was performed to measure the expression levels of Ang-2, the activation of mitogen-activated protein kinases (MAPKs), the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, and expression of the apoptosis-related proteins Bax and Bcl-2 using western blotting, reverse transcription-quantitative polymerase chain reaction, flow cytometry and fluorescence microscopy. The expression of Ang-2 in the RPMVECs was increased by LPS independent of time. The phosphorylation of p38 MAPK and ERK1/2 was significantly upregulated and the activation of apoptosis-related proteins Bax and Bcl was mediated by Ang-2. In addition, inhibition of the p38 pathway by SB203580 attenuated the Ang-2-mediated cell apoptosis, but inhibition of the ERK1/2 pathway by PD98059 exerted an anti-apoptotic effect against Ang-2. In conclusion, LPS-induced apoptosis is partly mediated via stimulation of p38 and ERK1/2 signaling pathways, where Ang-2 acts an inflammation-related factor to participate in the course of cell apoptosis in RPMVECs.
Collapse
Affiliation(s)
- Shi Li
- ICU, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Mingmei Zhong
- ICU, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Yuan Yuan
- The Central Laboratory of Binhu Hospital, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Lin Zhang
- ICU, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| |
Collapse
|
28
|
Reilly JP, Wang F, Jones TK, Palakshappa JA, Anderson BJ, Shashaty MGS, Dunn TG, Johansson ED, Riley TR, Lim B, Abbott J, Ittner CAG, Cantu E, Lin X, Mikacenic C, Wurfel MM, Christiani DC, Calfee CS, Matthay MA, Christie JD, Feng R, Meyer NJ. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med 2018; 44:1849-1858. [PMID: 30343317 PMCID: PMC6697901 DOI: 10.1007/s00134-018-5328-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE A causal biomarker for acute respiratory distress syndrome (ARDS) could fuel precision therapy options. Plasma angiopoietin-2 (ANG2), a vascular permeability marker, is a strong candidate on the basis of experimental and observational evidence. We used genetic causal inference methods-Mendelian randomization and mediation-to infer potential effects of plasma ANG2. METHODS We genotyped 703 septic subjects, measured ICU admission plasma ANG2, and performed a quantitative trait loci (QTL) analysis to determine variants in the ANGPT2 gene associated with plasma ANG2 (p < 0.005). We then used linear regression and post-estimation analysis to genetically predict plasma ANG2 and tested genetically predicted ANG2 for ARDS association using logistic regression. We estimated the proportion of the genetic effect explained by plasma ANG2 using mediation analysis. RESULTS Plasma ANG2 was strongly associated with ARDS (OR 1.59 (95% CI 1.35, 1.88) per log). Five ANGPT2 variants were associated with ANG2 in European ancestry subjects (n = 404). Rs2442608C, the most extreme cis QTL (coefficient 0.22, 95% CI 0.09-0.36, p = 0.001), was associated with higher ARDS risk: adjusted OR 1.38 (95% CI 1.01, 1.87), p = 0.042. No significant QTL were identified in African ancestry subjects. Genetically predicted plasma ANG2 was associated with ARDS risk: adjusted OR 2.25 (95% CI 1.06-4.78), p = 0.035. Plasma ANG2 mediated 34% of the rs2442608C-related ARDS risk. CONCLUSIONS In septic European ancestry subjects, the strongest ANG2-determining ANGPT2 genetic variant is associated with higher ARDS risk. Plasma ANG2 may be a causal factor in ARDS development. Strategies to reduce plasma ANG2 warrant testing to prevent or treat sepsis-associated ARDS.
Collapse
Affiliation(s)
- John P Reilly
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Fan Wang
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, USA
| | - Tiffanie K Jones
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Jessica A Palakshappa
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Brian J Anderson
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Michael G S Shashaty
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas G Dunn
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Erik D Johansson
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas R Riley
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Brian Lim
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Jason Abbott
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA
| | - Caroline A G Ittner
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Edward Cantu
- Divison of Cardiothoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Xihong Lin
- Harvard University T.H. Chan School of Public Health, Boston, USA
| | - Carmen Mikacenic
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, USA
| | - Mark M Wurfel
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, USA
| | - David C Christiani
- Harvard University T.H. Chan School of Public Health, Boston, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA
| | - Jason D Christie
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Smith TL, Van Slyke P, Jones N, Dumont DJ, McGlade CJ. Tie2 signalling through Erk1/2 regulates TLR4 driven inflammation. Cell Signal 2018; 51:211-221. [DOI: 10.1016/j.cellsig.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022]
|
30
|
Predictive Value of Combined LIPS and ANG-2 Level in Critically Ill Patients with ARDS Risk Factors. Mediators Inflamm 2018; 2018:1739615. [PMID: 30008611 PMCID: PMC6020511 DOI: 10.1155/2018/1739615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022] Open
Abstract
To investigate the predictive value of the acute physiology and chronic health evaluation 2 (APACHE2) score and lung injury prediction score (LIPS) for acute respiratory distress syndrome (ARDS) when combined with biomarkers for this condition in patients with ARDS risk factors. In total, 158 Han Chinese patients with ARDS risk factors were recruited from the Respiratory and Emergency Intensive Care Units. The LIPS, APACHE2 score, primary diagnosis at admission, and ARDS risk factors were determined within 6 h of admission, and PaO2/FiO2 was determined on the day of admission. Blood was collected within 24 h of admission for the measurement of angiopoietin-2 (ANG-2), sE-selectin, interleukin-6 (IL-6), and interleukin-8 (IL-8) levels. ARDS was monitored for the next 7 days. Univariate and multivariate analyses and receiver operating characteristic (ROC) analyses were employed to construct a model for ARDS prediction. Forty-eight patients developed ARDS within 7 days of admission. Plasma ANG-2 level, sE-selectin level, LIPS, and APACHE2 score in ARDS patients were significantly higher than those in non-ARDS patients. ANG-2 level, LIPS, and APACHE2 score were correlated with ARDS (P < 0.001, P < 0.006, and P < 0.042, resp.). When the APACHE2 score was used in combination with the LIPS and ANG-2 level to predict ARDS, the area under the ROC curve (AUC) was not significantly increased. Compared to LIPS or ANG-2 alone, LIPS in combination with ANG-2 had significantly increased positive predictive value (PPV) and AUC for the prediction of ARDS. In conclusion, plasma ANG-2 level, LIPS, and APACHE2 score are correlated with ARDS. Combined LIPS and ANG-2 level displays favorable sensitivity, specificity, and AUC for the prediction of ARDS.
Collapse
|
31
|
Continued under-recognition of acute respiratory distress syndrome after the Berlin definition: what is the solution? Curr Opin Crit Care 2018; 23:10-17. [PMID: 27922845 DOI: 10.1097/mcc.0000000000000381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Timely recognition of acute respiratory distress syndrome (ARDS) may allow for more prompt management and less exacerbation of lung injury. However, the absence of a diagnostic test for ARDS means that the diagnosis of ARDS requires clinician recognition in what is usually a complicated and evolving illness. We review data concerning the extent of recognition of ARDS in the era of the Berlin definition of ARDS. RECENT FINDINGS ARDS continues to be under-recognized - even in the era of the more recent 'Berlin' definition, and significant delay in its recognition is common. Factors contributing to under-recognition may include the complexity of ARDS biology, low specificity of the consensus (diagnostic) criteria, and concerns about reliable interpretation of the chest radiograph. Understandably, 'external' factors are also at play: ICU occupancy and higher patient to clinician ratio impair recognition of ARDS. Timely recognition of ARDS appears important, as it is associated with the use of higher PEEP, prone positioning and neuromuscular blockade which can lower mortality. Computer-aided decision tools seem diagnostically useful, and together with the integration of reliable biomarkers, may further enhance and speed recognition of this syndrome. SUMMARY Significant numbers of patients with ARDS are still unrecognized by clinicians in the era of the Berlin definition of ARDS, with potentially important consequences for patient management and outcome.
Collapse
|
32
|
Schlosser K, Taha M, Deng Y, McIntyre LA, Mei SHJ, Stewart DJ. High circulating angiopoietin-2 levels exacerbate pulmonary inflammation but not vascular leak or mortality in endotoxin-induced lung injury in mice. Thorax 2017; 73:248-261. [PMID: 28947667 PMCID: PMC5870448 DOI: 10.1136/thoraxjnl-2017-210413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/03/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
Background Elevated plasma levels of angiopoietin-2 (ANGPT2) have been reported in patients with acute lung injury (ALI); however, it remains unclear whether this increase contributes to, or just marks, the underlying vasculopathic inflammation and leak associated with ALI. Here we investigated the biological consequences of inducing high circulating levels of ANGPT2 in a mouse model of endotoxin-induced ALI. Methods Transgenic mice (ANGPT2OVR) with elevated circulating levels of ANGPT2, achieved through conditional hepatocyte-specific overexpression, were examined from 3 to 72 hours following lipopolysaccharide (LPS)-induced ALI. An aptamer-based inhibitor was used to neutralise the effects of circulating ANGPT2 in LPS-exposed ANGPT2OVR mice. Results Total cells, neutrophils and macrophages, as well as inflammatory cytokines, were significantly higher in bronchoalveolar lavage (BAL) of ANGPT2OVR versus littermate controltTA mice at 48 hours and 6 hours post-LPS, respectively. In contrast, LPS-induced vascular leak, evidenced by total BAL protein levels and lung wet/dry ratio, was unchanged between ANGPT2OVR and controlstTA, while BAL levels of IgM and albumin were decreased in ANGPT2OVR mice between 24 hours and 48 hours suggesting a partial attenuation of vascular leak. There was no significant difference in LPS-induced mortality between ANGPT2OVR and controlstTA. An ANGPT2-neutralising aptamer partially attenuated alveolar cell infiltration while exacerbating vascular leak in LPS-exposed ANGPT2OVR mice, supported by underlying time-dependent changes in the lung transcriptional profiles of multiple genes linked to neutrophil recruitment/adhesion and endothelial integrity. Conclusions Our findings suggest that high circulating ANGPT2 potentiates endotoxin-induced lung inflammation but may also exert other pleiotropic effects to help fine-tune the vascular response to lung injury.
Collapse
Affiliation(s)
- Kenny Schlosser
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohamad Taha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauralyn A McIntyre
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Angiopoietin-2 Levels as Predictors of Outcome in Mechanically Ventilated Patients with Acute Respiratory Distress Syndrome. DISEASE MARKERS 2017; 2017:6758721. [PMID: 28947844 PMCID: PMC5602490 DOI: 10.1155/2017/6758721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/06/2017] [Accepted: 07/04/2017] [Indexed: 01/02/2023]
Abstract
Pulmonary endothelium dysfunction is a key characteristic of ARDS. The aim of this study was to investigate endothelium-derived markers, such as angiopoietin-2 (Ang-2) and endothelial cell-specific molecule-1 (endocan), at the vascular and alveolar compartments as outcome predictors in ARDS. Fifty-three consecutive ARDS patients were studied. The primary outcome was 28-day mortality. Secondary endpoints were days of unassisted ventilation and days with organ failure other than ARDS, during the 28-day study period. Nonsurvivors presented higher lung injury scores and epithelial lining fluid (ELF) Ang-2 levels compared to survivors, with no significant differences in plasma Ang-2, endocan, and protein C concentrations between the two groups. In logistic regression analysis, ELF Ang-2 levels > 705 pg/ml were the only independent variable for 28-day mortality among the previous four. Plasma endocan values > 13 ng/pg were the only parameter predictive against days of unassisted ventilation during the 28-day study period. Finally, lung injury score > 2.25 and ELF Ang-2 levels > 705 pg/ml were associated with increased number of days with organ failure, other than ARDS. Our findings suggest that Ang-2 levels are increased in the alveolar compartment of ARDS patients, and this may be associated both with increased mortality and organ failure besides lung.
Collapse
|
34
|
Wang H, Cade BE, Chen H, Gleason KJ, Saxena R, Feng T, Larkin EK, Vasan RS, Lin H, Patel SR, Tracy RP, Liu Y, Gottlieb DJ, Below JE, Hanis CL, Petty LE, Sunyaev SR, Frazier-Wood AC, Rotter JI, Post W, Lin X, Redline S, Zhu X. Variants in angiopoietin-2 (ANGPT2) contribute to variation in nocturnal oxyhaemoglobin saturation level. Hum Mol Genet 2017; 25:5244-5253. [PMID: 27798093 DOI: 10.1093/hmg/ddw324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
Genetic determinants of sleep-disordered breathing (SDB), a common set of disorders that contribute to significant cardiovascular and neuropsychiatric morbidity, are not clear. Overnight nocturnal oxygen saturation (SaO2) is a clinically relevant and easily measured indicator of SDB severity but its genetic contribution has never been studied. Our recent study suggests nocturnal SaO2 is heritable. We performed linkage analysis, association analysis and haplotype analysis of average nocturnal oxyhaemoglobin saturation in participants in the Cleveland Family Study (CFS), followed by gene-based association and additional tests in four independent samples. Linkage analysis identified a peak (LOD = 4.29) on chromosome 8p23. Follow-up association analysis identified two haplotypes in angiopoietin-2 (ANGPT2) that significantly contributed to the variation of SaO2 (P = 8 × 10-5) and accounted for a portion of the linkage evidence. Gene-based association analysis replicated the association of ANGPT2 and nocturnal SaO2. A rare missense SNP rs200291021 in ANGPT2 was associated with serum angiopoietin-2 level (P = 1.29 × 10-4), which was associated with SaO2 (P = 0.002). Our study provides the first evidence for the association of ANGPT2, a gene previously implicated in acute lung injury syndromes, with nocturnal SaO2, suggesting that this gene has a broad range of effects on gas exchange, including influencing oxygenation during sleep.
Collapse
Affiliation(s)
- Heming Wang
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Han Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kevin J Gleason
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Center for Human Genetic Research and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Tao Feng
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Emma K Larkin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ramachandran S Vasan
- Preventive Medicine & Epidemiology, Boston University School of Medicine, Boston, MA, USA.,Framingham Heart Study, Framingham, MA
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sanjay R Patel
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Russell P Tracy
- Department of Pathology & Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Yongmei Liu
- Epidemiology and Prevention Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Sleep Disorders Center, VA Boston Healthcare System, Boston, MA, USA
| | - Jennifer E Below
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lauren E Petty
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shamil R Sunyaev
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wendy Post
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
35
|
García-Laorden MI, Lorente JA, Flores C, Slutsky AS, Villar J. Biomarkers for the acute respiratory distress syndrome: how to make the diagnosis more precise. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:283. [PMID: 28828358 DOI: 10.21037/atm.2017.06.49] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acute respiratory distress syndrome (ARDS) is an acute inflammatory process of the lung caused by a direct or indirect insult to the alveolar-capillary membrane. Currently, ARDS is diagnosed based on a combination of clinical and physiological variables. The lack of a specific biomarker for ARDS is arguably one of the most important obstacles to progress in developing novel treatments for ARDS. In this article, we will review the current understanding of some appealing biomarkers that have been measured in human blood, bronchoalveolar lavage fluid (BALF) or exhaled gas that could be used for identifying patients with ARDS, for enrolling ARDS patients into clinical trials, or for better monitoring of patient's management. After a literature search, we identified several biomarkers that are associated with the highest sensitivity and specificity for the diagnosis or outcome prediction of ARDS: receptor for advanced glycation end-products (RAGE), angiopoietin-2 (Ang-2), surfactant protein D (SP-D), inteleukin-8, Fas and Fas ligand, procollagen peptide (PCP) I and III, octane, acetaldehyde, and 3-methylheptane. In general, these are cell-specific for epithelial or endothelial injury or involved in the inflammatory or infectious response. No biomarker or biomarkers have yet been confirmed for the diagnosis of ARDS or prediction of its prognosis. However, it is anticipated that in the near future, using biomarkers for defining ARDS, or for determining those patients who are more likely to benefit from a given therapy will have a major effect on clinical practice.
Collapse
Affiliation(s)
- M Isabel García-Laorden
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - José A Lorente
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Intensive Care Unit, Hospital Universitario de Getafe, Madrid, Spain.,Department of Medicine, Universidad Europea, Madrid, Spain
| | - Carlos Flores
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital NS de Candelaria, Santa Cruz de Tenerife, Spain
| | - Arthur S Slutsky
- Keenan Research Center for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain.,Keenan Research Center for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
36
|
BLOCKADE OF ENDOTHELIAL GROWTH FACTOR, ANGIOPOIETIN-2, REDUCES INDICES OF ARDS AND MORTALITY IN MICE RESULTING FROM THE DUAL-INSULTS OF HEMORRHAGIC SHOCK AND SEPSIS. Shock 2016; 45:157-65. [PMID: 26529660 DOI: 10.1097/shk.0000000000000499] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have demonstrated hemorrhagic shock "priming" for the development of indirect acute respiratory distress syndrome (iARDS) in mice following subsequent septic challenge, and show pathology characteristic of patients with iARDS, including increased lung microvascular permeability and arterial PO2/FI02 reduced to levels comparable to mild/moderate ARDS during the 48 h following hemorrhage. Loss of endothelial cell (EC) barrier function is a major component in the development of iARDS. EC growth factors, Angiopoietin (Ang)-1 and 2, maintain vascular homeostasis via tightly regulated competitive interaction with tyrosine kinase receptor, Tie2, expressed on ECs. Ang-2/Tie2 binding, in contrast to Ang-1, is believed to produce vessel destabilization, pulmonary leakage, and inflammation. Recent clinical findings from our trauma/surgical intensive care units and others have reported elevated Ang-2 in the plasma from patients that develop ARDS. We have previously described similarly elevated Ang-2 in plasma and lung tissue in our shock/sepsis model for the development of iARDS, and demonstrated effective reduction in indices of inflammation and lung tissue injury following siRNA inhibition of Ang-2 protein synthesis. In this study we show that Ang-2 in lung tissue and plasma spikes following hemorrhage (priming) and remain elevated at sepsis induction. In addition, that transient inhibition of Ang-2 function immediately following hemorrhage, suppressing priming, but not following sepsis, impacts the development of iARDS in our model. Our data demonstrate that selective temporal blockade of Ang-2 function following hemorrhagic shock priming significantly improved PO2/FIO2, decreased lung protein leak and indices of inflammation, and improved 10-day survival in our murine model for the development iARDS.
Collapse
|
37
|
Lee JY, Linge HM, Ochani K, Lin K, Miller EJ. Regulation of angiopoietin-2 secretion from human pulmonary microvascular endothelial cells. Exp Lung Res 2016; 42:335-345. [PMID: 27585839 DOI: 10.1080/01902148.2016.1218977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Sepsis is characterized by dysregulated systemic inflammation and cytokine storm. Angiopoietin-2 (Ang-2) is known to closely correlate with severity of sepsis-related acute lung injury and mortality. The aim of this study was to clarify the mechanisms involved in Ang-2 secretion to better understand the pathophysiology of sepsis. MATERIALS AND METHODS The concentration of Ang-2 was assessed in culture medium of pulmonary microvascular endothelial cells in the presence or absence of Gram-positive bacteria cell wall components [lipoteichoic acid (LTA) and peptidoglycan (PGN)] stimulation at different time points ranging from 15 minutes to 24 hours. Constitutive and LTA-PGN-stimulated Ang-2 level changes were also assessed after cells were pretreated with different pathway inhibitors for 1 hour. RESULTS Two distinctive mechanisms of Ang-2 secretion, constitutive and stimulated secretion, were identified. Constitutive secretion resulted in slow but continuous increase in Ang-2 in culture medium over time. It was regulated by 3'5'-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-Ca2+ and nitric oxide (NO)-3'5'-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)-Ca2+ pathways and partially regulated by N-ethyl-maleimide-sensitive factor-Ca2+ pathways. LTA-PGN stimulation caused rapid and potent increase followed by gradual decrease of Ang-2. It was partially regulated by both Ral A-phospholipase D and NSF-Ca2+ pathways. CONCLUSIONS We demonstrated characteristics and involved pathways for two distinctive secretory mechanisms, constitutive and stimulated, of Ang-2 in pulmonary microvascular endothelial cells. Considering the close correlation of Ang-2 with sepsis outcomes, our findings provide a better understanding of an important mechanism associated with sepsis pathophysiology and identify possible therapeutic targets to improve outcomes in the potentially lethal disease.
Collapse
Affiliation(s)
- Ji Young Lee
- a The Elmezzi Graduate School of Molecular Medicine , Manhasset , New York , USA.,b Department of Pulmonary and Critical Care Medicine , University of South Alabama , Mobile , Alabama , USA
| | - Helena M Linge
- c The Center for Heart and Lung Research , The Feinstein Institute for Medical Research , Manhasset , New York , USA
| | - Kanta Ochani
- c The Center for Heart and Lung Research , The Feinstein Institute for Medical Research , Manhasset , New York , USA
| | - Ke Lin
- c The Center for Heart and Lung Research , The Feinstein Institute for Medical Research , Manhasset , New York , USA
| | - Edmund J Miller
- a The Elmezzi Graduate School of Molecular Medicine , Manhasset , New York , USA.,c The Center for Heart and Lung Research , The Feinstein Institute for Medical Research , Manhasset , New York , USA.,d Hofstra North Shore-LIJ Medical School , Hempstead , New York , USA
| |
Collapse
|
38
|
Abstract
Acute respiratory distress syndrome (ARDS) is common among mechanically ventilated children and accompanies up to 30% of all pediatric intensive care unit deaths. Though ARDS diagnosis is based on clinical criteria, biological markers of acute lung damage have been extensively studied in adults and children. Biomarkers of inflammation, alveolar epithelial and capillary endothelial disruption, disordered coagulation, and associated derangements measured in the circulation and other body fluids, such as bronchoalveolar lavage, have improved our understanding of pathobiology of ARDS. The biochemical signature of ARDS has been increasingly well described in adult populations, and this has led to the identification of molecular phenotypes to augment clinical classifications. However, there is a paucity of data from pediatric ARDS (pARDS) patients. Biomarkers and molecular phenotypes have the potential to identify patients at high risk of poor outcomes, and perhaps inform the development of targeted therapies for specific groups of patients. Additionally, because of the lower incidence of and mortality from ARDS in pediatric patients relative to adults and lack of robust clinical predictors of outcome, there is an ongoing interest in biological markers as surrogate outcome measures. The recent definition of pARDS provides additional impetus for the measurement of established and novel biomarkers in future pediatric studies in order to further characterize this disease process. This chapter will review the currently available literature and discuss potential future directions for investigation into biomarkers in ARDS among children.
Collapse
Affiliation(s)
- Benjamin E. Orwoll
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Anil Sapru
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Division of Critical Care, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
39
|
Ando M, Miyazaki E, Abe T, Ehara C, Goto A, Masuda T, Nishio S, Fujisaki H, Yamasue M, Ishii T, Mukai Y, Ito T, Nureki SI, Kumamoto T, Kadota J. Angiopoietin-2 expression in patients with an acute exacerbation of idiopathic interstitial pneumonias. Respir Med 2016; 117:27-32. [PMID: 27492510 DOI: 10.1016/j.rmed.2016.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND OBJECTIVE We hypothesized that increased pulmonary vascular permeability may play a role in the pathogenesis of an acute exacerbation of the idiopathic interstitial pneumonias (AE-IIPs). Angiopoietin-2 (Ang-2) promotes endothelial activation, destabilization, and inflammation. The purpose of this study was to examine whether Ang-2 expression was associated with the pathogenesis of AE-IIPs. METHODS Twenty-three patients with AE-IIP patients, 18 acute lung injury/acute respiratory distress syndrome (ALI/ARDS) patients, 37 idiopathic pulmonary fibrosis (IPF) patients, and 33 healthy volunteers (HVs) were enrolled. The serum level of Ang-2 was measured by an enzyme-linked immunosorbent assay. RESULTS The serum levels of Ang-2 were higher in AE-IIPs and ALI/ARDS patients than in IPF patients and HVs; the BALF levels of Ang-2 were also higher than in IPF patients. There was a positive correlation between the serum level of Ang-2 and the CRP in patients with AE-IIP patients, whereas a significant positive correlation was found between the serum Ang-2 level and the CRP or SOFA scores of the ALI/ARDS patients. Although the baseline Ang-2 level was not related to survival, the Ang-2 levels significantly declined in survivors during treatment, while they did not change in non-survivors. CONCLUSIONS Increased pulmonary vascular permeability and inflammation due to Ang-2 may play a role in the pathogenesis of AE-IIPs.
Collapse
Affiliation(s)
- Masaru Ando
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan.
| | - Eishi Miyazaki
- Center for Community Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Tetsutaro Abe
- Internal Medicine 3, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Chihiro Ehara
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Akihiro Goto
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Taiki Masuda
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Suehiro Nishio
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Hideaki Fujisaki
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Mari Yamasue
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Toshihiro Ishii
- Center for Community Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Yutaka Mukai
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Takeo Ito
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Shin-Ich Nureki
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Toshihide Kumamoto
- Internal Medicine 3, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Junichi Kadota
- Department of Respiratory Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
40
|
Association Between Angiopoietin-2 and Enterovirus 71 Induced Pulmonary Edema. Indian J Pediatr 2016; 83:391-6. [PMID: 26590154 PMCID: PMC7101583 DOI: 10.1007/s12098-015-1920-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To characterize pulmonary edema (PE) fluid induced by enterovirus 71 (EV71) infection, elucidate the relationship between angiopoietin-2 (Ang-2) and PE, and explore the pathogenesis of PE. METHODS Clinical data were collected from critical infants with EV71 infection. The infants were grouped into PE, non-PE, and control groups. The control group included infants in the preoperative period of elective inguinal hernia surgery. Biochemical changes in PE fluid were evaluated, and Ang-2 levels in serum and PE fluid were measured. Human pulmonary microvascular endothelial cells (HPMECs) were incubated with serum from the control and PE groups and human recombinant Ang-2 or serum from the PE group and human recombinant Ang-1, and changes in the intercellular junctions were recorded via immunofluorescence. RESULTS Of the 161 infants with critical EV71 infection admitted to the hospital, 39 had PE. PE fluid was collected from 18 of these infants. The PE fluid-to-serum (P/S) ratio of total protein was 0.9 ± 0.2, and all P/S ratios of albumin were 1.0 ± 0.3. The Ang-2 level was higher in the non-PE group (333.2 ± 79.7 pg/ml) than in the control group (199.9 ± 26.7 pg/ml), although without statistical significance (P = 0.115). The Ang-2 level in the PE group (2819.2 ± 908.7 pg/ml) was higher than those in both the non-PE and the control groups (both, P < 0.001). Serum samples from the PE group had damaged cell junctions of confluent HPMEC monolayers that were reversed by Ang-1. CONCLUSIONS The PE fluid of infants with EV71-induced PE was protein-rich, and elevated Ang-2 expression was associated with PE. The mechanism through which PE develops may be related to Ang-2-induced cell junction damage.
Collapse
|
41
|
Levitt JE, Rogers AJ. Proteomic study of acute respiratory distress syndrome: current knowledge and implications for drug development. Expert Rev Proteomics 2016; 13:457-69. [PMID: 27031735 DOI: 10.1586/14789450.2016.1172481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acute respiratory distress syndrome (ARDS) is a common cause of acute respiratory failure, and is associated with substantial mortality and morbidity. Dozens of clinical trials targeting ARDS have failed, with no drug specifically targeting lung injury in widespread clinical use. Thus, the need for drug development in ARDS is great. Targeted proteomic studies in ARDS have identified many key pathways in the disease, including inflammation, epithelial injury, endothelial injury or activation, and disordered coagulation and repair. Recent studies reveal the potential for proteomic changes to identify novel subphenotypes of ARDS patients who may be most likely to respond to therapy and could thus be targeted for enrollment in clinical trials. Nontargeted studies of proteomics in ARDS are just beginning and have the potential to identify novel drug targets and key pathways in the disease. Proteomics will play an important role in phenotyping of patients and developing novel therapies for ARDS in the future.
Collapse
Affiliation(s)
- Joseph E Levitt
- a Division of Pulmonary and Critical Care Medicine , Stanford University , Stanford , CA , USA
| | - Angela J Rogers
- a Division of Pulmonary and Critical Care Medicine , Stanford University , Stanford , CA , USA
| |
Collapse
|
42
|
Hoeboer SH, Groeneveld ABJ, van der Heijden M, Oudemans-van Straaten HM. Serial inflammatory biomarkers of the severity, course and outcome of late onset acute respiratory distress syndrome in critically ill patients with or at risk for the syndrome after new-onset fever. Biomark Med 2016; 9:605-16. [PMID: 26079964 DOI: 10.2217/bmm.15.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM Accurate biomarkers of the acute respiratory distress syndrome (ARDS) may help risk stratification and management. We assessed the relation between several biomarkers and the severity, course and outcome of late onset ARDS in 101 consecutive critically ill patients with new onset fever. MATERIALS AND METHODS On study days 0, 1, 2 and 7 we measured angiopoietin-2 (ANG2), pentraxin-3 (PTX3), interleukin-6 (IL-6), procalcitonin (PCT) and midregional proadrenomedullin (proADM). ARDS was defined by the Berlin definition and by the lung injury score (LIS). RESULTS At baseline, 48% had ARDS according to the Berlin definition and 86% according to the LIS. Baseline markers poorly predicted maximum Berlin categories attained within 7 days, whereas ANG2 best predicted maximum LIS. Depending on the ARDS definition, the day-by-day area under the receiver operating characteristic curves suggested greatest monitoring value for IL-6 and PCT, followed by ANG2. ANG2 and proADM predicted outcome, independently of disease severity. CONCLUSION Whereas IL-6 and PCT had some disease monitoring value, ANG2 was the only biomarker capable of both predicting the severity, monitoring the course and predicting the outcome of late onset ARDS in febrile critically ill patients, irrespective of underlying risk factor, thereby yielding the most specific ARDS biomarker among those studied.
Collapse
Affiliation(s)
- Sandra H Hoeboer
- Department of intensive care of Erasmus Medical Centre Rotterdam, s-Gravendijkwal 230; 3015 CE Rotterdam, The Netherlands.,Department of intensive care of VU University Medical Centre Amsterdam, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - A B Johan Groeneveld
- Department of intensive care of Erasmus Medical Centre Rotterdam, s-Gravendijkwal 230; 3015 CE Rotterdam, The Netherlands
| | - Melanie van der Heijden
- Department of intensive care of Erasmus Medical Centre Rotterdam, s-Gravendijkwal 230; 3015 CE Rotterdam, The Netherlands.,Department of physiology of VU University Medical Centre Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Heleen M Oudemans-van Straaten
- Department of intensive care of VU University Medical Centre Amsterdam, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
43
|
Rajput C, Tauseef M, Farazuddin M, Yazbeck P, Amin MR, Avin Br V, Sharma T, Mehta D. MicroRNA-150 Suppression of Angiopoetin-2 Generation and Signaling Is Crucial for Resolving Vascular Injury. Arterioscler Thromb Vasc Biol 2016; 36:380-8. [PMID: 26743170 DOI: 10.1161/atvbaha.115.306997] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/17/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Increased vascular permeability is a hallmark of sepsis and acute respiratory distress syndrome. Angiopoietin (Ang2) induces vascular leak, and excess Ang2 generation is associated with patient mortality from these diseases. However, mechanisms dampening Ang2 generation during injury remain unclear. Interestingly, microRNA (miR)-150 levels were decreased in septic patients. miR regulate signaling networks by silencing mRNAs containing complementary sequences. Thus, we hypothesized that miR-150 suppresses Ang2 generation and thereby resolves vascular injury. APPROACH AND RESULTS Wild-type or miR-150(-/-) mice or endothelial cells were exposed to lipopolysaccharide or sepsis, and Ang2 levels, adherens junction reannealing, endothelial barrier function, and mortality were determined. Although Ang2 transiently increased during lipopolysaccharide-induced injury in wild-type endothelial cells and lungs, miR-150 expression was elevated only during recovery from injury. Deletion of miR-150 caused a persistent increase in Ang2 levels and impaired adherens junctions reannealing after injury, resulting thereby in an irreversible increase in vascular permeability. Also, miR-150(-/-) mice died rapidly after sepsis. Rescuing miR-150 expression in endothelial cells prevented Ang2 generation, thereby restoring vascular barrier function in miR-150(-/-) mice. miR-150 terminated Ang2 generation by targeting the transcription factor, early growth response 2. Thus, early growth response 2 or Ang2 depletion in miR-150(-/-) endothelial cells restored junctional reannealing and reinstated barrier function. Importantly, upregulating miR-150 expression by injecting a chemically synthesized miR-150 mimic into wild-type mice vasculature decreased early growth response 2 and Ang2 levels and hence mortality from sepsis. CONCLUSIONS miR-150 is a novel suppressor of Ang2 generation with a key role in resolving vascular injury and reducing mortality resulting from sepsis.
Collapse
Affiliation(s)
- Charu Rajput
- From the Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago
| | - Mohammad Tauseef
- From the Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago
| | - Mohammad Farazuddin
- From the Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago
| | - Pascal Yazbeck
- From the Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago
| | - Md-Ruhul Amin
- From the Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago
| | - Vijay Avin Br
- From the Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago
| | - Tiffany Sharma
- From the Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago
| | - Dolly Mehta
- From the Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago.
| |
Collapse
|
44
|
Kimura D, Saravia J, Rovnaghi CR, Meduri GU, Schwingshackl A, Cormier SA, Anand KJ. Plasma Biomarker Analysis in Pediatric ARDS: Generating Future Framework from a Pilot Randomized Control Trial of Methylprednisolone: A Framework for Identifying Plasma Biomarkers Related to Clinical Outcomes in Pediatric ARDS. Front Pediatr 2016; 4:31. [PMID: 27066464 PMCID: PMC4815896 DOI: 10.3389/fped.2016.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/21/2016] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Lung injury activates multiple pro-inflammatory pathways, including neutrophils, epithelial, and endothelial injury, and coagulation factors leading to acute respiratory distress syndrome (ARDS). Low-dose methylprednisolone therapy (MPT) improved oxygenation and ventilation in early pediatric ARDS without altering duration of mechanical ventilation or mortality. We evaluated the effects of MPT on biomarkers of endothelial [Ang-2 and soluble intercellular adhesion molecule-1 (sICAM-1)] or epithelial [soluble receptor for activated glycation end products (sRAGE)] injury, neutrophil activation [matrix metalloproteinase-8 (MMP-8)], and coagulation (plasminogen activator inhibitor-1). DESIGN Double-blind, placebo-controlled randomized trial. SETTING Tertiary-care pediatric intensive care unit (ICU). PATIENTS Mechanically ventilated children (0-18 years) with early ARDS. INTERVENTIONS Blood samples were collected on days 0 (before MPT), 7, and 14 during low-dose MPT (n = 17) vs. placebo (n = 18) therapy. The MPT group received a 2-mg/kg loading dose followed by 1 mg/kg/day continuous infusions from days 1 to 7, tapered off over 7 days; placebo group received equivalent amounts of 0.9% saline. We analyzed plasma samples using a multiplex assay for five biomarkers of ARDS. Multiple regression models were constructed to predict associations between changes in biomarkers and the clinical outcomes reported earlier, including P/F ratio on days 8 and 9, plateau pressure on days 1 and 2, PaCO2 on days 2 and 3, racemic epinephrine following extubation, and supplemental oxygen at ICU discharge. RESULTS No differences occurred in biomarker concentrations between the groups on day 0. On day 7, reduction in MMP-8 levels (p = 0.0016) occurred in the MPT group, whereas increases in sICAM-1 levels (p = 0.0005) occurred in the placebo group (no increases in sICAM-1 in the MPT group). sRAGE levels decreased in both MPT and placebo groups (p < 0.0001) from day 0 to day 7. On day 7, sRAGE levels were positively correlated with MPT group PaO2/FiO2 ratios on day 8 (r = 0.93, p = 0.024). O2 requirements at ICU transfer positively correlated with day 7 MMP-8 (r = 0.85, p = 0.016) and Ang-2 levels (r = 0.79, p = 0.036) in the placebo group and inversely correlated with day 7 sICAM-1 levels (r = -0.91, p = 0.005) in the MPT group. CONCLUSION Biomarkers selected from endothelial, epithelial, or intravascular factors can be correlated with clinical endpoints in pediatric ARDS. For example, MPT could reduce neutrophil activation (⇓MMP-8), decrease endothelial injury (⇔sICAM-1), and allow epithelial recovery (⇓sRAGE). Large ARDS clinical trials should develop similar frameworks. TRIAL REGISTRATION https://clinicaltrials.gov, NCT01274260.
Collapse
Affiliation(s)
- Dai Kimura
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Jordy Saravia
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Gianfranco Umberto Meduri
- Department of Internal Medicine, Memphis Veterans Affairs Medical Center, Memphis, TN, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andreas Schwingshackl
- Department of Pediatrics, University of California Los Angeles , Los Angeles, CA , USA
| | - Stephania A Cormier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kanwaljeet J Anand
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
45
|
Role of innate immunity in primary graft dysfunction after lung transplantation. Curr Opin Organ Transplant 2015; 18:518-23. [PMID: 23995372 DOI: 10.1097/mot.0b013e3283651994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Primary graft dysfunction (PGD), a form of acute lung injury after lung transplantation, has a significant impact on clinical outcomes after lung transplantation. This potentially reversible graft impairment occurs after ischemia-reperfusion injury. This review describes the expanding body of literature evaluating the central role of innate immune activation, nonadaptive responses and dysregulation in the development of PGD after lung transplant. RECENT FINDINGS The innate immune system, highlighted by Toll-like receptor pathways and neutrophil migration and influx, plays an important role in the initiation and propagation of ischemia-reperfusion injury. Recent plasma biomarker and gene association studies have identified several genes and proteins composing innate immune pathways to be associated with PGDs. Long pentraxin-3 and Toll-like receptors, as well as inflammasomes and Toll-interacting protein, are associated with the development of PGD after lung transplantation. SUMMARY Innate immune pathways are involved in the development of PGD and may provide attractive targets for therapies. It may be possible to prevent or treat PGD, as well as to allow pre-transplant PGD risk stratification. To improve understanding of the mechanisms behind clinical risk factors for PGD will require further in-depth correlation of donor-specific and recipient-related triggers of nonadaptive immune responses.
Collapse
|
46
|
Abstract
The unique characteristics of pulmonary circulation and alveolar-epithelial capillary-endothelial barrier allow for maintenance of the air-filled, fluid-free status of the alveoli essential for facilitating gas exchange, maintaining alveolar stability, and defending the lung against inhaled pathogens. The hallmark of pathophysiology in acute respiratory distress syndrome is the loss of the alveolar capillary permeability barrier and the presence of protein-rich edema fluid in the alveoli. This alteration in permeability and accumulation of fluid in the alveoli accompanies damage to the lung epithelium and vascular endothelium along with dysregulated inflammation and inappropriate activity of leukocytes and platelets. In addition, there is uncontrolled activation of coagulation along with suppression of fibrinolysis and loss of surfactant. These pathophysiological changes result in the clinical manifestations of acute respiratory distress syndrome, which include hypoxemia, radiographic opacities, decreased functional residual capacity, increased physiologic deadspace, and decreased lung compliance. Resolution of acute respiratory distress syndrome involves the migration of cells to the site of injury and re-establishment of the epithelium and endothelium with or without the development of fibrosis. Most of the data related to acute respiratory distress syndrome, however, originate from studies in adults or in mature animals with very few studies performed in children or juvenile animals. The lack of studies in children is particularly problematic because the lungs and immune system are still developing during childhood and consequently the pathophysiology of pediatric acute respiratory distress syndrome may differ in significant ways from that seen in acute respiratory distress syndrome in adults. This article describes what is known of the pathophysiologic processes of pediatric acute respiratory distress syndrome as we know it today while also presenting the much greater body of evidence on these processes as elucidated by adult and animal studies. It is also our expressed intent to generate enthusiasm for larger and more in-depth investigations of the mechanisms of disease and repair specific to children in the years to come.
Collapse
|
47
|
Lin SM, Chung FT, Kuo CH, Chou PC, Wang TY, Chang PJ, Lo YL, Huang CD, Lin HC, Wang CH, Kuo HP. Circulating angiopopietin-1 correlates with the clinical course of multiple organ dysfunction syndrome and mortality in patients with severe sepsis. Medicine (Baltimore) 2015; 94:e878. [PMID: 25997069 PMCID: PMC4602874 DOI: 10.1097/md.0000000000000878] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To determine plasma concentrations of angiopoietin (Ang)-1, Ang-2, Tie-2, and vascular endothelial growth factor (VEGF) in patients with sepsis-induced multiple organ dysfunction syndrome (MODS) and determine their association with mortality.The study prospectively recruited 96 consecutive patients with severe sepsis in a l intensive care unit of a tertiary hospital. Plasma Ang-1, Ang-2, Tie-2, and VEGF levels and MODS were determined in patients on days 1, 3, and 7 of sepsis. Univariate and Cox proportional hazards analysis were performed to develop a prognostic model.Days 1, 3, and 7 plasma Ang-1 concentrations were persistently decreased in MODS patients than in non-MODS patients (day1: 4.0 ± 0.5 vs 8.0 ± 0.5 ng/mL, P < 0.0001; day 3, 3.2 ± 0.6 vs 7.3 ± 0.5 ng/mL, P < 0.0001, day 7, 2.8 ± 0.6 vs 10.4 ± 0.7 ng/mL, P < 0.0001). In patients with resolved MODS on day 7 of sepsis, Ang-1 levels were increased from day 1 (4.7 ± 0.6 ng/mL vs 9.1 ± 1.4 ng/mL, n = 43, P = 0.004). Plasma Ang-1 levels were lower in nonsurvivors than in survivors on days 1 (4.0 ± 0.5 vs 7.1 ± 0.5 ng/mL, P < 0.0001), 3 (3.8 ± 0.6 vs 7.1 ± 0.5 ng/mL, P < 0.0001), and 7 (4.7 ± 0.7 vs 11.0 ± 0.8 ng/mL, P < 0.0001) of severe sepsis. In contrast, plasma Ang-2 levels were higher in nonsurvivors than in survivors only on day 1 (15.8 ± 2.0 vs 9.5 ± 1.2 ng/mL, P = 0.035). VEGF and Tie-2 levels were not associated with MODS and mortality. Ang-1 level less than the median value was the only independent predictor of mortality (hazard ratio, 2.57; 95% CI 1.12-5.90, P = 0.025).Persistently decreased Ang-1 levels are associated with MODS and subsequently, mortality in patients with sepsis.
Collapse
Affiliation(s)
- Shu-Min Lin
- From the Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
[Angiopoietin-2: prognostic parameter in cardiogenic shock]. Med Klin Intensivmed Notfmed 2015; 109:69-70. [PMID: 24357108 DOI: 10.1007/s00063-013-0329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Biomarkers in acute lung injury. Respir Physiol Neurobiol 2015; 209:52-8. [DOI: 10.1016/j.resp.2014.10.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 01/24/2023]
|
50
|
Plasma angiopoietin 2 concentrations are related to impaired lung function and organ failure in a clinical cohort receiving high-dose interleukin 2 therapy. Shock 2015; 42:115-20. [PMID: 24727870 DOI: 10.1097/shk.0000000000000188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The pathophysiology and therapeutic options in sepsis-induced lung injury remain elusive. High-dose interleukin 2 therapy (HDIL-2) is an important protocol for advanced malignancies but is limited by systemic inflammation and pulmonary edema that is indistinguishable from sepsis. In preclinical models, IL-2 stimulates angiopoietin 2 (AngP-2) secretion, which increases endothelial permeability and causes pulmonary edema. However, these relationships have not been fully elucidated in humans. Furthermore, the relevance of plasma AngP-2 to organ function is not clear. We hypothesized that plasma AngP-2 concentrations increase during HDIL-2 and are relevant to clinical pathophysiology. METHODS We enrolled 13 subjects with metastatic melanoma or renal cell carcinoma admitted to receive HDIL-2 and collected blood and spirometry data daily. The plasma concentrations of AngP-2 and IL-6 were measured with enzyme-linked immunosorbent assay. RESULTS At baseline, the mean AngP-2 concentration was 2.5 (SD, 1.0) ng/mL. Angiopoietin 2 concentrations increased during treatment: the mean concentration on the penultimate day was 16.0 (SD, 4.5) ng/mL and increased further to 18.6 (SD, 4.9) ng/mL (P < 0.05 vs. penultimate) during the last day of therapy. The forced expiratory volume in 1 s decreased during treatment. Interestingly, plasma AngP-2 concentrations correlated negatively with forced expiratory volume in 1 s (Spearman r = -0.78, P < 0.0001). Plasma AngP-2 concentrations also correlated with plasma IL-6 concentrations (r = 0.61, P < 0.0001) and Sequential Organ Failure Assessment scores (r = 0.68, P < 0.0001). CONCLUSIONS Plasma AngP-2 concentrations increase during HDIL-2 administration and correlate with pulmonary dysfunction. High-dose IL-2 may serve as a clinical model of sepsis and acute lung injury. Further investigation is warranted.
Collapse
|