1
|
Brinkley L, Brock MA, Stinson G, Bilgili A, Jacobs JP, Bleiweis M, Peek GJ. The biological role and future therapeutic uses of nitric oxide in extracorporeal membrane oxygenation, a narrative review. Perfusion 2025; 40:83-91. [PMID: 38226651 DOI: 10.1177/02676591241228169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
BACKGROUND Nitric oxide (NO) is a gas naturally produced by the human body that plays an important physiological role. Specifically, it binds guanylyl cyclase to induce smooth muscle relaxation. NO's other protective functions have been well documented, particularly its protective endothelial functions, effects on decreasing pulmonary vascular resistance, antiplatelet, and anticoagulation properties. The use of nitric oxide donors as vasodilators has been known since 1876. Inhaled nitric oxide has been used as a pulmonary vasodilator and to improve ventilation perfusion matching since the 1990s. It is currently approved by the United States Food and Drug Administration for neonates with hypoxic respiratory failure, however, it is used off-label for acute respiratory distress syndrome, acute bronchiolitis, and COVID-19. PURPOSE In this article we review the currently understood biological action and therapeutic uses of NO through nitric oxide donors such as inhaled nitric oxide. We will then explore recent studies describing use of NO in cardiopulmonary bypass and extracorporeal membrane oxygenation and speculate on NO's future uses.
Collapse
|
2
|
Clark GC, Lai A, Agarwal A, Liu Z, Wang XY. Biopterin metabolism and nitric oxide recoupling in cancer. Front Oncol 2024; 13:1321326. [PMID: 38469569 PMCID: PMC10925643 DOI: 10.3389/fonc.2023.1321326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 03/13/2024] Open
Abstract
Tetrahydrobiopterin is a cofactor necessary for the activity of several enzymes, the most studied of which is nitric oxide synthase. The role of this cofactor-enzyme relationship in vascular biology is well established. Recently, tetrahydrobiopterin metabolism has received increasing attention in the field of cancer immunology and immunotherapy due to its involvement in the cytotoxic T cell response. Past research has demonstrated that when the availability of BH4 is low, as it is in chronic inflammatory conditions and tumors, electron transfer in the active site of nitric oxide synthase becomes uncoupled from the oxidation of arginine. This results in the production of radical species that are capable of a direct attack on tetrahydrobiopterin, further depleting its local availability. This feedforward loop may act like a molecular switch, reinforcing low tetrahydrobiopterin levels leading to altered NO signaling, restrained immune effector activity, and perpetual vascular inflammation within the tumor microenvironment. In this review, we discuss the evidence for this underappreciated mechanism in different aspects of tumor progression and therapeutic responses. Furthermore, we discuss the preclinical evidence supporting a clinical role for tetrahydrobiopterin supplementation to enhance immunotherapy and radiotherapy for solid tumors and the potential safety concerns.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alan Lai
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Zheng Liu
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
3
|
Brücksken KA, Loreto Palacio P, Hanschmann EM. Thiol Modifications in the Extracellular Space-Key Proteins in Inflammation and Viral Infection. Front Immunol 2022; 13:932525. [PMID: 35833136 PMCID: PMC9271835 DOI: 10.3389/fimmu.2022.932525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modifications (PTMs) allow to control molecular and cellular functions in response to specific signals and changes in the microenvironment of cells. They regulate structure, localization, stability, and function of proteins in a spatial and temporal manner. Among them, specific thiol modifications of cysteine (Cys) residues facilitate rapid signal transduction. In fact, Cys is unique because it contains the highly reactive thiol group that can undergo different reversible and irreversible modifications. Upon inflammation and changes in the cellular microenvironment, many extracellular soluble and membrane proteins undergo thiol modifications, particularly dithiol-disulfide exchange, S-glutathionylation, and S-nitrosylation. Among others, these thiol switches are essential for inflammatory signaling, regulation of gene expression, cytokine release, immunoglobulin function and isoform variation, and antigen presentation. Interestingly, also the redox state of bacterial and viral proteins depends on host cell-mediated redox reactions that are critical for invasion and infection. Here, we highlight mechanistic thiol switches in inflammatory pathways and infections including cholera, diphtheria, hepatitis, human immunodeficiency virus (HIV), influenza, and coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
4
|
Endothelial cell-surface tissue transglutaminase inhibits neutrophil adhesion by binding and releasing nitric oxide. Sci Rep 2017; 7:16163. [PMID: 29170410 PMCID: PMC5701052 DOI: 10.1038/s41598-017-16342-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/10/2017] [Indexed: 02/03/2023] Open
Abstract
Nitric oxide (NO) produced by endothelial cells in response to cytokines displays anti-inflammatory activity by preventing the adherence, migration and activation of neutrophils. The molecular mechanism by which NO operates at the blood-endothelium interface to exert anti-inflammatory properties is largely unknown. Here we show that on endothelial surfaces, NO is associated with the sulfhydryl-rich protein tissue transglutaminase (TG2), thereby endowing the membrane surfaces with anti-inflammatory properties. We find that tumor necrosis factor-α-stimulated neutrophil adherence is opposed by TG2 molecules that are bound to the endothelial surface. Alkylation of cysteine residues in TG2 or inhibition of endothelial NO synthesis renders the surface-bound TG2 inactive, whereas specific, high affinity binding of S-nitrosylated TG2 (SNO-TG2) to endothelial surfaces restores the anti-inflammatory properties of the endothelium, and reconstitutes the activity of endothelial-derived NO. We also show that SNO-TG2 is present in healthy tissues and that it forms on the membranes of shear-activated endothelial cells. Thus, the anti-inflammatory mechanism that prevents neutrophils from adhering to endothelial cells is identified with TG2 S-nitrosylation at the endothelial cell-blood interface.
Collapse
|
5
|
Furuta S. Basal S-Nitrosylation Is the Guardian of Tissue Homeostasis. Trends Cancer 2017; 3:744-748. [PMID: 29120749 DOI: 10.1016/j.trecan.2017.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/30/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Recent studies have uncovered that nitric oxide (NO) signaling is largely conducted by S-nitrosylation, involving >3000 proteins. The nitrosyl group could then travel further by transnitrosylation or be secreted, enabling regulation of the whole tissue. A subset of proteins are constitutively S-nitrosylated, playing roles in the regulation of tissue homeostasis.
Collapse
Affiliation(s)
- Saori Furuta
- Department of Cancer Biology, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| |
Collapse
|
6
|
S-Nitrosoglutathione Reductase Deficiency Confers Improved Survival and Neurological Outcome in Experimental Cerebral Malaria. Infect Immun 2017; 85:IAI.00371-17. [PMID: 28674030 DOI: 10.1128/iai.00371-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022] Open
Abstract
Artesunate remains the mainstay of treatment for cerebral malaria, but it is less effective in later stages of disease when the host inflammatory response and blood-brain barrier integrity dictate clinical outcomes. Nitric oxide (NO) is an important regulator of inflammation and microvascular integrity, and impaired NO bioactivity is associated with fatal outcomes in malaria. Endogenous NO bioactivity in mammals is largely mediated by S-nitrosothiols (SNOs). Based on these observations, we hypothesized that animals deficient in the SNO-metabolizing enzyme, S-nitrosoglutathione reductase (GSNOR), which exhibit enhanced S-nitrosylation, would have improved outcomes in a preclinical model of cerebral malaria. GSNOR knockout (KO) mice infected with Plasmodium berghei ANKA had significantly delayed mortality compared to WT animals (P < 0.0001), despite higher parasite burdens (P < 0.01), and displayed markedly enhanced survival versus the wild type (WT) when treated with the antimalarial drug artesunate (77% versus 38%; P < 0.001). Improved survival was associated with higher levels of protein-bound NO, decreased levels of CD4+ and CD8+ T cells in the brain, improved blood-brain barrier integrity, and improved coma scores, as well as higher levels of gamma interferon. GSNOR KO animals receiving WT bone marrow had significantly reduced survival following P. berghei ANKA infection compared to those receiving KO bone barrow (P < 0.001). Reciprocal transplants established that survival benefits of GSNOR deletion were attributable primarily to the T cell compartment. These data indicate a role for GSNOR in the host response to malaria infection and suggest that strategies to disrupt its activity will improve clinical outcomes by enhancing microvascular integrity and modulating T cell tissue tropism.
Collapse
|
7
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
8
|
Nitric oxide donor agents for the treatment of ischemia/reperfusion injury in human subjects: a systematic review. Shock 2013; 39:229-39. [PMID: 23358103 DOI: 10.1097/shk.0b013e31827f565b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In animal models, administration of nitric oxide (NO) donor agents has been shown to reduce ischemia/reperfusion (I/R) injury. Our aim was to systematically analyze the biomedical literature to determine the effects of NO-donor agent administration on I/R injury in human subjects. We hypothesized that NO-donor agents reduce I/R injury. We performed a search of Cochrane Library, PubMed, CINAHL, conference proceedings, and other sources with no restriction to language using a comprehensive strategy. Study inclusion criteria were as follows: (a) human subjects, (b) documented periods of ischemia and reperfusion, (c) treatment arm composed of NO-donor agent administration, and (d) use of a control arm. We excluded secondary reports, reviews, correspondence, and editorials. We performed a qualitative analysis to collate and summarize treatment effects according to the recommended methodology from the Cochrane Handbook. Twenty-six studies involving multiple etiologies of I/R injury (10 cardiopulmonary bypass, six organ transplant, seven myocardial infarction, three limb tourniquet) met all inclusion and no exclusion criteria. Six (23%) of 26 were considered high-quality studies as per the Cochrane criteria for assessing risk of bias. In 20 (77%) of 26 studies and four (67%) of six high-quality studies, patients treated with NO-donor agents experienced reduced I/R injury compared with controls. Zero clinical studies to date have tested NO-donor agent administration in patients with cerebral I/R injury (e.g., cardiac arrest, stroke). Despite a paucity of high-quality clinical investigations, the preponderance of evidence to date suggests that administration of NO-donor agents may be an effective treatment for I/R injury in human subjects.
Collapse
|
9
|
Methods for detection and characterization of protein S-nitrosylation. Methods 2013; 62:138-50. [PMID: 23628946 DOI: 10.1016/j.ymeth.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/24/2022] Open
Abstract
Reversible protein S-nitrosylation, defined as the covalent addition of a nitroso moiety to the reactive thiol group on a cysteine residue, has received increasing recognition as a critical post-translational modification that exerts ubiquitous influence in a wide range of cellular pathways and physiological processes. Due to the lability of the S-NO bond, which is a dynamic modification, and the low abundance of endogenously S-nitrosylated proteins in vivo, unambiguous identification of S-nitrosylated proteins and S-nitrosylation sites remains methodologically challenging. In this review, we summarize recent advancements and the use of state-of-art approaches for the enrichment, systematic identification and quantitation of S-nitrosylation protein targets and their modification sites at the S-nitrosoproteome scale. These advancements have facilitated the global identification of >3000 S-nitrosylated proteins that are associated with wide range of human diseases. These strategies hold promise to site-specifically unravel potential molecular targets and to change S-nitrosylation-based pathophysiology, which may further the understanding of the potential role of S-nitrosylation in diseases.
Collapse
|
10
|
Hernansanz-Agustín P, Izquierdo-Álvarez A, García-Ortiz A, Ibiza S, Serrador JM, Martínez-Ruiz A. Nitrosothiols in the immune system: signaling and protection. Antioxid Redox Signal 2013; 18:288-308. [PMID: 22746191 PMCID: PMC3518543 DOI: 10.1089/ars.2012.4765] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE In the immune system, nitric oxide (NO) has been mainly associated with antibacterial defenses exerted through oxidative, nitrosative, and nitrative stress and signal transduction through cyclic GMP-dependent mechanisms. However, S-nitrosylation is emerging as a post-translational modification (PTM) involved in NO-mediated cell signaling. RECENT ADVANCES Precise roles for S-nitrosylation in signaling pathways have been described both for innate and adaptive immunity. Denitrosylation may protect macrophages from their own S-nitrosylation, while maintaining nitrosative stress compartmentalized in the phagosomes. Nitrosothiols have also been shown to be beneficial in experimental models of autoimmune diseases, mainly through their role in modulating T-cell differentiation and function. CRITICAL ISSUES Relationship between S-nitrosylation, other thiol redox PTMs, and other NO-signaling pathways has not been always taken into account, particularly in the context of immune responses. Methods for assaying S-nitrosylation in individual proteins and proteomic approaches to study the S-nitrosoproteome are constantly being improved, which helps to move this field forward. FUTURE DIRECTIONS Integrated studies of signaling pathways in the immune system should consider whether S-nitrosylation/denitrosylation processes are among the PTMs influencing the activity of key signaling and adaptor proteins. Studies in pathophysiological scenarios will also be of interest to put these mechanisms into broader contexts. Interventions modulating nitrosothiol levels in autoimmune disease could be investigated with a view to developing new therapies.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Souza-Pinto FJP, Moretti AIS, Cury V, Marcondes W, Velasco IT, Souza HP. Inducible nitric oxide synthase inhibition increases MMP-2 activity leading to imbalance between extracellular matrix deposition and degradation after polypropylene mesh implant. J Biomed Mater Res A 2012; 101:1379-87. [PMID: 23077110 DOI: 10.1002/jbm.a.34440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 01/04/2023]
Abstract
Prosthetic mesh implants are commonly used to correct abdominal wall defects. However, success of the procedure is conditioned by an adequate inflammatory response to the device. We hypothesized that nitric oxide produced by nitric oxide synthase 2 (NOS2) and MMP-2 and -9 participate in response induced by mesh implants in the abdominal wall and, consequently, affect the outcome of the surgical procedure. In the first step, temporal inflammatory markers profile was evaluated. Polypropylene meshes were implanted in the peritoneal side of the abdominal wall of C57Black mice. After 2, 4, 7, 15, and 30 days, tissues around the mesh implant were collected and inflammatory markers were analyzed. In the second step, NOS2 activity was inhibited with nitro-L-arginine methyl ester (L-NAME). Samples were collected after 15 days (when inflammation was reduced), and the inflammatory and tissue remodeling markers were investigated. Polypropylene mesh implant induced a pro-inflammatory environment mediated by intense MMP-2 and -9 activities, NO release, and interleukin-1β production peaking in 7 days and gradually decreasing after 15 days. NOS2 inhibition increased MMP-2 activity and resulted in a higher visceral adhesion incidence at the mesh implantation site when compared with non-treated animals that underwent the same procedure. We conclude that NOS2-derived NO is crucial for adequate response to polypropylene mesh implant integration in the peritoneum. NO deficiency results in an imbalance between extracellular matrix deposition/degradation contributing to visceral adhesions incidence.
Collapse
Affiliation(s)
- Franciso J P Souza-Pinto
- Faculdade de Medicina da Universidade de São Paulo, Emergency Medicine Division, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Pandey MK, Rani R, Zhang W, Setchell K, Grabowski GA. Immunological cell type characterization and Th1-Th17 cytokine production in a mouse model of Gaucher disease. Mol Genet Metab 2012; 106:310-22. [PMID: 22595426 PMCID: PMC3382074 DOI: 10.1016/j.ymgme.2012.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 01/09/2023]
Abstract
Gaucher disease is a lysosomal storage disease resulting from insufficient acid β-glucosidase (glucocerebrosidase, GCase, EC 4.2.1.25) activity and the resultant accumulation of glucosylceramide. Macrophage (Mϕ) lineage cells are thought to be the major disease effectors because of their secretion of numerous cytokines and chemokines that influence other poorly defined immunological cell populations. Increases in several such populations were identified in a Gba1 mouse model (D409V/null; 9V/null) of Gaucher disease including antigen presenting cells (APCs), i.e., Mϕ, dendritic cells (DCs), neutrophils (PMNs), and CD4(+) T cells. FACS analyses showed increases in these cell types in 9V/null liver, spleen lung, and bone marrow. T-cells or APCs enhanced activations were evident by positivity of CD40L, CD69, as well as CD40, CD80, CD86, and MHCII on the respective cells. Mϕ, and, unexpectedly, DCs, PMNs, and T cells, from 9V/null mice showed excess glucosylceramides as potential bases for activation of APCs and T cells to induce Th1 (IFNγ, IL12, TNFα,) and Th17 (IL17A/F) cytokine production. These data imply that excess glucosylceramides in these cells are pivotal for activation of APCs and T cell induction of Th1 and Th17 responses and PMN recruitment in multiple organs of this model of Gaucher disease.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Reena Rani
- Division of Immunobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wujuan Zhang
- Division of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Laboratory of Mass Spectroscopy of the Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kenneth Setchell
- Division of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Laboratory of Mass Spectroscopy of the Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gregory A. Grabowski
- Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med (Berl) 2012; 90:233-44. [PMID: 22361849 DOI: 10.1007/s00109-012-0878-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Nitric oxide participates in cellular signal transduction largely through S-nitrosylation of allosteric and active-site cysteine thiols within proteins, forming S-nitroso-proteins (SNO-proteins). S-nitrosylation of proteins has been demonstrated to affect a broad range of functional parameters including enzymatic activity, subcellular localization, protein-protein interactions, and protein stability. Analogous to other ubiquitous posttranslational modifications that are regulated enzymatically, including phosphorylation and ubiquitinylation, accumulating evidence suggests the existence of enzymatic mechanisms for regulating protein S-nitrosylation. In particular, studies have led to the identification of multiple enzymes (nitrosylases and denitrosylases) that participate in targeted S-nitrosylation or denitrosylation of proteins in physiological settings. Nitrosylases are best characterized in the context of transnitrosylation in which a SNO-protein transfers an NO group to an acceptor protein (Cys-to-Cys transfer), but examples of transnitrosylation catalyzed by metalloproteins (Metal-to-Cys transfer) also exist. By contrast, denitrosylases remove the NO group from SNO-proteins, ultimately using reducing equivalents derived from NADH or NADPH. Here, we focus on the recent discoveries of nitrosylases and denitrosylases and the notion that their aberrant activities may play roles in health and disease.
Collapse
|
14
|
Moretti AIS, Pinto FJPS, Cury V, Jurado MC, Marcondes W, Velasco IT, Souza HP. Nitric oxide modulates metalloproteinase-2, collagen deposition and adhesion rate after polypropylene mesh implantation in the intra-abdominal wall. Acta Biomater 2012; 8:108-15. [PMID: 21864729 DOI: 10.1016/j.actbio.2011.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 08/01/2011] [Accepted: 08/05/2011] [Indexed: 02/07/2023]
Abstract
Prosthetic meshes are commonly used to correct abdominal wall defects. However, the inflammatory reaction induced by these devices in the peritoneum is not completely understood. We hypothesized that nitric oxide (NO), produced by nitric oxide synthase 2 (NOS2) may modulate the response induced by mesh implants in the abdominal wall and, consequently, affect the outcome of the surgical procedure. Polypropylene meshes were implanted in the peritoneal side of the abdominal wall in wild-type and NOS2-deficient (NOS2(-/-)) mice. After 15 days tissues around the mesh implant were collected, and inflammatory markers (the cytokine interleukin 1β (IL-1β) and NO) and tissue remodeling (collagen and metalloproteinases (MMP) 2 and 9) were analyzed. The lack of NOS2-derived NO induced a higher incidence of visceral adhesions at the mesh implantation site compared with wild-type mice that underwent the same procedure (P<0.05). Additionally, higher levels of IL-1β were present in the mesh-implanted NOS2(-/-) animals compared with control and wild-type mice. Mesh implantation induced collagen I and III deposition, but in smaller amounts in NOS2(-/-) mice. MMP-9 activity after the surgical procedure was similarly increased in both groups. Conversely, MMP-2 activity was unchanged in mesh-implanted wild-type mice, but was significantly increased in NOS2(-/-) mice (P<0.01), due to decreased S-nitrosylation of the enzyme in these animals. We conclude that NOS2-derived NO is crucial for an adequate response to and integration of polypropylene mesh implants in the peritoneum. NO deficiency results in a prolonged inflammatory reaction to the mesh implant, and reduced collagen deposition may contribute to an increased incidence of visceral adhesions.
Collapse
Affiliation(s)
- Ana I S Moretti
- Emergency Medicine Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
15
|
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:229-317. [PMID: 22878108 PMCID: PMC3904795 DOI: 10.1016/b978-0-12-394309-5.00006-7] [Citation(s) in RCA: 1503] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | |
Collapse
|
16
|
Tyrosine nitration limits stretch-induced CD40 expression and disconnects CD40 signaling in human endothelial cells. Blood 2011; 118:3734-42. [PMID: 21832282 DOI: 10.1182/blood-2010-11-320259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hemodynamic forces are important effectors of endothelial cell phenotype and function. Because CD40-CD154 interactions between endothelial cells and mononuclear leukocytes or activated platelets play an important role in vascular dysfunction, we investigated the effects of cyclic stretch on CD40 expression in human cultured endothelial cells. Short-term stretch transiently up-regulated CD40 expression while long-term stretch resulted in a distinct decline in CD40 protein which was prevented by inhibition of the 20S proteasome or scavenging of peroxynitrite. Tyrosine nitration of CD40 also occurred under static conditions on addition of authentic peroxynitrite, and according to mass spectrometry analysis Tyr-82 but not Tyr-31 was its target in the native protein. Immunofluorescence analysis of endothelial cells transduced with a control or Tyr-82 to Ala mutated AAV9-CD40-eGFP expression construct confirmed a peroxynitrite-dependent redistribution of the protein from the cell membrane to the cytoplasm, which was prevented by methyl-β-cyclodextrin. Moreover, CD154-stimulated IL-12p40 and E-selectin expression markedly decreased after exposure to authentic peroxynitrite or cyclic stretch, respectively. Coimmunoprecipitation demonstrated a decreased binding of TRAF2 and TRAF6 to the CD40 protein after tyrosine nitration. Through this posttranslational oxidative modification of an important costimulatory molecule, endothelial cells are able to quickly adapt to unfavorable hemodynamics and maintain their anti-inflammatory phenotype.
Collapse
|
17
|
Mason RP, Jacob RF, Kubant R, Walter MF, Bellamine A, Jacoby A, Mizuno Y, Malinski T. Effect of enhanced glycemic control with saxagliptin on endothelial nitric oxide release and CD40 levels in obese rats. J Atheroscler Thromb 2011; 18:774-83. [PMID: 21670556 DOI: 10.5551/jat.7666] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM Endothelial cell (EC) dysfunction contributes to insulin resistance in diabetes and is characterized by reduced nitric oxide (NO) release, increased nitroxidative stress and enhanced inflammation. The purpose of this study was to test the effect of improved postprandial glucose control on EC function in insulin-resistant rats as compared to fasting glucose (FG) changes. METHODS Obese Zucker rats were treated with 10 mg/kg/day saxagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, for 4 or 8 weeks and compared to lean rats. NO and peroxynitrite (ONOO(-)) release from aortic and glomerular ECs was measured ex vivo using amperometric approaches and correlated with FG, postprandial glucose, insulin, soluble CD40 (sCD40) and L-citrulline levels. RESULTS Saxagliptin treatment improved NO production and reduced ONOO(-) release prior to any observed changes in FG levels. In untreated obese animals, NO release from aortic and glomerular ECs decreased by 22% and 31%, respectively, while ONOO(-) release increased by 26% and 40%. Saxagliptin increased aortic and glomerular NO release by 18% and 31%, respectively, with comparable reductions in ONOO(-) levels; the NO/ONOO(-) ratio, an indicator of NO synthase coupling, increased by >40%. Improved glycemic control was further associated with a reduction in sCD40 levels by more than ten-fold (from 300 ± 206 to 22 ± 22 pg/mL, p < 0.001). CONCLUSION These findings indicate that enhanced glycemic control with DPP4 inhibition improved NO release and reduced inflammation in a manner not predicted by FG changes alone.
Collapse
Affiliation(s)
- R Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|