1
|
Emre AS, Mehtap S, Cem D, İlter İ, Melih A, Özlem Ö, Serdar S, Ekrem ÇH, Rasih Y. Cannabidiol protects lung against inflammation and apoptosis in a rat model of blunt chest trauma via Bax/Bcl-2/Cas-9 signaling pathway. Eur J Trauma Emerg Surg 2025; 51:95. [PMID: 39918746 PMCID: PMC11805814 DOI: 10.1007/s00068-025-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/11/2025] [Indexed: 02/09/2025]
Abstract
PURPOSE This study aimed to investigate the hypothesis that cannabidiol (CBD), with known anti-inflammatory and anti-apoptotic effects, would reduce the severity of acute lung injury in pulmonary contusion following blunt chest trauma. METHODS Forty male Wistar Albino rats were randomly divided into four groups, each consisting of 10 rats: Sham, Trauma, Trauma + CBD, and CBD. The rats were treated with a single dose of 5 mg/kg CBD intraperitoneally 30 min before trauma. Then, the trauma were exposed to a weight of 200 g and a height of 1 m. After sacrifice, the lung tissues were removed for histopathological, immunohistochemical, biochemical, and genetic analyses. RESULTS Pulmonary injury of trauma group led to increases in tumor necrosis factor α, caspase-3, caspase-9, Bcl-2-associated X protein expressions, total oxidant status, oxidative stress index levels, and decreases in B-cell lymphoma expression and total antioxidant levels. Additionally, inflammatory cell infiltration, damage-related emphysema, pronounced hyperemia, and increased septal tissue thickness were observed histopathologically. CBD treatment ameliorated all these findings. CONCLUSION CBD reduces lung damage in lung contusions caused by blunt chest trauma through its anti-inflammatory and antiapoptotic effects. More detailed studies investigating other important intracellular pathways are needed.
Collapse
Affiliation(s)
- Akın Süleyman Emre
- Department of Thoracic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Savran Mehtap
- Department of Medical Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Doğan Cem
- Department of Thoracic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - İlhan İlter
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Arlıoğlu Melih
- Department of Medical Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Özmen Özlem
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Sezer Serdar
- Department of Medical Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
- Natural Products Application and Research Center (SUDUM), Suleyman Demirel University, Isparta, Turkey
| | - Çamaş Hasan Ekrem
- Department of Thoracic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Yazkan Rasih
- Department of Thoracic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Quan R, Shi C, Fang B, Sun Y, Qu T, Wang X, Wang R, Zhang Y, Ren F, Li Y. Age-Dependent Inflammatory Microenvironment Mediates Alveolar Regeneration. Int J Mol Sci 2024; 25:3476. [PMID: 38542450 PMCID: PMC10970842 DOI: 10.3390/ijms25063476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 08/22/2024] Open
Abstract
Lung aging triggers the onset of various chronic lung diseases, with alveolar repair being a key focus for alleviating pulmonary conditions. The regeneration of epithelial structures, particularly the differentiation from type II alveolar epithelial (AT2) cells to type I alveolar epithelial (AT1) cells, serves as a prominent indicator of alveolar repair. Nonetheless, the precise role of aging in impeding alveolar regeneration and its underlying mechanism remain to be fully elucidated. Our study employed histological methods to examine lung aging effects on structural integrity and pathology. Lung aging led to alveolar collapse, disrupted epithelial structures, and inflammation. Additionally, a relative quantification analysis revealed age-related decline in AT1 and AT2 cells, along with reduced proliferation and differentiation capacities of AT2 cells. To elucidate the mechanisms underlying AT2 cell functional decline, we employed transcriptomic techniques and revealed a correlation between inflammatory factors and genes regulating proliferation and differentiation. Furthermore, a D-galactose-induced senescence model in A549 cells corroborated our omics experiments and confirmed inflammation-induced cell cycle arrest and a >30% reduction in proliferation/differentiation. Physiological aging-induced chronic inflammation impairs AT2 cell functions, hindering tissue repair and promoting lung disease progression. This study offers novel insights into chronic inflammation's impact on stem cell-mediated alveolar regeneration.
Collapse
Affiliation(s)
- Rui Quan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.Q.); (C.S.); (B.F.); (Y.S.); (R.W.); (Y.Z.); (F.R.)
| | - Chenhong Shi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.Q.); (C.S.); (B.F.); (Y.S.); (R.W.); (Y.Z.); (F.R.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.Q.); (C.S.); (B.F.); (Y.S.); (R.W.); (Y.Z.); (F.R.)
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.Q.); (C.S.); (B.F.); (Y.S.); (R.W.); (Y.Z.); (F.R.)
| | - Taiqi Qu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA;
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.Q.); (C.S.); (B.F.); (Y.S.); (R.W.); (Y.Z.); (F.R.)
| | - Yiran Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.Q.); (C.S.); (B.F.); (Y.S.); (R.W.); (Y.Z.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.Q.); (C.S.); (B.F.); (Y.S.); (R.W.); (Y.Z.); (F.R.)
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.Q.); (C.S.); (B.F.); (Y.S.); (R.W.); (Y.Z.); (F.R.)
| |
Collapse
|
3
|
Lagazzi E, Rafaqat W, Argandykov D, de Roulet A, Abiad M, Proaño-Zamudio JA, Velmahos GC, Hwabejire JO, Paranjape C, Albutt KH. Timing matters: Early versus late rib fixation in patients with multiple rib fractures and pulmonary contusion. Surgery 2024; 175:529-535. [PMID: 38167568 DOI: 10.1016/j.surg.2023.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Recent literature has shown that surgical stabilization of rib fractures benefits patients with rib fractures accompanied by pulmonary contusion; however, the impact of timing on surgical stabilization of rib fractures in this patient population remains unexplored. We aimed to compare early versus late surgical stabilization of rib fractures in patients with traumatic rib fractures and concurrent pulmonary contusion. METHODS We selected all adult patients with isolated blunt chest trauma, multiple rib fractures, and pulmonary contusion undergoing early (<72 hours) versus late surgical stabilization of rib fractures (≥72 hours) using the American College of Surgeons Trauma Quality Improvement Program 2016 to 2020. Propensity score matching was performed to adjust for patient, injury, and hospital characteristics. Our outcomes were hospital length of stay, acute respiratory distress syndrome, unplanned intubation, ventilator days, unplanned intensive care unit admission, intensive care unit length of stay, tracheostomy rates, and mortality. We then performed sub-group analyses for patients with major or minor pulmonary contusion. RESULTS We included 2,839 patients, of whom 1,520 (53.5%) underwent early surgical stabilization of rib fractures. After propensity score matching, 1,096 well-balanced pairs were formed. Early surgical stabilization of rib fractures was associated with a decrease in hospital length of stay (9 vs 13 days; P < .001), decreased intensive care unit length of stay (5 vs 7 days; P < .001), and lower rates of unplanned intubation (7.4% vs 11.4%; P = .001), unplanned intensive care unit admission (4.2% vs 105%, P < .001), and tracheostomy (8.4% vs 12.4%; P = .002). Similar results were also found in the subgroup analyses for patients with major or minor pulmonary contusion. CONCLUSION These findings suggest that in patients with multiple rib fractures and pulmonary contusion, the early implementation of surgical stabilization of rib fractures could be beneficial regardless of the severity of pulmonary contusion.
Collapse
Affiliation(s)
- Emanuele Lagazzi
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA; Department of Surgery, Humanitas Research Hospital, Rozzano, MI, Italy. https://twitter.com/EmanueleLagazzi
| | - Wardah Rafaqat
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Dias Argandykov
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Amory de Roulet
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - May Abiad
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Jefferson A Proaño-Zamudio
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - George C Velmahos
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - John O Hwabejire
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Charudutt Paranjape
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Katherine H Albutt
- Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
4
|
Suresh MV, Yalamanchili G, Rao TC, Aktay S, Kralovich A, Shah YM, Raghavendran K. Hypoxia‐inducible factor (HIF)‐1α‐induced regulation of lung injury in pulmonary aspiration is mediated through NF‐kB. FASEB Bioadv 2022; 4:309-328. [PMID: 35520392 PMCID: PMC9065579 DOI: 10.1096/fba.2021-00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/11/2022] Open
Abstract
Aspiration‐induced lung injury is a common grievance encountered in the intensive care unit (ICU). It is a significant risk factor for improving ventilator‐associated pneumonia (VAP) and acute respiratory distress syndrome (ARDS). Hypoxia‐inducible factor (HIF)‐1α is one of the primary transcription factors responsible for regulating the cellular response to changes in oxygen tension. Here, we sought to determine the role of HIF‐1α and specifically the role of type 2 alveolar epithelial cells in generating the acute inflammatory response following acid and particles (CASP) aspiration. Previous studies show HIF‐1 α is involved in regulating the hypoxia‐stimulated expression of MCP‐1 in mice and humans. The CASP was induced in C57BL/6, ODD‐Luc, HIF‐1α (+/+) control, and HIF‐1α conditional knockout (HIF‐1α (−/−) mice). Following an injury in ODD mice, explanted organs were subjected to IVIS imaging to measure the degree of hypoxia. HIF‐1α expression, BAL albumin, cytokines, and histology were measured following CASP. In C57BL/6 mice, the level of HIF‐1α was increased at 1 h after CASP. There were significantly increased levels of albumin and cytokines in C57BL/6 and ODD‐Luc mice lungs following CASP. HIF‐1α (+/+) mice given CASP demonstrated a synergistic increase in albumin leakage, increased pro‐inflammatory cytokines, and worse injury. MCP‐1 antibody neutralized HIF‐1α (+/+) mice showed reduced granuloma formation. The NF‐κB expression was increased substantially in the HIF‐1α (+/+) mice following CASP compared to HIF‐1α (−/−) mice. Our data collectively identify that HIF‐1α upregulation of the acute inflammatory response depends on NF‐κB following CASP.
Collapse
Affiliation(s)
| | | | - Tejeshwar C. Rao
- Department of Cell, Developmental, and Integrative Biology The University of Alabama at Birmingham Birmingham UK
| | - Sinan Aktay
- Department of Surgery University of Michigan Ann Arbor Michigan USA
| | - Alex Kralovich
- Department of Surgery University of Michigan Ann Arbor Michigan USA
| | - Yatrik M. Shah
- Molecular & Integrative Physiology University of Michigan Ann Arbor Michigan USA
| | | |
Collapse
|
5
|
Hauer T, Grobert S, Wenniges H, Huschitt N, Willy C. [Explosion trauma part 1 : Physical principles and pathophysiology]. Unfallchirurg 2021; 125:145-159. [PMID: 34609541 DOI: 10.1007/s00113-021-01073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
After explosions, various injury mechanisms lead to multiple injuries that can affect the entire body. While high pressure peaks and exposure to heat, especially in the vicinity of a detonation, can cause severe injuries and organ damage, fragments also pose a considerable threat to explosion victims even over long distances. The recognition and treatment of life-threatening disorders and the assessment of the severity of the injury are just as challenging for the entire treatment team as long-term operative management, reconstruction strategies and rehabilitation of the complex injuries. Knowledge of the injury mechanics and the pathophysiology of blast injuries should help the interdisciplinary team to master this challenge.
Collapse
Affiliation(s)
- Thorsten Hauer
- Abteilung für Allgemein- und Viszeralchirurgie, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115, Berlin, Deutschland.
| | - Steffen Grobert
- Abteilung für Allgemein- und Viszeralchirurgie, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115, Berlin, Deutschland
| | - Helgo Wenniges
- Ausbildungszentrum Technik Landsysteme, Fachschule des Heeres für Technik, Kornelimünsterweg 27, 52066, Aachen, Deutschland
| | - Niels Huschitt
- Abteilung für Allgemein- und Viszeralchirurgie, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115, Berlin, Deutschland
| | - Christian Willy
- Klinik für Orthopädie und Unfallchirurgie, Septische und Rekonstruktive Chirurgie, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115, Berlin, Deutschland
| |
Collapse
|
6
|
Kartal S, Kip G, Küçük A, Aşçı SS, Erdem Ö, Arslan M, Kavutçu M. The Effects of Dexmedetomidine and Ketamine on Oxidative Injuries and Histological Changes Following Blunt Chest Trauma. Drug Des Devel Ther 2020; 14:2937-2943. [PMID: 32801635 PMCID: PMC7384874 DOI: 10.2147/dddt.s258921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The objective of this research was to evaluate the oxidative and histopathological effects of dexmedetomidine and ketamine on the pulmonary contusion model resulting from blunt chest trauma. METHODS Rats were randomly assigned to 5 equal groups (n=6): control group (Group C), pulmonary contusion group (Group PC), PC-dexmedetomidine group (Group PC-D), PC-ketamine group (Group PC-K), and PC-dexmedetomidine + ketamine (Group PC-D+K). The PC was performed by dropping a weight of 500 g (2.45 Joules) from a height of 50 cm. In Group PC-D, after chest trauma, dexmedetomidine (100 µg/kg) was administered intraperitoneally. In Group PC-K, after chest trauma, ketamine (100 mg/kg) was administered intraperitoneally. In Group PC-D+K, dexmedetomidine and ketamine were administered together. At the end of the 6th hour, rats were sacrificed. Malondialdehyde (MDA) level, superoxide dismutase (SOD) enzyme activities, neutrophil infiltration/aggregation, and thickness of the alveolar wall were evaluated. RESULTS MDA levels were significantly higher in Group PC than Groups C, PC-D, and PC-D+K. SOD enzyme activity was significantly higher in Group PC than Groups C, PC-D, and PC-D+K. In addition, neutrophil infiltration/aggregation and total pulmonary injury scores were significantly higher in Group PC than in other groups, and the thickness of the alveolar wall was significantly higher in Group PC compared to Groups C, PC-D, and PC-D+K. MDA level, SOD enzyme activities, neutrophil infiltration/aggregation, and thickness of alveolar wall were similar in PC-D and PC-D+K groups. CONCLUSION Dexmedetomidine and dexmedetomidine+ketamine have protective effects on blunt chest trauma but no protective effect was observed when ketamine was administered alone. We concluded that the administration of dexmedetomidine and ketamine after contusion is beneficial against pulmonary injury in rats.
Collapse
Affiliation(s)
- Seyfi Kartal
- Health Science University, Kanuni Training and Research Hospital, Department of Anaesthesiology and Reanimation, Trabzon, Turkey
| | - Gülay Kip
- Gazi University, School of Medicine, Department of Anaesthesiology and Reanimation, Ankara, Turkey
| | - Ayşegül Küçük
- Kütahya Health Science University, School of Medicine, Department of Physiology, Kütahya, Turkey
| | - Seyhan Sümeyra Aşçı
- Health Science University, Kanuni Training and Research Hospital, Department of Anaesthesiology and Reanimation, Trabzon, Turkey
| | - Özlem Erdem
- Gazi University, School of Medicine, Department of Medical Pathology, Ankara, Turkey
| | - Mustafa Arslan
- Gazi University, School of Medicine, Department of Anaesthesiology and Reanimation, Ankara, Turkey
| | - Mustafa Kavutçu
- Gazi University, School of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| |
Collapse
|
7
|
Effect of oleanolic acid for prevention of acute lung injury and apoptosis. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 27:532-539. [PMID: 32082922 DOI: 10.5606/tgkdc.dergisi.2019.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/01/2019] [Indexed: 11/21/2022]
Abstract
Background This study aims to evaluate the efficiency of oleanolic acid on acute lung injury and acute respiratory distress syndrome. Methods The study included 70 female Wistar albino rats (weighing 180 to 200 g). We created seven groups, each consisting of 10 rats. Then, we generated acute lung injuries by intra-tracheal peroxynitrite injection in every group except for the control group. We investigated the effect of oleanolic acid. For this purpose, we measured the levels of malondialdehyde, interleukin 1 beta, interleukin 4, interleukin 10 and tumor necrosis factor alpha in the collected blood samples from the rats. In addition, we examined the lung tissue samples histopathologically and assessed the rate of apoptosis. Results Peroxynitrite injected groups at 24 and 48 h showed a statistically significant increase in interleukin 1 beta, tumor necrosis factor alpha, interleukin 4, interleukin 10 and malondialdehyde levels, which are accepted as mediators of the inflammatory process, compared to the control group. When peroxynitrite injected groups at 24 and 48 h were compared to the treatment groups of the same hour, a statistically significant decrease was detected. According to histopathological examination, peroxynitrite injected groups at 24 and 48 h showed a significant increase of tissue injury scores compared to the control group. However, the groups that were treated with oleanolic acid showed a significant decrease compared to the peroxynitrite groups (p<0.001 for tumor necrosis factor alpha and apoptosis results at 48 h). Conclusion In this study, we confirmed that oleanolic acid can be an effective agent for the prevention of acute lung injury generated via peroxynitrite.
Collapse
|
8
|
Wagner N, Dieteren S, Franz N, Köhler K, Perl M, Marzi I, Relja B. Alcohol‑induced attenuation of post‑traumatic inflammation is not necessarily liver‑protective following trauma/hemorrhage. Int J Mol Med 2019; 44:1127-1138. [PMID: 31257463 DOI: 10.3892/ijmm.2019.4259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/04/2019] [Indexed: 11/05/2022] Open
Abstract
Due to their high prevalence, blunt chest trauma (TxT) and hemorrhagic shock have a significant influence on the outcomes of trauma patients, causing severe modulations of the immune system and high mortality rates. Alcohol consumption in trauma patients has a high clinical impact. Studies investigating the timing of alcohol intoxication prior to trauma are limited, although there are two typical scenarios regarding alcohol consumption: Acute ('drink and drive scenario') and sub‑acute ('evening binge drinking'). Therefore, the present study investigated the influence of either an acute or sub‑acute alcohol‑drinking scenario in an in vivo model of TxT and hemorrhagic shock, focusing on liver inflammation and outcomes. At 12 h (sub‑acute) or 2 h (acute) before the experiment, female Lewis rats received a single oral dose of alcohol (ethanol, EtOH) or saline (NaCl, ctrl), followed by TxT, hemorrhagic shock (35±3 mm Hg) and resuscitation (H/R). The animals were either sacrificed 2 h later or their survival was determined for 72 h. The results revealed that EtOH induced significant fatty changes in the liver. TxT + H/R‑induced increases in the gene expression of interleukin (IL)‑6 and intercellular adhesion molecule‑1 and the protein expression of tumor necrosis factor (TNF)‑α and IL‑1β were significantly reduced in both EtOH groups compared with those in the corresponding TxT + H/R ctrl groups. The local presence of IL‑10‑expressing cells in the liver was significantly increased following TxT + H/R in all groups, although the sub‑acute EtOH TxT + H/R group had a significantly higher proportion of IL‑10‑positive cells compared with all other groups. Stimulating peripheral whole blood with lipopolysaccharide led to significantly lower levels of TNF‑α release in the sub‑acute EtOH group compared with the levels in all other groups. Significant TxT + H/R‑induced increases in liver transaminases and liver damage were most prominent in the sub‑acute EtOH group. The TxT + H/R EtOH group exhibited the lowest levels of glucose. There were no significant differences in mortality rate among the TxT + H/R groups. The data obtained indicates that the severity of liver damage following TxT + H/R may depend on the timing of alcohol consumption and severity of trauma, but also on the balance between pro‑ and anti‑inflammatory responses.
Collapse
Affiliation(s)
- Nils Wagner
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, D‑60590 Frankfurt, Germany
| | - Scott Dieteren
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, D‑60590 Frankfurt, Germany
| | - Niklas Franz
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, D‑60590 Frankfurt, Germany
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, D‑35390 Giessen, Germany
| | - Mario Perl
- BG‑Trauma Center Murnau, D‑82418 Murnau, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, D‑60590 Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, D‑60590 Frankfurt, Germany
| |
Collapse
|
9
|
Molecular Characterization of Hypoxic Alveolar Epithelial Cells After Lung Contusion Indicates an Important Role for HIF-1α. Ann Surg 2019; 267:382-391. [PMID: 27811509 DOI: 10.1097/sla.0000000000002070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To understand the fate and regulation of hypoxic type II alveolar epithelial cells (AECs) after lung contusion (LC). BACKGROUND LC due to thoracic trauma is a major risk factor for the development of acute respiratory distress syndrome. AECs have recently been implicated as a primary driver of inflammation in LC. The main pathological consequence of LC is hypoxia, and a key mediator of adaptation to hypoxia is hypoxia-inducible factor (HIF)-1. We have recently published that HIF-1α is a major driver of acute inflammation after LC through type II AEC. METHODS LC was induced in wild-type mice (C57BL/6), luciferase-based hypoxia reporter mice (ODD-Luc), and HIF-1α conditional knockout mice. The degree of hypoxia was assessed using hypoxyprobe and in vivo imaging system. The fate of hypoxic AEC was evaluated by luciferase dual staining with caspases-3 and Ki-67, terminal deoxynucleotidyl transferase dUTP nick end labeling, and flow cytometry with ApoStat. NLRP-3 expression was determined by western blot. Laser capture microdissection was used to isolate AECs in vivo, and collected RNA was analyzed by Q-PCR for HIF-related pathways. RESULTS Global hypoxia was present after LC, but hypoxic foci were not uniform. Hypoxic AECs preferentially undergo apoptosis. There were significant reductions in NLRP-3 in HIF-1α conditional knockout mice. The expression of proteins involved in HIF-related pathways and inflammasome activation were significantly increased in hypoxic AECs. CONCLUSIONS These are the first in vivo data to identify, isolate, and characterize hypoxic AECs. HIF-1α regulation through hypoxic AECs is critical to the initiation of acute inflammation after LC.
Collapse
|
10
|
Smith JE, Watts S, Spear AM, Wilson C, Kirkman E. Nebulised recombinant activated factor VII (rFVIIa) does not attenuate the haemorrhagic effects of blast lung injury. J ROY ARMY MED CORPS 2018; 165:51-56. [PMID: 30420554 PMCID: PMC6581091 DOI: 10.1136/jramc-2018-001029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023]
Abstract
Introduction Primary blast lung injury causes intrapulmonary haemorrhage. A number of case reports have suggested the efficacy of recombinant activated factor VII (rFVIIa) in the treatment of diffuse alveolar haemorrhage from a range of medical causes, but its efficacy in blast lung is unknown. The aim of this study was to investigate whether nebulised rFVIIa attenuates the haemorrhagic effects of blast lung injury in an animal model. Methods Terminally anaesthetised rabbits subjected to blast lung injury were randomised to receive either rFVIIa or placebo via a nebuliser. The primary outcome was the level of blood iron–transferrin complex, a marker of the extent of blast lung injury, analysed using low temperature electron paramagnetic resonance spectroscopy. Results Blast exposure led to a significant fall in iron-bound transferrin in both groups of animals (p<0.001), which remained depressed during the study. There were no significant differences in iron–transferrin between the rFVIIa and placebo treatment groups over the duration of the study (p=0.081), and there was no trend towards elevated iron–transferrin in the rFVIIa-treated group once drug treatment had started. There was suggestive evidence of systemic absorption of rFVIIa given via the inhaled route. Conclusion A single dose of nebulised rFVIIa did not attenuate pulmonary haemorrhage in a rabbit model of blast lung injury. As there was some evidence of systemic absorption, the inhaled route does not avoid the concern about potential thromboembolic complications from administration of rFVIIa.
Collapse
Affiliation(s)
- Jason E Smith
- CBR Division, Dstl Porton Down, Salisbury, UK.,Academic Department of Military Emergency Medicine, Royal Centre for Defence Medicine, Birmingham, UK
| | - S Watts
- CBR Division, Dstl Porton Down, Salisbury, UK
| | - A M Spear
- CBR Division, Dstl Porton Down, Salisbury, UK
| | - C Wilson
- CBR Division, Dstl Porton Down, Salisbury, UK
| | - E Kirkman
- CBR Division, Dstl Porton Down, Salisbury, UK
| |
Collapse
|
11
|
Smith JE, Garner J. Pathophysiology of primary blast injury. J ROY ARMY MED CORPS 2018; 165:57-62. [DOI: 10.1136/jramc-2018-001058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/03/2022]
Abstract
The majority of patients injured in the recent conflicts in Iraq and Afghanistan were as a result of explosion, and terrorist incidents have brought blast injuries to the front door of many civilian hospitals that had not previously encountered such devastation. This article reviews the physics and pathophysiology of blast injury with particular relevance to the presentation and management of primary blast injury, which is the mechanism least familiar to most clinicians and which may cause devastating injury without externals signs.
Collapse
|
12
|
Torun AC, Tutuncu S, Ustun B, Akdemir HU. A Study of the Therapeutic Effects of Resveratrol on Blunt Chest Trauma-Induced Acute Lung Injury in Rats and the Potential Role of Endocan as a Biomarker of Inflammation. Inflammation 2018; 40:1803-1810. [PMID: 28726014 DOI: 10.1007/s10753-017-0624-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study focused on the therapeutic effects of resveratrol in a rat model of blunt chest trauma-induced acute lung injury and the potential role of endocan as a biomarker of inflammation. They were randomly divided into the following four groups (n = 7 in each group): control group (no treatment or trauma); trauma group (trauma-induced group); resveratrol group (resveratrol [0.3 mg/kg] administered via the i.p. route group); and resveratrol + trauma group (resveratrol [0.3 mg/kg] administered via the i.p. route 1 h prior to the induction of trauma At the end of the 24 h, all the experimental rats were sacrificed. Lung lobe and blood samples were collected for biochemical, histopathological, and immunohistochemical investigations. Serum endocan levels were found to be significantly higher in the travma, resveratrol, and resveratrol + trauma groups than in the control group (p < 0.001, p < 0.001, p < 0.001). Moreover, in resveratrol + trauma group, endocan showed a significant increase compared to trauma and resveratrol group (p < 0.001, p < 0.001). Serum MDA level was significantly higher in the trauma group than in the control group (p = 0.017). SOD showed a significant increase in resveratrol and resveratrol + trauma groups compared to control group (p < 0.001, p < 0.001). The present study suggested that resveratrol exerted antioxidant properties in a rat model of lung injury after blunt chest trauma. Thus, it may have therapeutic potential in cases of blunt chest trauma-induced lung injury. Serum levels of endocan were not correlated with the inflammation response. The clinical use of endocan as a biomarker of inflammation in lung injury caused by blunt chest trauma is not recommended.
Collapse
Affiliation(s)
- Aysun Caglar Torun
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ondokuz Mayis University, Samsun, Turkey.
| | - Serife Tutuncu
- Faculty of Veterinary, Department of Histology and Embryology, Ondokuz Mayis University, Samsun, Turkey
| | - Burcu Ustun
- Faculty of Medicine, Department of Anesthesiology, Ondokuz Mayis University, Samsun, Turkey
| | - Hızır Ufuk Akdemir
- Faculty of Medicine, Department of Emergency Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
13
|
Tong C, Liu Y, Zhang Y, Cong P, Shi X, Liu Y, Shi Hongxu Jin L, Hou M. Shock waves increase pulmonary vascular leakage, inflammation, oxidative stress, and apoptosis in a mouse model. Exp Biol Med (Maywood) 2018; 243:934-944. [PMID: 29984607 DOI: 10.1177/1535370218784539] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Severe lung damage is a major cause of death in blast victims, but the mechanisms of pulmonary blast injury are not well understood. Therefore, it is important to study the injury mechanism of pulmonary blast injury. A model of lung injury induced by blast exposure was established by using a simulation blast device. The effectiveness and reproducibility of the device were investigated. Eighty mice were randomly divided into eight groups: control group and 3 h, 6 h, 12 h, 24 h, 48 h, 7 days and 14 days post blast. The explosive device induced an explosion injury model of a single lung injury in mice. The success rate of the model was as high as 90%, and the degree of lung injury was basically the same under the same pressure. Under the same conditions, the thickness of the aluminum film can be from 0.8 mm to 1.6 mm, and the peak pressure could be from 95.85 ± 15.61 PSI to 423.32 ± 11.64 PSI. There is no statistical difference in intragroup comparison. A follow-up lung injury experiment using an aluminum film thickness of 1.4 mm showed a pressure of 337.46 ± 18.30 PSI induced a mortality rate of approximately 23.2%. Compared with the control group (372 ± 23 times/min, 85.9 ± 9.4 mmHg, 4.34 ± 0.09), blast exposed mice had decreased heart rate (283 ± 21 times/min) and blood pressure (73.6 ± 3.6 mmHg), and increased lung wet/dry weight ratio(2.67 ± 0.11), marked edematous lung tissue, ruptured blood vessels, infiltrating inflammatory cells, increased NF-κB (4.13 ± 0.01), TNF-α (4.13 ± 0.01), IL-1β (2.43 ± 0.01) and IL-6 (4.65 ± 0.01) mRNA and protein, decreased IL-10(0.18 ± 0.02) mRNA and protein ( P < 0.05). The formation of ROS and the expression of MDA5 (4.46 ± 0.01) and IREα (3.43 ± 0.00) mRNA and protein were increased and the expression of SOD-1 (0.28 ± 0.02) mRNA and protein was decreased ( P < 0.05). Increased expression of Bax (3.54 ± 0.00) and caspase 3 (4.18 ± 0.01) mRNA and protein inhibited the expression of Bcl-2 (0.39 ± 0.02) mRNA and protein. The changes of pulmonary edema, inflammatory cell infiltration, and cell damage factor expression increased gradually with time, and reached the peak at 12-24 h after the outbreak, and returned to normal at 7-14 days. Detonation injury can lead to edema of lung tissue, pulmonary hemorrhage, rupture of pulmonary vessels, induction of early inflammatory responses accompanied by increased oxidative stress in lung tissue cells and increased apoptosis in mice experiencing blast injury. The above results are consistent with those reported in other literatures. It is showed that the mouse lung blast injury model is successfully modeled, and the device can be used for the study of pulmonary blast injury. Impact statement The number of patients with explosive injury has increased year by year, but there is no better treatment. However, the research on detonation injury is difficult to carry out. One of the factors is the difficulty in making the model of blast injury. The laboratory successfully developed and produced a simulation device of explosive knocking through a large amount of literature data and preliminary experiments, and verified the preparation of the simulation device through various experimental techniques. The results showed that the device could simulate the shock wave-induced acute lung injury generated, which was similar to the actual knocking injury. The experimental process was controlled. Under the same condition, there was no statistical difference between the groups. It is possible to realize miniaturization and precision of an explosive knocking simulation device, which is a good experimental tool for further research on the mechanism of organ damage caused by detonation and the development of protective drugs.
Collapse
Affiliation(s)
- Changci Tong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, China
| | - Yunen Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, China
| | - Yubiao Zhang
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, China
| | - Peifang Cong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, China
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, China
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, China
| | - Lin Shi Hongxu Jin
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, China
| | - Mingxiao Hou
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, China
| |
Collapse
|
14
|
Wagner N, Dieteren S, Franz N, Köhler K, Mörs K, Nicin L, Schmidt J, Perl M, Marzi I, Relja B. Ethyl pyruvate ameliorates hepatic injury following blunt chest trauma and hemorrhagic shock by reducing local inflammation, NF-kappaB activation and HMGB1 release. PLoS One 2018; 13:e0192171. [PMID: 29420582 PMCID: PMC5805235 DOI: 10.1371/journal.pone.0192171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The treatment of patients with multiple trauma including blunt chest/thoracic trauma (TxT) and hemorrhagic shock (H) is still challenging. Numerous studies show detrimental consequences of TxT and HS resulting in strong inflammatory changes, organ injury and mortality. Additionally, the reperfusion (R) phase plays a key role in triggering inflammation and worsening outcome. Ethyl pyruvate (EP), a stable lipophilic ester, has anti-inflammatory properties. Here, the influence of EP on the inflammatory reaction and liver injury in a double hit model of TxT and H/R in rats was explored. METHODS Female Lewis rats were subjected to TxT followed by hemorrhage/H (60 min, 35±3 mm Hg) and resuscitation/R (TxT+H/R). Reperfusion was performed by either Ringer`s lactated solution (RL) alone or RL supplemented with EP (50 mg/kg). Sham animals underwent all surgical procedures without TxT+H/R. After 2h, blood and liver tissue were collected for analyses, and survival was assessed after 24h. RESULTS Resuscitation with EP significantly improved haemoglobin levels and base excess recovery compared with controls after TxT+H/R, respectively (p<0.05). TxT+H/R-induced significant increase in alanine aminotransferase levels and liver injury were attenuated by EP compared with controls (p<0.05). Local inflammation as shown by increased gene expression of IL-6 and ICAM-1, enhanced ICAM-1 and HMGB1 protein expression and infiltration of the liver with neutrophils were also significantly attenuated by EP compared with controls after TxT+H/R (p<0.05). EP significantly reduced TxT+H/R-induced p65 activation in liver tissue. Survival rates improved by EP from 50% to 70% after TxT+H/R. CONCLUSIONS These data support the concept that the pronounced local pro-inflammatory response in the liver after blunt chest trauma and hemorrhagic shock is associated with NF-κB. In particular, the beneficial anti-inflammatory effects of ethyl pyruvate seem to be regulated by the HMGB1/NF-κB axis in the liver, thereby, restraining inflammatory responses and liver injury after double hit trauma in the rat.
Collapse
Affiliation(s)
- Nils Wagner
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Scott Dieteren
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Niklas Franz
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Mörs
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Luka Nicin
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Julia Schmidt
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Mario Perl
- BG-Trauma Center Murnau, Murnau, Germany
| | - Ingo Marzi
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
15
|
Ethyl pyruvate reduces acute lung damage following trauma and hemorrhagic shock via inhibition of NF-κB and HMGB1. Immunobiology 2017; 223:310-318. [PMID: 29102048 DOI: 10.1016/j.imbio.2017.10.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/14/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE After blunt thoracic trauma (TxT) and hemorrhagic shock with resuscitation (H/R) intense local inflammatory response and cell loss frequently impair the pulmonary function. Ethyl pyruvate (EP) has been reported to improve the pathophysiologic derangements in models of acute inflammation. Here, we studied the effects of EP on inflammation and lung damage after TxT+H/R. METHODS Twenty four female Lewis rats (180-240g) were randomly divided into 3 groups: two groups underwent TxT followed by hemorrhagic shock (35±3mmHg) for 60min and resuscitation with either Ringers-Lactat (RL) alone or RL supplemented with EP (EP, 50mg/kg). Sham operated animals underwent surgical procedures. Two hours later bronchoalveolar lavage fluid (BAL), lung tissue and blood were collected for analyses. RESULTS EP significantly improved pO2 levels compared to RL after TxT+H/R. TxT+H/R induced elevated levels of lactate dehydrogenase, total protein concentration in BAL and lung damage as evidenced by lung histology; these effects were significantly reduced by EP. Local inflammatory markers, lung TNF-alpha protein levels and infiltration with polymorphonuclear leukocytes (PMNL) significantly decreased in EP vs. RL group after TxT+H/R. Indicators of apoptosis as reduced BCL-2 and increased FAS gene expression after TxT+H/R were significantly increased or decreased, respectively, by EP after TxT+H/R. EP reduced TxT+H/R-induced p65 phosphorylation, which was concomitant with reduced HMGB1 levels in lung sections. CONCLUSIONS Taken together, TxT+H/R induced strong inflammatory response and apoptotic changes as well as lung injury which were markedly diminished by EP. Our results suggest that this might be mediated via NF-κB and/or HMGB1 dependent mechanism.
Collapse
|
16
|
Wagner N, Franz N, Dieteren S, Perl M, Mörs K, Marzi I, Relja B. Acute Alcohol Binge Deteriorates Metabolic and Respiratory Compensation Capability After Blunt Chest Trauma Followed by Hemorrhagic Shock-A New Research Model. Alcohol Clin Exp Res 2017; 41:1559-1567. [PMID: 28715125 DOI: 10.1111/acer.13446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The clinical relevance of blunt (thoracic) chest trauma (TxT) and hemorrhagic shock is indisputable due to the high prevalence of this injury type, as well as its close association with mortality and/or preventable deaths. Furthermore, there is an ongoing discussion about the influence of alcohol in trauma patients. Thus, we established a model of TxT followed by hemorrhagic shock with resuscitation (H/R) in alcohol-intoxicated rats. METHODS Depending on group allocation, 12 (subacute) or 2 (acute) hours before experimentation, the animals received a single oral dose of alcohol (ethanol [EtOH]) or saline (NaCl) followed by TxT, hemorrhagic shock (35 ± 3 mm Hg), and resuscitation (TxT + H/R). Arterial blood gas analyses and continuous monitoring of blood pressure were performed during the experimentation period. Survival during the experimentation procedure was determined. RESULTS Subacute and acute EtOH group exhibited lower baseline mean arterial blood pressure values compared with the corresponding NaCl group, respectively. Both EtOH groups showed lower maximal bleed-out volume, which was necessary to induce hemorrhagic shock compared to NaCl groups, and the recovery during the resuscitation period was attenuated. During the experimentation in all groups, a trend to acidic pH was observed. Acute EtOH group showed lowest pH values compared to all other groups. Higher pCO2 values were observed in both EtOH groups. All groups developed negative base excess and decreasing HCO3- values until the end of hemorrhagic shock and showed increasing base excess and HCO3- values during resuscitation. Significantly higher mortality rate was found in the acute EtOH group. CONCLUSIONS This study indicates that alcohol limits the metabolic and respiratory compensation capability, thereby promoting mortality.
Collapse
Affiliation(s)
- Nils Wagner
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Niklas Franz
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Scott Dieteren
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Mario Perl
- BG-Trauma Center Murnau, Murnau, Germany
| | - Katharina Mörs
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Hypercapnic Conditions After Experimental Blunt Chest Trauma Increase Efferocytosis of Alveolar Macrophages and Reduce Local Inflammation. Shock 2017; 48:104-111. [DOI: 10.1097/shk.0000000000000813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
CD43Lo classical monocytes participate in the cellular immune response to isolated primary blast lung injury. J Trauma Acute Care Surg 2017; 81:500-11. [PMID: 27306447 DOI: 10.1097/ta.0000000000001116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Understanding of the cellular immune response to primary blast lung injury (PBLI) is limited, with only the neutrophil response well documented. Moreover, its impact on the immune response in distal organs remains poorly understood. In this study, a rodent model of isolated primary blast injury was used to investigate the acute cellular immune response to isolated PBLI in the circulation and lung, including the monocyte response, and investigate distal subacute immune effects in the spleen and liver 6 hours after injury. METHODS Rats were subjected to a shock wave (~135 kPa overpressure, 2 ms duration) inducing PBLI or sham procedure. Rat physiology was monitored, and at 1, 3, and 6 hours thereafter, blood, lung, and bronchoalveolar lavage fluid (BALF) were collected and analyzed by flow cytometry, enzyme-linked immunosorbent assay, and histologic examination. In addition, at 6 hours, spleen and liver were collected and analyzed by flow cytometry. RESULTS Lung histology confirmed pulmonary barotrauma and inflammation. This was associated with rises in CXCL-1, interleukin 6 (IL-6), tumor necrosis factor α and albumin protein in the BALF. Significant acute increases in blood and lung neutrophils and CD43Lo/His48Hi (classical) monocytes/macrophages were detected. No significant changes were seen in blood or lung "nonclassical" monocyte and in natural killler, B, or T cells. In the BALF, significant increases were seen in neutrophils, CD43Lo monocyte-macrophages and monocyte chemoattractant protein-1. Significant increases in CD43Lo and Hi monocyte-macrophages were detected in the spleen at 6 hours. CONCLUSION This study reveals a robust and selective response of CD43Lo/His48Hi (classical) monocytes, in addition to neutrophils, in blood and lung tissue following PBLI. An increase in monocyte-macrophages was also observed in the spleen at 6 hours. This profile of immune cells in the blood and BALF could present a new research tool for translational studies seeking to monitor, assess, or attenuate the immune response in blast-injured patients.
Collapse
|
19
|
Zhang Z, Liang Z, Li H, Li C, Yang Z, Li Y, She D, Cao L, Wang W, Liu C, Chen L. Perfluorocarbon reduces cell damage from blast injury by inhibiting signal paths of NF-κB, MAPK and Bcl-2/Bax signaling pathway in A549 cells. PLoS One 2017; 12:e0173884. [PMID: 28323898 PMCID: PMC5360309 DOI: 10.1371/journal.pone.0173884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Background and objective Blast lung injury is a common type of blast injury and has very high mortality. Therefore, research to identify medical therapies for blast injury is important. Perfluorocarbon (PFC) is used to improve gas exchange in diseased lungs and has anti-inflammatory functions in vitro and in vivo. The aim of this study was to determine whether PFC reduces damage to A549 cells caused by blast injury and to elucidate its possible mechanisms of action. Study design and methods A549 alveolar epithelial cells exposed to blast waves were treated with and without PFC. Morphological changes and apoptosis of A549 cells were recorded. PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure the mRNA or protein levels of IL-1β, IL-6 and TNF-α. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity levels were detected. Western blot was used to quantify the expression of NF-κB, Bax, Bcl-2, cleaved caspase-3 and MAPK cell signaling proteins. Results A549 cells exposed to blast wave shrank, with less cell-cell contact. The morphological change of A549 cells exposed to blast waves were alleviated by PFC. PFC significantly inhibited the apoptosis of A549 cells exposed to blast waves. IL-1β, IL-6 and TNF-α cytokine and mRNA expression levels were significantly inhibited by PFC. PFC significantly increased MDA levels and decreased SOD activity levels. Further studies indicated that NF-κB, Bax, caspase-3, phospho-p38, phosphor-ERK and phosphor-JNK proteins were also suppressed by PFC. The quantity of Bcl-2 protein was increased by PFC. Conclusion Our research showed that PFC reduced A549 cell damage caused by blast injury. The potential mechanism may be associated with the following signaling pathways: 1) the signaling pathways of NF-κB and MAPK, which inhibit inflammation and reactive oxygen species (ROS); and 2) the signaling pathways of Bcl-2/Bax and caspase-3, which inhibit apoptosis.
Collapse
Affiliation(s)
- Zhaorui Zhang
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Zhixin Liang
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Huaidong Li
- Department of Respiratory Disease, The 88th Hospital of Chinese PLA, Tai’an City, Shandong Province, People’s Republic of China
| | - Chunsun Li
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Zhen Yang
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Yanqin Li
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Danyang She
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Lu Cao
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
| | - Wenjie Wang
- Department of State Key Laboratory of Explosion Science and Technology, The Beijing University of Technology, Beijing City, People’s Republic of China
| | - Changlin Liu
- Department of State Key Laboratory of Explosion Science and Technology, The Beijing University of Technology, Beijing City, People’s Republic of China
| | - Liangan Chen
- Department of Respiration, Chinese PLA General Hospital, Beijing City, People’s Republic of China
- * E-mail:
| |
Collapse
|
20
|
Kozan A, Kilic N, Alacam H, Guzel A, Guvenc T, Acikgoz M. The Effects of Dexamethasone and L-NAME on Acute Lung Injury in Rats with Lung Contusion. Inflammation 2016; 39:1747-56. [DOI: 10.1007/s10753-016-0409-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Hubbard WB, Lashof-Sullivan MM, Lavik EB, VandeVord PJ. Steroid-Loaded Hemostatic Nanoparticles Combat Lung Injury after Blast Trauma. ACS Macro Lett 2015; 4:387-391. [PMID: 27668129 PMCID: PMC5033257 DOI: 10.1021/acsmacrolett.5b00061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In response to the lack of therapeutics for internal bleeding following a traumatic event, we synthesized hemostatic dexamethasone nanoparticles (hDNP) to help alleviate internal hemorrhaging. hDNP consist of a block copolymer, poly(lactic-co-glycolic acid)-poly(l-lysine)-poly(ethylene glycol) conjugated to a peptide, glycine-arginine-glycine-aspartic acid-serine (GRGDS). These particles were evaluated as treatment for primary blast lung injury in a rodent model. Animals were randomly placed into test and control groups, exposed to blast and given immediate injection. Recovery was assessed using physiological parameters and immunohistochemistry. We found that dexamethasone-loaded hemostatic nanoparticles alleviate physiological deprivation caused by blast injury and reduce lung injury damage.
Collapse
Affiliation(s)
- William B. Hubbard
- School of Biomedical Engineering and Sciences, Virginia Tech University, Blacksburg, VA
| | | | - Erin B. Lavik
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Pamela J. VandeVord
- School of Biomedical Engineering and Sciences, Virginia Tech University, Blacksburg, VA
- Research Services, Salem VAMC, Salem, VA
| |
Collapse
|
22
|
Neunaber C, Angela Y, Safi S, Krettek C, Zeckey C. Beneficial effects of finasteride on hepatic and pulmonary immune response after trauma hemorrhage in mice. Cytokine 2015; 74:123-9. [PMID: 25907835 DOI: 10.1016/j.cyto.2015.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED The literature reveals evidence for a gender specific outcome after major trauma and hemorrhage. Increased levels of male sex hormones such as testosterone and even more dihydrotestosterone (DHT) mediate negative effects on the posttraumatic immune response. Pretreatment with finasteride several days before trauma hemorrhage (TH) led to improved outcomes in mice. We hypothesized that finasteride mediates its protective effects also when administered after TH within the resuscitation process. METHODS Male C57BL/6N-mice underwent TH (blood pressure: 35 mmHg, 90 min) followed by finasteride application and fluid resuscitation. Plasma cytokines (MIP-1β, TNF-α, MCP-1, MCP-3, IL-6), productive capacity of alveolar macrophages (AM) and hepatic Kupffer cells (KC) and systemic DHT levels were determined 4 h and 24 h thereafter. Pulmonary and hepatic infiltration of PMN was determined by immunohistochemical staining. RESULTS Finasteride treatment resulted in reduced levels of systemic cytokines. This was accompanied by a reduced posttraumatic cytokine secretion of AM as well as Kupffer cells, thereby reducing hepatic distant organ damage as measured by reduced PMN infiltration. Systemic DHT levels were decreased following finasteride treatment. CONCLUSION Finasteride exerts salutary effects on the pulmonary and hepatic immune response using a therapeutic approach following TH in mice. Therefore, finasteride might represent a potential agent following multiple trauma and hemorrhage.
Collapse
Affiliation(s)
| | - Yenny Angela
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Schabnam Safi
- Trauma Department, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
23
|
Aksu B, Ayvaz S, Aksu F, Karaca T, Cemek M, Ayaz A, Demirtaş S. Effects of sphingosylphosphorylcholine against oxidative stress and acute lung ınjury ınduced by pulmonary contusion in rats. J Pediatr Surg 2015; 50:591-7. [PMID: 25840069 DOI: 10.1016/j.jpedsurg.2014.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND/PURPOSE The goal of this study was to evaluate effects of exogenous sphingosylphosphorylcholine (SPC) administration on acute lung injury induced by pulmonary contusion in rats. METHODS Eight animals were included in each of the following five groups: control, contusion, contusion phosphate-buffered solution (PBS), contusion SPC 2, contusion SPC 10. SPC was administered 3 days at a daily two different doses of 2 μm/ml and 10 μm/ml intraperitoneally. The severity of lung injury was determined by the neutrophil activation and histological and immunohistochemical changes in the lung. Malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione (GSH) were determined to evaluate the oxidative status in the lung tissue. RESULTS Treatment with 2 μM SPC inhibited the increase in lung MDA and NO levels significantly and also attenuated the depletion of SOD, GPx, and GSH in the lung injury induced by pulmonary contusion. These data were supported by histopathological findings. The inducible nitric oxide synthase (iNOS) positive cells and apoptotic cells in the lung tissue were observed to be reduced with the 2 μM SPC treatment. But, the 10 μM SPC treatment did not provide similar effects. CONCLUSIONS In conclusion, these findings suggested that 2 μM SPC can attenuate lung damage in pulmonary contusion by prevention of oxidative stress, inflammatory process and apoptosis. All these findings suggest that low dose SPC may be a promising new therapeutic agent for acute lung injury.
Collapse
Affiliation(s)
- Burhan Aksu
- Istanbul Medeniyet University, Göztepe Training and Research Hospital, Department of Pediatric Surgery, Istanbul, Turkey.
| | - Süleyman Ayvaz
- Trakya University, Faculty of Medicine, Department of Pediatric Surgery, Edirne, Turkey
| | - Feyza Aksu
- Istanbul Medeniyet University, Göztepe Training and Research Hospital, Department of Cardiology, Istanbul, Turkey
| | - Turan Karaca
- Trakya University, Faculty of Medicine, Department of Histology and Embryology, Edirne, Turkey
| | - Mustafa Cemek
- Yildiz Technical University, Biochemistry Division, Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Istanbul, Turkey
| | - Ahmet Ayaz
- Yildiz Technical University, Biochemistry Division, Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Istanbul, Turkey
| | - Selim Demirtaş
- Trakya University, Faculty of Medicine, Department of Histology and Embryology, Edirne, Turkey
| |
Collapse
|
24
|
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), can result from both direct and indirect pulmonary damage caused by trauma and shock. In the course of ALI/ARDS, mediators released from resident cells, such as alveolar macrophages, may act as chemoattractants for invading cells and stimulate local cells to build up a proinflammatory micromilieu. Depending on the trauma setting, the role of alveolar macrophages is differentially defined. This review focuses on alveolar macrophage function after blunt chest trauma, ischemia/reperfusion, hemorrhagic shock, and thermal burns.
Collapse
|
25
|
Abstract
Tissue injury, such as burns or inflammation, can lead to the generation of oxidized lipids capable of regulating hemodynamic, pulmonary, immune, and neuronal responses. However, it is not known whether traumatic injury leads to a selective upregulation of transcripts encoding oxidative enzymes capable of generating these mediators. Here, we analyzed microarrays taken from circulating leukocytes of 187 trauma subjects compared with 97 control volunteers for changes in the expression of 105 oxidative enzymes and related receptors. The results indicate that major blunt trauma triggers a selective change in gene expression, with some transcripts undergoing highly significant upregulation (e.g., CYP2C19), while others display significantly reduced expression (e.g., CYP2U1). This pattern in gene expression was maintained for up to 28 days after injury. In addition, the level of expression of CYP2A7, CYP2B7P1, CYP2C19, CYP2E1, CYP4A11, CYP4F3, CYP8B1, CYP19A1, CYP20A1, CYP51A1, HMOX2, NCF1, NCF2, and NOX1 and the receptors PTGER2 and ESR2 were correlated with clinical trauma indices such as APACHE II, Max Denver Scale, and the Injury Severity Score. Demonstration of a selective alteration in expression of transcripts encoding oxidative enzymes reveals a complex molecular response to major blunt trauma in circulating leukocytes. Furthermore, the association between changes in gene expression and clinical trauma scores suggests an important role in integrating pathophysiologic responses to blunt force trauma.
Collapse
|
26
|
Role of alveolar macrophages in the regulation of local and systemic inflammation after lung contusion. J Trauma Acute Care Surg 2014; 76:386-93. [DOI: 10.1097/ta.0b013e3182aaa499] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Topcu-Tarladacalisir Y, Tarladacalisir T, Sapmaz-Metin M, Karamustafaoglu A, Uz YH, Akpolat M, Cerkezkayabekir A, Turan FN. N-Acetylcysteine counteracts oxidative stress and protects alveolar epithelial cells from lung contusion-induced apoptosis in rats with blunt chest trauma. J Mol Histol 2014; 45:463-71. [PMID: 24442604 DOI: 10.1007/s10735-014-9563-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/09/2014] [Indexed: 01/11/2023]
Abstract
The aim of this study was to investigate the protective effects of N-acetylcysteine (NAC) on peroxidative and apoptotic changes in the contused lungs of rats following blunt chest trauma. The rats were randomly divided into three groups: control, contusion, and contusion + NAC. All the rats, apart from those in the control group, performed moderate lung contusion. A daily intramuscular NAC injection (150 mg/kg) was given immediately following the blunt chest trauma and was continued for two additional days following cessation of the trauma. Samples of lung tissue were taken in order to evaluate the tissue malondialdehyde (MDA) level, histopathology, and epithelial cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and active caspase-3 immunostaining. In addition, we immunohistochemically evaluated the expression of surfactant protein D (SP-D) in the lung tissue. The blunt chest trauma-induced lung contusion resulted in severe histopathological injury, as well as an increase in the MDA level and in the number of cells identified on TUNEL assay together with active caspase-3 positive epithelial cells, but a decrease in the number of SP-D positive alveolar type 2 (AT-2) cells. NAC treatment effectively attenuated histopathologic, peroxidative, and apoptotic changes, as well as reducing alterations in SP-D expression in the lung tissue. These findings indicate that the beneficial effects of NAC administrated following blunt chest trauma is related to the regulation of oxidative stress and apoptosis.
Collapse
|
28
|
Wu X, Song X, Li N, Zhan L, Meng Q, Xia Z. Protective effects of dexmedetomidine on blunt chest trauma–induced pulmonary contusion in rats. J Trauma Acute Care Surg 2013; 74:524-30. [DOI: 10.1097/ta.0b013e31827d5de3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Patel VS, Sitapara RA, Gore A, Phan B, Sharma L, Sampat V, Li JH, Yang H, Chavan SS, Wang H, Tracey KJ, Mantell LL. High Mobility Group Box-1 mediates hyperoxia-induced impairment of Pseudomonas aeruginosa clearance and inflammatory lung injury in mice. Am J Respir Cell Mol Biol 2012; 48:280-7. [PMID: 23087050 DOI: 10.1165/rcmb.2012-0279oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanical ventilation with supraphysiological concentrations of oxygen (hyperoxia) is routinely used to treat patients with respiratory distress. However, a significant number of patients on ventilators exhibit enhanced susceptibility to infections and develop ventilator-associated pneumonia (VAP). Pseudomonas aeruginosa (PA) is one of the most common species of bacteria found in these patients. Previously, we demonstrated that prolonged exposure to hyperoxia can compromise the ability of alveolar macrophages (AMs), an essential part of the innate immunity, to phagocytose PA. This study sought to investigate the potential molecular mechanisms underlying hyperoxia-compromised innate immunity against bacterial infection in a murine model of PA pneumonia. Here, we show that exposure to hyperoxia (≥ 99% O2) led to a significant elevation in concentrations of airway high mobility group box-1 (HMGB1) and increased mortality in C57BL/6 mice infected with PA. Treatment of these mice with a neutralizing anti-HMGB1 monoclonal antibody (mAb) resulted in a reduction in bacterial counts, injury, and numbers of neutrophils in the lungs, and an increase in leukocyte phagocytic activity compared with mice receiving control mAb. This improved phagocytic function was associated with reduced concentrations of airway HMGB1. The correlation between phagocytic activity and concentrations of extracellular HMGB1 was also observed in cultured macrophages. These results indicate a pathogenic role for HMGB1 in hyperoxia-induced impairment with regard to a host's ability to clear bacteria and inflammatory lung injury. Thus, HMGB1 may provide a novel molecular target for improving hyperoxia-compromised innate immunity in patients with VAP.
Collapse
Affiliation(s)
- Vivek S Patel
- Division of Cardiopulmonary Toxicology, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Innate immune response to pulmonary contusion: identification of cell type-specific inflammatory responses. Shock 2012; 37:385-91. [PMID: 22293596 DOI: 10.1097/shk.0b013e3182478478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma, such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety of inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll-like receptors 2 and 4 (TLR2 and TLR4) mediate the inflammatory response to lung injury. In this study, we used chimeric mice generated by adoptive bone marrow transfer between TLR2 or TLR4 and wild-type mice. We found that, in the lung, both bone marrow-derived and nonmyeloid cells contribute to TLR-dependent inflammatory responses after injury in a cell type-specific manner. We also show a novel TLR2-dependent injury mechanism that is associated with enhanced airway epithelial cell apoptosis and increased pulmonary FasL and Fas expression in the lungs from injured mice. Thus, in addition to cardiopulmonary physiological dysfunction, cell type-specific TLR and their differential response to injury may provide novel specific targets for management of patients with pulmonary contusion.
Collapse
|
31
|
Inhaled Hydrogen Sulfide Induces Suspended Animation, But Does Not Alter the Inflammatory Response After Blunt Chest Trauma. Shock 2012; 37:197-204. [DOI: 10.1097/shk.0b013e31823f19a0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Wu XJ, Xia ZY, Wang LL, Luo T, Zhan LY, Meng QT, Song XM. Effects of penehyclidine hydrochloride on pulmonary contusion from blunt chest trauma in rats. Injury 2012; 43:232-6. [PMID: 22055139 DOI: 10.1016/j.injury.2011.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/03/2011] [Accepted: 10/09/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Toll-like receptor 4 (TLR4) is widely recognised as a pattern recognition receptor (PRR) in the triggering of innate immunity. Lung inflammation and systemic innate immune responses are dependent on TLR4 activation undergoing pulmonary contusion. Therefore, the author investigated the effects of penehyclidine hydrochloride (PHC) on the expression of TLR4 and inflammatory responses of blunt chest trauma-induced pulmonary contusion. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats were randomly assigned into three groups: normal control (NC) group, pulmonary contusion (PC) group and penehyclidine hydrochloride treatment (PHC) group. Pulmonary contusion was induced in anesthetised rats at fixed chest impact energy of 2.45J. Lung injury was assessed by the histopathology changes, arterial blood gas and myeloperoxidase (MPO) activity of lung. The serum tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assays (ELISA). The expression of TLR4 was determined by immunohistochemistry. RESULTS Blunt chest trauma produced leucocytosis in the interstitial capillaries, hypoxemia, and increased MPO activity. The expressions of TNF-α, IL-6 and TLR4 in the lung were significantly enhanced during pulmonary contusion. PHC treatments effectively attenuated pulmonary inflammation responses, as shown by improved pulmonary oxygenation, histopathology damage, decreased the MPO activity, the expressions of TNF-α, IL-6, and TLR4 after lung injury. CONCLUSION It might be concluded that PHC exhibit anti-inflammatory and protective effects in traumatic lung injury via the inhibition of the TLR4 pathway.
Collapse
Affiliation(s)
- Xiao-Jing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Wuchang, 238 of the Liberation Road, Hubei Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Alveolar Macrophage Phagocytosis Is Enhanced After Blunt Chest Trauma and Alters the Posttraumatic Mediator Release. Shock 2011; 36:621-7. [DOI: 10.1097/shk.0b013e318234f8a0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Neher MD, Weckbach S, Flierl MA, Huber-Lang MS, Stahel PF. Molecular mechanisms of inflammation and tissue injury after major trauma--is complement the "bad guy"? J Biomed Sci 2011; 18:90. [PMID: 22129197 PMCID: PMC3247859 DOI: 10.1186/1423-0127-18-90] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/30/2011] [Indexed: 02/07/2023] Open
Abstract
Trauma represents the leading cause of death among young people in industrialized countries. Recent clinical and experimental studies have brought increasing evidence for activation of the innate immune system in contributing to the pathogenesis of trauma-induced sequelae and adverse outcome. As the "first line of defense", the complement system represents a potent effector arm of innate immunity, and has been implicated in mediating the early posttraumatic inflammatory response. Despite its generic beneficial functions, including pathogen elimination and immediate response to danger signals, complement activation may exert detrimental effects after trauma, in terms of mounting an "innocent bystander" attack on host tissue. Posttraumatic ischemia/reperfusion injuries represent the classic entity of complement-mediated tissue damage, adding to the "antigenic load" by exacerbation of local and systemic inflammation and release of toxic mediators. These pathophysiological sequelae have been shown to sustain the systemic inflammatory response syndrome after major trauma, and can ultimately contribute to remote organ injury and death. Numerous experimental models have been designed in recent years with the aim of mimicking the inflammatory reaction after trauma and to allow the testing of new pharmacological approaches, including the emergent concept of site-targeted complement inhibition. The present review provides an overview on the current understanding of the cellular and molecular mechanisms of complement activation after major trauma, with an emphasis of emerging therapeutic concepts which may provide the rationale for a "bench-to-bedside" approach in the design of future pharmacological strategies.
Collapse
Affiliation(s)
- Miriam D Neher
- Department of Orthopaedic Surgery, University of Colorado Denver, School of Medicine, Denver Health Medical Center, 777 Bannock Street, Denver, CO 80204, USA
| | | | | | | | | |
Collapse
|
35
|
Zeckey C, Andruszkow H, Neunaber C, Frink M, Schirmer B, Mommsen P, Barkhausen T, Krettek C, Hildebrand F. Protective effects of finasteride on the pulmonary immune response in a combined model of trauma-hemorrhage and polymicrobial sepsis in mice. Cytokine 2011; 56:305-11. [PMID: 21767963 DOI: 10.1016/j.cyto.2011.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 12/13/2022]
Abstract
UNLABELLED Literature supports findings about a gender specific outcome following multiple trauma. Male sex hormones such as dihydrotestosterone (DHT) exert deleterious effects on the posttraumatic immune response whereas increased estradiol concentrations are correlated with improved outcome. Pretreatment with the 5α-reductase inhibitor finasteride resulted in an improved outcome following trauma-hemorrhage (TH) in mice. The present study tested the hypothesis that finasteride exerts beneficial effects on the posttraumatic immune response also in a combined setting of TH and sepsis when administered during the resuscitation process. MATERIAL AND METHODS Male C57BL/6N-mice were subjected to TH (blood pressure, 35 mm Hg, 60 min) followed by finasteride application and fluid resuscitation. Thereafter, finasteride was administered every 12h. 24h after TH, sepsis was induced by cecal ligation and puncture (CLP) or sham operation was performed. Plasma cytokines (MIP-1α, MIP-1β, TNF-α, MCP-1, IL-6), productive capacity by alveolar macrophages (AM) and systemic estradiol levels were determined 4 h thereafter. The expression of pro-inflammatory mediators in lung tissue was evaluated by PCR. Pulmonary infiltration of PMN was determined by immunohistochemical staining. RESULTS Finasteride treatment resulted in a reduced posttraumatic cytokine secretion of AM as well as in a decreased concentration of MCP-1 and MIP-1β in lung tissue. Systemic estradiol levels were increased following finasteride treatment. CONCLUSION Finasteride mediates salutary effects on the pulmonary immune response using a therapeutical approach following TH-CLP in mice. Thus, finasteride might represent a relevant therapeutic substance following major trauma also in the clinical setting.
Collapse
|
36
|
Altered Expression OF Fas Receptor on Alveolar Macrophages and Inflammatory Effects of Soluble Fas Ligand Following Blunt Chest Trauma. Shock 2011; 35:610-7. [DOI: 10.1097/shk.0b013e318213665d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Inflammatory Alterations in a Novel Combination Model of Blunt Chest Trauma and Hemorrhagic Shock. ACTA ACUST UNITED AC 2011; 70:189-96. [DOI: 10.1097/ta.0b013e3181d7693c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Mommsen P, Barkhausen T, Frink M, Zeckey C, Probst C, Krettek C, Hildebrand F. Productive capacity of alveolar macrophages and pulmonary organ damage after femoral fracture and hemorrhage in IL-6 knockout mice. Cytokine 2010; 53:60-5. [PMID: 20934884 DOI: 10.1016/j.cyto.2010.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/06/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022]
Abstract
Alveolar macrophages (AM) play an important role in the pathogenesis of posttraumatic pulmonary failure, and have been identified as major source of pulmonary cytokines. The effects of locally generated IL-6 as well as femoral fracture on the pulmonary inflammatory response and organ damage have not been fully elucidated. In the present study we evaluated the influence of femoral fracture, isolated or in combination with hemorrhage, on the immune function of AM and remote lung injury, and investigated the role of pulmonary IL-6 within this setting. 18 wild type (WT) and 18 IL-6 knockout mice (IL-6(-/-)) underwent standardized femoral fracture, isolated or in combination with volume-controlled hemorrhage, followed by fluid resuscitation and splint fixation of the fracture. Animals were sacrificed 4h after induction of fracture and hemorrhage. Animals were randomly assigned to three study groups (each consisting of six animals). Besides sham groups, experimental groups included animals with isolated femoral fracture or in combination with hemorrhagic shock. Cytokine release of AM was determined by flow cytometry. Pulmonary damage in terms of interstitial thickening and lung neutrophil infiltration was assessed by histology and immunohistology. The productive capacity of AM for pro-inflammatory cytokines was increased after isolated femoral fracture in WT and IL-6(-/-) mice. An additional hemorrhagic insult resulted in a further enhancement of pro-inflammatory cytokine release and an increased MCP-1 secretion in WT and IL-6(-/-) animals. MCP-1 and pro-inflammatory cytokine production of AM was attenuated in IL-6(-/-) mice compared to the respective WT groups. Interstitial thickening and lung neutrophil infiltration was only observed after femoral fracture combined with hemorrhagic shock with an attenuation of the pulmonary organ damage in IL-6(-/-) compared to WT animals. These results support the role of IL-6 as a therapeutic target for posttraumatic immune modulation. With an increased pro-inflammatory mediator release, already an isolated femoral fracture seems to influence the immune response of AM.
Collapse
Affiliation(s)
- P Mommsen
- Trauma Department, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Mantecca P, Farina F, Moschini E, Gallinotti D, Gualtieri M, Rohr A, Sancini G, Palestini P, Camatini M. Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles. Toxicol Lett 2010; 198:244-54. [DOI: 10.1016/j.toxlet.2010.07.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
|
40
|
Abstract
OBJECTIVE This study was designed to determine whether lung contusion induces an increased pulmonary recruitment of monocytes as a source of alveolar macrophages and which mediators are involved. SETTING AND DESIGN Prospective animal study. SUBJECTS AND INTERVENTIONS Male Sprague-Dawley rats were subjected to chest trauma by a single blast wave. MEASUREMENTS Chemokine concentrations in bronchoalveolar lavage fluids and supernatants of alveolar macrophages, chemokine and chemokine receptor mRNA expressions in monocytes, pulmonary interstitial macrophages, and alveolar macrophages isolated after trauma or sham procedure were evaluated. Immigration of monocytes was determined by staining alveolar macrophages with the fluorescent marker PKH26 before chest trauma. Chemotaxis of naïve monocytes in response to bronchoalveolar lavage or supernatants from alveolar macrophages isolated after trauma or sham procedure and the migratory response of monocytes isolated after trauma/sham to recombinant chemokines were measured. MAIN RESULTS Chemokine levels in bronchoalveolar lavage and alveolar macrophage supernatants and the percentage of monocytes migrated to the lungs were increased after chest trauma. Lung contusion enhanced the mRNA expression for CCR2 in monocytes and interstitial macrophages and for monocyte chemotactic protein-1 in alveolar macrophages. Migration of naïve monocytes vs. bronchoalveolar lavage or alveolar macrophage supernatants from traumatized animals was increased when compared with samples from shams. Monocytes isolated 2 hrs after trauma showed a reduced migration to CINC-1 or monocyte chemotactic protein-1 compared with sham. CONCLUSIONS Alveolar macrophages seem to contribute to increased chemokine concentrations in alveoli of animals subjected to blunt chest trauma. Mediators released by alveolar macrophage are potent stimuli for monocyte migration. Monocytes alter their chemokine receptor expression and are recruited to the lungs.
Collapse
|
41
|
Liener UC, Perl M, Huber-Lang MS, Seitz DH, Brückner UB, Gebhard F, Knöferl MW. Is the function of alveolar macrophages altered following blunt chest trauma? Langenbecks Arch Surg 2010; 396:251-9. [DOI: 10.1007/s00423-010-0645-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 03/22/2010] [Indexed: 11/30/2022]
|
42
|
Marraro GA, Denaro C, Spada C, Luchetti M, Giansiracusa C. Selective medicated (saline + natural surfactant) bronchoalveolar lavage in unilateral lung contusion. A clinical randomized controlled trial. J Clin Monit Comput 2010; 24:73-81. [PMID: 20012912 DOI: 10.1007/s10877-009-9213-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/25/2009] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Open lung and low tidal volume ventilation appear to be a promising ventilation for chest trauma as it can reduce ARDS and improve outcome. Local therapy (e.g. BAL) can be synergic to remove from the lung the debris, mitigate inflammatory cascade and avoid damage spreading to not compromised lung areas. MATERIALS AND METHODS 44 pulmonary contused patients were randomized to receive broncho-suction and volume controlled low tidal volume ventilation-VCLTVV (Control Group) or the same ventilation plus medicated (saline + surfactant) BAL (Treatment Group). Tidal volume <10 ml/kg, PEEP of 10-12 cm H(2)O and PaO(2) 60-100 mm Hg and PaCO(2) 35-45 mm Hg were used in both groups. BAL was performed using a fiberscope. 4 boluses of 25 ml saline with 2.4 mg/ml of surfactant were introduced into each contused lobe in which, subsequently, 240 mg of surfactant was instilled. RESULTS All patients survived. In the Control Group 18 patients developed pneumonia, 5 ARDS and days of intubation were 11.50 (3.83) compared to 5.05 (1.21) of Treatment Group in which OI and PaO(2)/FiO(2) significantly improved from 36 h. CONCLUSIONS VCLTVV alone was not able to prevent ARDS and infection in the Control Group as the reduction of intubation. In the Treatment Group, VCLTVV and medicated BAL facilitated the removal of degradated lung material and recruited the contused lung regions, enabling the healing of the lung pathology.
Collapse
Affiliation(s)
- Giuseppe A Marraro
- Anesthesia and Intensive Care Department, A.O. Fatebenefratelli and Ophthalmiatric Hospital, Milan, Italy.
| | | | | | | | | |
Collapse
|
43
|
Cui T, Miksa M, Wu R, Komura H, Zhou M, Dong W, Wang Z, Higuchi S, Chaung W, Blau SA, Marini CP, Ravikumar TS, Wang P. Milk fat globule epidermal growth factor 8 attenuates acute lung injury in mice after intestinal ischemia and reperfusion. Am J Respir Crit Care Med 2009; 181:238-46. [PMID: 19892861 DOI: 10.1164/rccm.200804-625oc] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Milk fat globule epidermal growth factor 8 (MFG-E8) is a potent opsonin for the clearance of apoptotic cells and is produced by mononuclear cells of immune competent organs including the spleen and lungs. It attenuates chronic and acute inflammation such as autoimmune glomerulonephritis and bacterial sepsis by enhancing apoptotic cell clearance. Ischemia-reperfusion (I/R) injury of the gut results in severe inflammation, apoptosis, and remote organ damage, including acute lung injury (ALI). OBJECTIVES To determine whether MFG-E8 attenuates intestinal and pulmonary inflammation after gut I/R. METHODS Wild-type (WT) and MFG-E8(-/-) mice underwent superior mesenteric artery occlusion for 90 minutes, followed by reperfusion for 4 hours. A group of WT mice was treated with 0.4 microg/20 g recombinant murine MFG-E8 (rmMFG-E8) at the beginning of reperfusion. Four hours after reperfusion, MFG-E8, cytokines, myeloperoxidase activity, apoptosis, and histopathology were assessed. A 24-hour survival study was conducted in rmMFG-E8- and vehicle-treated WT mice. MEASUREMENTS AND MAIN RESULTS Mesenteric I/R caused severe widespread injury and inflammation of the small intestines and remote organs, including the lungs. MFG-E8 levels decreased in the spleen and lungs by 50 to 60%, suggesting impaired apoptotic cell clearance. Treatment with rmMFG-E8 significantly suppressed inflammation (TNF-alpha, IL-6, IL-1beta, and myeloperoxidase) and injury of the lungs, liver, and kidneys. MFG-E8-deficient mice suffered from greatly increased inflammation and potentiated ALI, whereas treatment with rmMFG-E8 significantly improved the survival in WT mice. CONCLUSIONS MFG-E8 attenuates inflammation and ALI after gut I/R and may represent a novel therapeutic agent.
Collapse
Affiliation(s)
- Tianpen Cui
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Increased plasma kynurenine values and kynurenine-tryptophan ratios after major trauma are early indicators for the development of sepsis. Shock 2009; 32:29-34. [PMID: 19060785 DOI: 10.1097/shk.0b013e31819714fa] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kynurenine, the major degradation product of tryptophan has been shown to directly damage tissues, but its possible contribution to posttraumatic morbidity is unknown. Here, we studied the kinetics of kynurenine in patients after major trauma and whether this correlates with the development of posttraumatic sepsis. Kynurenine and tryptophan levels of 60 multiple-injured patients with Injury Severity Score of more than 16 were quantified prospectively by high-performance liquid chromatography. Blood samples were obtained daily from admission until day 10 after admission. Significantly increased kynurenine values were detectable already at day 1 after admission in blood from patients who later developed sepsis, regardless of injury pattern (P < 0.01). In contrast, kynurenine values of nonsepsis patients remained low throughout the observation period. However, all patients exhibited significantly decreased tryptophan values versus healthy controls (P < 0.01). Moreover, significantly increased kynurenine-tryptophan ratios rapidly predicted subsequent sepsis, multiple organ failure, and death (P < 0.01). Both increased kynurenine values and kynurenine-tryptophan ratios predicted posttraumatic development of sepsis and organ failure. This ought to be validated in subsequent studies.
Collapse
|
45
|
Raghavendran K, Notter RH, Davidson BA, Helinski JD, Kunkel SL, Knight PR. Lung contusion: inflammatory mechanisms and interaction with other injuries. Shock 2009; 32:122-30. [PMID: 19174738 PMCID: PMC2711988 DOI: 10.1097/shk.0b013e31819c385c] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This article reviews current animal models and laboratory studies investigating the pathophysiology of lung contusion (LC), a common and severe condition in patients with blunt thoracic trauma. Emphasis is on studies elucidating cells, mediators, receptors, and processes important in the innate pulmonary inflammatory response that contribute to LC injury. Surfactant dysfunction in the pathogenesis of LC is also discussed, as is the potential role of epithelial cell or neutrophil apoptosis. Studies examining combination injuries where LC is exacerbated by secondary insults such as gastric aspiration in trauma patients are also noted. The need for continuing mechanism-based research to further clarify the pathophysiology of LC injury, and to define and test potential therapeutic interventions targeting specific aspects of inflammation or surfactant dysfunction to improve clinical outcomes in patients with LC, is also emphasized.
Collapse
|
46
|
Sun L, Guo RF, Newstead MW, Standiford TJ, Macariola DR, Shanley TP. Effect of IL-10 on neutrophil recruitment and survival after Pseudomonas aeruginosa challenge. Am J Respir Cell Mol Biol 2008; 41:76-84. [PMID: 19097982 DOI: 10.1165/rcmb.2008-0202oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-10 is a potent, endogenous anti-inflammatory cytokine known to decrease cytokine and keratinocyte-derived chemokine (KC) expression. Traditionally, in vivo effects of IL-10 were extrapolated from studies employing systemic antibody neutralization. As a result, divergent data regarding the protective and/or harmful roles of IL-10 have been reported. In this study, we used a lung-specific, tetracycline-inducible IL-10 overexpression-transgenic (IL-10 OE) mouse to study the effects of IL-10 overexpression on Pseudomonas aeruginosa-induced lung inflammation and corresponding survival in mice. Overexpression of IL-10 in the lung significantly increased mortality. During the early phase after infection (6-hours after infection), neutrophil recruitment as well as cytokine (TNF-alpha) and chemokine (KC) expression were significantly decreased in the IL-10 OE mice, which resulted in attenuated bacterial clearance. In contrast, overzealous production of KC and TNF-alpha intensified neutrophil infiltration and increased vascular leakage in IL-10 OE mice at the later stage of infection (24 hours after infection). Neutrophil depletion showed impaired bacterial clearance in both control and IL-10 OE mice, and further enhanced mouse mortality, whereas exogenous administration of KC reversed this finding. Our data indicate that early neutrophil recruitment is important for combating bacterial infection, and that the inhibition of neutrophil recruitment by IL-10 results in insufficient bacteria clearance in the lung, leading to excessive development of inflammation and increased mortality.
Collapse
Affiliation(s)
- Lei Sun
- Division of Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, 109 Zina Pitcher Place, 4460 BSRB, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
47
|
What's new in Shock, November 2008? Shock 2008; 30:485-6. [PMID: 18923300 DOI: 10.1097/shk.0b013e318189122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|