1
|
Borges VDF, Galant LS, Kanashiro A, Castanheira FVES, Monteiro VVS, Duarte DÂ, Rodrigues FC, Silva CMDS, Schneider AH, Cebinelli GCM, de Lima MHF, Viola JPDB, Cunha TM, da Costa Neto CM, Alves-Filho JCF, Pupo AS, Cunha FDQ. FK506 impairs neutrophil migration that results in increased polymicrobial sepsis susceptibility. Inflamm Res 2023; 72:203-215. [PMID: 36401631 DOI: 10.1007/s00011-022-01669-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.
Collapse
Affiliation(s)
- Vanessa de Fátima Borges
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Selinger Galant
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Vargas E Silva Castanheira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Valter Vinícius Silva Monteiro
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Diego Ângelo Duarte
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Filipe Camargo Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Meirelles de Souza Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Cesar Martelossi Cebinelli
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudio Miguel da Costa Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Carlos Farias Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - Fernando de Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Nicotine Improves Survivability, Hypotension, and Impaired Adenosinergic Renal Vasodilations in Endotoxic Rats: Role of α7-nAChRs/HO-1 Pathway. Shock 2021; 53:503-513. [PMID: 31135706 DOI: 10.1097/shk.0000000000001384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nicotinic/cholinergic antiinflammatory pathway protects against acute kidney injury and other end-organ damages induced by endotoxemia. In this study, we tested the hypothesis that functional α7-nAChRs/heme oxygenase-1 (HO-1) pathway is imperative for the nicotine counteraction of hemodynamic and renovascular dysfunction caused by acute endotoxemia in rats. Renal vasodilations were induced by cumulative bolus injections of acetylcholine (ACh, 0.01 nmol-7.29 nmol) or ethylcarboxamidoadenosine (NECA, adenosine receptor agonist, 1.6 nmol-100 nmol) in isolated phenylephrine-preconstricted perfused kidneys. The data showed that 6-h treatment with lipopolysaccharide (LPS, 5 mg/kg i.p.) decreased systolic blood pressure and renal vasodilations caused by NECA but not Ach. The endotoxic insult also increased the mortality rate and elevated serum urea and creatinine. These LPS effects were sex-unrelated, except hypotension, and enhanced mortality which were more evident in male rodents, and abrogated after co-administration of nicotine (0.5, 1 mg/kg and 2 mg/kg) in a dose-dependent fashion. The advantageous effects of nicotine on NECA vasodilations, survivability, and kidney biomarkers in endotoxic male rats disappeared upon concurrent exposure to methyllycaconitine citrate (α7-nAChR blocker) or zinc protoporphyrin (HO-1 inhibitor) and were reproduced after treatment with bilirubin, but not hemin (HO-1 inducer) or tricarbonyldichlororuthenium (II) dimer (carbon monoxide-releasing molecule). Together, current biochemical and pharmacological evidence suggests key roles for α7-nAChRs and the bilirubin byproduct of the HO-1 signaling in the nicotine counteraction of renal dysfunction and reduced adenosinergic renal vasodilator capacity in endotoxic rats.
Collapse
|
5
|
Shen XF, Cao K, Jiang JP, Guan WX, Du JF. Neutrophil dysregulation during sepsis: an overview and update. J Cell Mol Med 2017; 21:1687-1697. [PMID: 28244690 PMCID: PMC5571534 DOI: 10.1111/jcmm.13112] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
Sepsis remains a leading cause of death worldwide, despite advances in critical care, and understanding of the pathophysiology and treatment strategies. No specific therapy or drugs are available for sepsis. Neutrophils play a critical role in controlling infection under normal conditions, and it is suggested that their migration and antimicrobial activity are impaired during sepsis which contribute to the dysregulation of immune responses. Recent studies further demonstrated that interruption or reversal of the impaired migration and antimicrobial function of neutrophils improves the outcome of sepsis in animal models. In this review, we provide an overview of the associated mediators and signal pathways involved which govern the survival, migration and antimicrobial function of neutrophils in sepsis, and discuss the potential of neutrophils as a target to specifically diagnose and/or predict the outcome of sepsis.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ke Cao
- Department of Intensive Care Unit, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jin-Peng Jiang
- Department of Rehabilitation Medicine, PLA Army General Hospital, Beijing, China
| | - Wen-Xian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun-Feng Du
- Department of General Surgery, PLA Army General Hospital, Beijing, China
| |
Collapse
|
6
|
Fujioka K, Kalish F, Zhao H, Lu S, Wong S, Wong RJ, Stevenson DK. Induction of Heme Oxygenase-1 Attenuates the Severity of Sepsis in a Non-Surgical Preterm Mouse Model. Shock 2017; 47:242-250. [PMID: 27454382 DOI: 10.1097/shk.0000000000000689] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Preterm sepsis is characterized by systemic bacterial invasion and inflammatory response. Its pathogenesis is unclear due to lack of proper animal models. Heme oxygenase-1 (HO-1) can affect physiologic and pathologic conditions through its anti-inflammatory, antioxidative, and anti-apoptotic properties. Since HO-1 is developmentally regulated, it may play a role in the pathogenesis of preterm sepsis. For this study, sepsis was induced using the non-surgical "cecal slurry" (CS) model. CS was given intraperitoneally at various doses to 4-day-old newborn mice to determine dose-dependent effects. The LD40 was then given and changes in bodyweight, bacterial colonization of organs, hematology, serum biochemistry, and immunomodulatory gene expression were determined. We found a dose-dependent mortality with an LD40 of 2.0 mg/g. Significant bacterial colonization and hematological changes (leukocytopenia, thrombocytopenia, and lymphocytopenia) and increased gene expression of pro-inflammatory cytokines, pattern-recognition receptors, and other genes related to immune responses were also observed. Twenty-four hours post-sepsis induction, bodyweight loss was associated with mortality and organ damage. Finally, to elucidate a protective role of HO-1, 30-μmol heme/kg was given subcutaneously 24 h pre-sepsis induction. HO activity in livers and spleens significantly increased 64% and 50% over age-matched controls 24 h post-heme administration. Importantly, heme significantly reduced mortality from 40.9% to 6.3% (P <0.005) and gene expression of pro-inflammatory cytokines (Ccl5, Cxcl10, IL-1b, and Ifng). We conclude that the CS model can be used as a model to study preterm sepsis. Because induction of HO-1 significantly reduced mortality, we speculate that HO-1 may confer protection against sepsis in preterm infants.
Collapse
Affiliation(s)
- Kazumichi Fujioka
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | |
Collapse
|
9
|
Leoratti FMDS, Trevelin SC, Cunha FQ, Rocha BC, Costa PAC, Gravina HD, Tada MS, Pereira DB, Golenbock DT, do Valle Antonelli LR, Gazzinelli RT. Neutrophil paralysis in Plasmodium vivax malaria. PLoS Negl Trop Dis 2012; 6:e1710. [PMID: 22745844 PMCID: PMC3383745 DOI: 10.1371/journal.pntd.0001710] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/13/2012] [Indexed: 12/03/2022] Open
Abstract
Background The activation of innate immune responses by Plasmodium vivax results in activation of effector cells and an excessive production of pro-inflammatory cytokines that may culminate in deleterious effects. Here, we examined the activation and function of neutrophils during acute episodes of malaria. Materials and Methods Blood samples were collected from P. vivax-infected patients at admission (day 0) and 30–45 days after treatment with chloroquine and primaquine. Expression of activation markers and cytokine levels produced by highly purified monocytes and neutrophils were measured by the Cytometric Bead Assay. Phagocytic activity, superoxide production, chemotaxis and the presence of G protein-coupled receptor (GRK2) were also evaluated in neutrophils from malaria patients. Principal Findings Both monocytes and neutrophils from P. vivax-infected patients were highly activated. While monocytes were found to be the main source of cytokines in response to TLR ligands, neutrophils showed enhanced phagocytic activity and superoxide production. Interestingly, neutrophils from the malaria patients expressed high levels of GRK2, low levels of CXCR2, and displayed impaired chemotaxis towards IL-8 (CXCL8). Conclusion Activated neutrophils from malaria patients are a poor source of pro-inflammatory cytokines and display reduced chemotactic activity, suggesting a possible mechanism for an enhanced susceptibility to secondary bacterial infection during malaria. Plasmodium vivax is responsible for approximately 60–80% of the malaria cases in the world, and contributes to significant social and economic instability in the developing countries of Latin America and Asia. The pathogenesis of P. vivax malaria is a consequence of host derived inflammatory mediators. Hence, a better understanding of the mechanisms involved in induction of systemic inflammation during P. vivax malaria is critical for the clinical management and prevention of severe disease. The innate immune receptors recognize Plasmodium sp. and initiate a broad spectrum of host defense mechanisms that mediate resistance to infection. However, the innate immune response is the classic “two-edged sword”, and clinical malaria is associated with high levels of circulating pro-inflammatory cytokines. Our findings show that both monocytes and neutrophils are highly activated during malaria. Monocytes produced high levels of IL-1β, IL-6 and TNF-α during acute malaria. On the other hand, neutrophils were a poor source of cytokines, but displayed an enhanced phagocytic activity and superoxide production. Unexpectedly, we noticed an impaired chemotaxis of neutrophils towards an IL-8 (CXCL8) gradient. We proposed that neutrophil paralysis is in part responsible for the enhanced susceptibility to bacterial infection observed in malaria patients.
Collapse
Affiliation(s)
| | - Silvia Cellone Trevelin
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Queiroz Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruno Coelho Rocha
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Augusto Carvalho Costa
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Humberto Doriguêtto Gravina
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Shugiro Tada
- Centro de Pesquisas em Medicina Tropical de Rondônia, Porto Velho, Rondônia, Brazil
| | | | - Douglas Taylor Golenbock
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lis Ribeiro do Valle Antonelli
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Gazzinelli
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|