1
|
Yang XF, Shang DJ. The role of peroxisome proliferator-activated receptor γ in lipid metabolism and inflammation in atherosclerosis. Cell Biol Int 2023; 47:1469-1487. [PMID: 37369936 DOI: 10.1002/cbin.12065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease events are the result of functional and structural abnormalities in the arteries and heart. Atherosclerosis is the main cause and pathological basis of cardiovascular diseases. Atherosclerosis is a multifactorial disease associated with dyslipidemia, inflammation, and oxidative stress, among which dyslipidemia and chronic inflammation occur in all processes. Under the influence of lipoproteins, the arterial intima causes inflammation, necrosis, fibrosis, and calcification, leading to plaque formation in specific parts of the artery, which further develops into plaque rupture and secondary thrombosis. Foam cell formation from macrophages is an early event in the development of atherosclerosis. Lipid uptake causes a vascular inflammatory response, and persistent inflammatory infiltration in the lesion area further promotes the development of the disease. Inhibition of macrophage differentiation into foam cell and reduction of the level of proinflammatory factors in macrophages can effectively alleviate the occurrence and development of atherosclerosis. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that plays an important antiatherosclerotic role by regulating triglyceride metabolism, lipid uptake, cholesterol efflux, macrophage polarity, and inhibiting inflammatory signaling pathways. In addition, PPARγ shifts its binding to ligands and co-activators or co-repressors of transcription of target genes through posttranslational modification, thereby affecting the regulation of its downstream target genes. Many ligand agonists have also been developed targeting PPARγ. In this review, we summarized the role of PPARγ in lipid metabolism and inflammation in development of atherosclerosis, the posttranslational regulatory mechanism of PPARγ, and further discusses the value of PPARγ as an antiatherosclerosis target.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
2
|
Gao Z, Xu X, Li Y, Sun K, Yang M, Zhang Q, Wang S, Lin Y, Lou L, Wu A, Liu W, Nie B. Mechanistic Insight into PPARγ and Tregs in Atherosclerotic Immune Inflammation. Front Pharmacol 2021; 12:750078. [PMID: 34658891 PMCID: PMC8511522 DOI: 10.3389/fphar.2021.750078] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis (AS) is the main pathological cause of acute cardiovascular and cerebrovascular diseases, such as acute myocardial infarction and cerebral apoplexy. As an immune-mediated inflammatory disease, the pathogenesis of AS involves endothelial cell dysfunction, lipid accumulation, foam cell formation, vascular smooth muscle cell (VSMC) migration, and inflammatory factor infiltration. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in lipid metabolism, inflammation, and apoptosis by antagonizing the Wnt/β-catenin pathway and regulating cholesterol efflux and inflammatory factors. Importantly, PPARγ-dependant fatty acid uptake is critical for metabolic programming. Activated PPARγ can exert an anti-atherosclerotic effect by inhibiting the expression of various inflammatory factors, improving endothelial cell function, and restraining the proliferation and migration of VSMCs. Regulatory T cells (Tregs) are the only subset of T lymphocytes that have a completely negative regulatory effect on the autoimmune response. They play a critical role in suppressing excessive immune responses and inflammatory reactions and widely affect AS-associated foam cell formation, plaque rupture, and other processes. Recent studies have shown that PPARγ activation promotes the recruitment of Tregs to reduce inflammation, thereby exerting its anti-atherosclerotic effect. In this review, we provide an overview of the anti-AS roles of PPARγ and Tregs by discussing their pathological mechanisms from the perspective of AS and immune-mediated inflammation, with a focus on basic research and clinical trials of their efficacies alone or in combination in inhibiting atherosclerotic inflammation. Additionally, we explore new ideas for AS treatment and plaque stabilization and establish a foundation for the development of natural PPARγ agonists with Treg recruitment capability.
Collapse
Affiliation(s)
- Zhao Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China.,Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Institute of Nephrology, Guangdong Medical University, Zhanjiang, China
| | - Xinrui Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Yang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kehan Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manfang Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingyue Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Shuqi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiyi Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China.,Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Institute of Nephrology, Guangdong Medical University, Zhanjiang, China
| | - Bo Nie
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Development of mode of action networks related to the potential role of PPARγ in respiratory diseases. Pharmacol Res 2021; 172:105821. [PMID: 34403731 DOI: 10.1016/j.phrs.2021.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor, operating at the intercept of metabolic control and immunomodulation. It is ubiquitously expressed in multiple tissues and organs, including lungs. There is a growing body of information supporting the role of PPARγ signalling in respiratory diseases. The aim of the present study was to develop mode of action (MoA) networks reflecting the relationships between PPARγ signalling and the progression/alleviation of a spectrum of lung pathologies. Data mining was performed using the resources of the NIH PubMed and PubChem information systems. By linking available data on pathological/therapeutic effects of PPARγ modulation, knowledge-based MoA networking at different levels of biological organization (molecular, cellular, tissue, organ, and system) was performed. Multiple MoA networks were developed to relate PPARγ modulation to the progress or the alleviation of pulmonary disorders, triggered by diverse pathogenic, genetic, chemical, or mechanical factors. Pharmacological targeting of PPARγ signalling was discussed with regard to ligand- and cell type-specific effects in the context of distinct disease inductor- and disease stage-dependent patterns. The proposed MoA networking analysis allows for a better understanding of the potential role of PPARγ modulation in lung pathologies. It presents a mechanistically justified basis for further computational, experimental, and clinical monitoring studies on the dynamic control of PPARγ signalling in respiratory diseases.
Collapse
|
4
|
Mannan A, Garg N, Singh TG, Kang HK. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem Res 2021; 46:2800-2831. [PMID: 34282491 DOI: 10.1007/s11064-021-03402-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Cerebral ischemic injury is a leading cause of death and long-term disability throughout the world. Peroxisome proliferator-activated receptor gamma (PPAR-ɣ) is a ligand-activated nuclear transcription factor that is a member of the PPAR family. PPAR-ɣ has been shown in several in vitro and in vivo models to prevent post-ischemic inflammation and neuronal damage by negatively controlling the expression of genes modulated by cerebral ischemic injury, indicating a neuroprotective effect during cerebral ischemic injury. A extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the mechanistic role of Peroxisome proliferator activated receptor gamma and its modulation in Cerebral ischemic injury. PPAR-ɣ can interact with specific DNA response elements to control gene transcription and expression when triggered by its ligand. It regulates lipid metabolism, improves insulin sensitivity, modulates antitumor mechanisms, reduces oxidative stress, and inhibits inflammation. This review article provides insights on the current state of research into the neuroprotective effects of PPAR-ɣ in cerebral ischemic injury, as well as the cellular and molecular mechanisms by which these effects are modulated, such as inhibition of inflammation, reduction of oxidative stress, suppression of pro-apoptotic production, modulation of transcription factors, and restoration of injured tissue through neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Harmeet Kaur Kang
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
5
|
Cámara-Quílez M, Barreiro-Alonso A, Rodríguez-Bemonte E, Quindós-Varela M, Cerdán ME, Lamas-Maceiras M. Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer. Curr Med Chem 2020; 27:3271-3289. [PMID: 30674244 DOI: 10.2174/0929867326666190123120338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/28/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
We have summarized common and differential functions of HMGB1 and HMGB2 proteins with reference to pathological processes, with a special focus on cancer. Currently, several "omic" approaches help us compare the relative expression of these 2 proteins in healthy and cancerous human specimens, as well as in a wide range of cancer-derived cell lines, or in fetal versus adult cells. Molecules that interfere with HMGB1 functions, though through different mechanisms, have been extensively tested as therapeutic agents in animal models in recent years, and their effects are summarized. The review concludes with a discussion on the perspectives of HMGB molecules as targets in prostate and ovarian cancers.
Collapse
Affiliation(s)
- María Cámara-Quílez
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Esther Rodríguez-Bemonte
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - María Quindós-Varela
- Translational Cancer Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Carretera del Pasaje s/n, 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| |
Collapse
|
6
|
Yang P, Chen S, Zhong G, Kong W, Wang Y. Agonist of PPAR-γ Reduced Epithelial-Mesenchymal Transition in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps via Inhibition of High Mobility Group Box1. Int J Med Sci 2019; 16:1631-1641. [PMID: 31839751 PMCID: PMC6909805 DOI: 10.7150/ijms.35936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been reported to occur in eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP). Among the cytokines that cause EMT, high mobility group box 1 (HMGB1) has been shown to give rise to EMT in airway epithelial cells. However, the mechanism of HMGB1-induced EMT in ECRSwNP is unknown. We explored the mechanism and possible inhibitor. Immunohistochemistry (IHC), immunofluorescence (IF), and western blot assay were used to detect the expression and location of HMGB1, peroxisome proliferator-activated receptor-γ (PPAR-γ), and EMT markers in eighteen ECRSwNP and twelve normal nasal mucosa tissues. Epithelial cells isolated from ECRSwNP were cultured with various doses of recombinant human HMGB1 (rhHMGB1) to study the expression of PPAR-γ, and EMT markers. Additionally, the ligand of PPAR-γ was incubated with epithelial cells to interfere with the effects of lipopolysaccharide (LPS) or rhHMGB1 to explore the effect on expression of HMGB1 and EMT markers. These results suggest that HMGB1 was highly expressed in ECRSwNP compared with its expression in control tissues, and EMT was also found highly in ECRSwNP compared with control tissues. Moreover, the cytoplasmic accumulation of HMGB1 in ECRSwNP was obvious compared with normal tissues. We also found dose-dependent induction by rhHMGB1 of up-regulation of N-cadherin and vimentin and down-regulation of ZO-1 and E-cadherin in epithelial cells isolated from ECRSwNP. The agonist of PPAR-γ not only reduced release of HMGB1 induced by LPS, but also reversed the EMT. The protective role of PPAR-γ also appeared in cells that had been incubated with rhHMGB1. In the current study, we discovered that the agonist of PPAR-γ has a potential role in inhibited HMGB1-induced EMT in ECRSwNP. The agonist of PPAR-γ may contribute to inhabit epithelial cells to become mesenchymal-like cells which play an important role in the pathogenesis of ECRSwNP.
Collapse
Affiliation(s)
- Pingli Yang
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of otorhinolaryngology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Shan Chen
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Zhong
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijia Kong
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institutes of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanjun Wang
- Department of otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
7
|
Herman P, Stein A, Gibbs K, Korsunsky I, Gregersen P, Bloom O. Persons with Chronic Spinal Cord Injury Have Decreased Natural Killer Cell and Increased Toll-Like Receptor/Inflammatory Gene Expression. J Neurotrauma 2018; 35:1819-1829. [PMID: 29310515 PMCID: PMC6033303 DOI: 10.1089/neu.2017.5519] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infections are the leading cause of death for individuals with traumatic spinal cord injury (SCI). Along with increased infection rates, inflammation is often also observed in persons with chronic SCI. Together, immunological changes post-SCI are also poised to impede neurological recovery and mediate common medical consequences of SCI, including atherogenesis and neuropathic pain. The molecular mechanisms contributing to increased infection susceptibility and inflammation in persons living with SCI are poorly understood. Here, we used tools of functional genomics to perform a pilot study to compare whole-blood gene expression in individuals with chronic SCI (≥1 year from initial injury; N = 31) and uninjured individuals (N = 26). We identified 1815 differentially expressed genes in all SCI participants and 2226 differentially expressed genes in persons with SCI rostral to thoracic level 5, compared to uninjured participants. This included marked downregulation of natural killer cell genes and upregulation of the proinflammatory Toll-like receptor signaling pathway. These data provide novel mechanistic insights into the causes underlying the symptoms of immune dysfunction in individuals living with SCI.
Collapse
Affiliation(s)
- Paige Herman
- 1 The Feinstein Institute for Medical Research , Northwell Health
| | - Adam Stein
- 2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell
| | - Katie Gibbs
- 1 The Feinstein Institute for Medical Research , Northwell Health.,2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell
| | - Ilya Korsunsky
- 3 Robert S. Boas Center for Genomics & Human Genetics , The Feinstein Institute for Medical Research
| | - Peter Gregersen
- 3 Robert S. Boas Center for Genomics & Human Genetics , The Feinstein Institute for Medical Research.,4 Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra Northwell , Northwell Health, Hempstead, NewYork
| | - Ona Bloom
- 1 The Feinstein Institute for Medical Research , Northwell Health.,2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell .,4 Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra Northwell , Northwell Health, Hempstead, NewYork
| |
Collapse
|
8
|
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol 2017; 48:52-108. [PMID: 28816105 DOI: 10.1080/10408444.2017.1351420] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiazolidinedione (TZD) drugs used in the treatment of type 2 diabetes mellitus (T2DM) have proven effective in improving insulin sensitivity, hyperglycemia, and lipid metabolism. Though well tolerated by some patients, their mechanism of action as ligands of peroxisome proliferator-activated receptors (PPARs) results in the activation of several pathways in addition to those responsible for glycemic control and lipid homeostasis. These pathways, which include those related to inflammation, bone formation, and cell proliferation, may lead to adverse health outcomes. As treatment with TZDs has been associated with adverse hepatic, cardiovascular, osteological, and carcinogenic events in some studies, the role of TZDs in the treatment of T2DM continues to be debated. At the same time, new therapeutic roles for TZDs are being investigated, with new forms and isoforms currently in the pre-clinical phase for use in the prevention and treatment of some cancers, inflammatory diseases, and other conditions. The aims of this review are to provide an overview of the mechanism(s) of action of TZDs, a review of their safety for use in the treatment of T2DM, and a perspective on their current and future therapeutic roles.
Collapse
Affiliation(s)
- Melissa A Davidson
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada
| | - Donald R Mattison
- b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada
| | - Laurent Azoulay
- d Center for Clinical Epidemiology , Lady Davis Research Institute, Jewish General Hospital , Montreal , Canada.,e Department of Oncology , McGill University , Montreal , Canada
| | - Daniel Krewski
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada.,f Faculty of Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
9
|
Green DE, Murphy TC, Kang BY, Bedi B, Yuan Z, Sadikot RT, Hart CM. Peroxisome proliferator-activated receptor-γ enhances human pulmonary artery smooth muscle cell apoptosis through microRNA-21 and programmed cell death 4. Am J Physiol Lung Cell Mol Physiol 2017; 313:L371-L383. [PMID: 28522568 DOI: 10.1152/ajplung.00532.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disorder whose cellular pathogenesis involves enhanced smooth muscle cell (SMC) proliferation and resistance to apoptosis signals. Existing evidence demonstrates that the tumor suppressor programmed cell death 4 (PDCD4) affects patterns of cell growth and repair responses in the systemic vasculature following experimental injury. In the current study, the regulation PDCD4 and its functional effects on growth and apoptosis susceptibility in pulmonary artery smooth muscle cells were explored. We previously demonstrated that pharmacological activation of the nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) attenuated hypoxia-induced proliferation of human pulmonary artery smooth muscle cells (HPASMCs) by inhibiting the expression and mitogenic functions of microRNA-21 (miR-21). In the current study, we hypothesize that PPARγ stimulates PDCD4 expression and HPASMC apoptosis by inhibiting miR-21. Our findings demonstrate that PDCD4 is reduced in the mouse lung upon exposure to chronic hypoxia (10% O2 for 3 wk) and in hypoxia-exposed HPASMCs (1% O2). HPASMC apoptosis was reduced by hypoxia, by miR-21 overexpression, or by siRNA-mediated PPARγ and PDCD4 depletion. Activation of PPARγ inhibited miR-21 expression and resultant proliferation, while restoring PDCD4 levels and apoptosis to baseline. Additionally, pharmacological activation of PPARγ with rosiglitazone enhanced PDCD4 protein expression and apoptosis in a dose-dependent manner as demonstrated by increased annexin V detection by flow cytometry. Collectively, these findings demonstrate that PPARγ confers growth-inhibitory signals in hypoxia-exposed HPASMCs through suppression of miR-21 and the accompanying derepression of PDCD4 that augments HPASMC susceptibility to undergo apoptosis.
Collapse
Affiliation(s)
- David E Green
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center/Emory University, Atlanta, Georgia
| | - Tamara C Murphy
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center/Emory University, Atlanta, Georgia
| | - Bum-Yong Kang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center/Emory University, Atlanta, Georgia
| | - Brahmchetna Bedi
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center/Emory University, Atlanta, Georgia
| | - Zhihong Yuan
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center/Emory University, Atlanta, Georgia
| | - Ruxana T Sadikot
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center/Emory University, Atlanta, Georgia
| | - C Michael Hart
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center/Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
PPAR Ligands Function as Suppressors That Target Biological Actions of HMGB1. PPAR Res 2016; 2016:2612743. [PMID: 27563308 PMCID: PMC4985574 DOI: 10.1155/2016/2612743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
High mobility group box 1 (HMGB1), which has become one of the most intriguing molecules in inflammatory disorders and cancers and with which ligand-activated peroxisome proliferator-activated receptors (PPARs) are highly associated, is considered as a therapeutic target. Of particular interest is the fact that certain PPAR ligands have demonstrated their potent anti-inflammatory activities and potential anticancer effects. In this review article we summarize recent experimental evidence that PPAR ligands function as suppressors that target biological actions of HMGB1, including intracellular expression, receptor signaling cascades, and extracellular secretion of HMGB1 in cell lines and/or animal models. We also propose the possible mechanisms underlying PPAR involvement in inflammatory disorders and discuss the future therapeutic value of PPAR ligands targeting HMGB1 molecule for cancer prevention and treatment.
Collapse
|
11
|
rhHMGB1 drives osteoblast migration in a TLR2/TLR4- and NF-κB-dependent manner. Biosci Rep 2016; 36:e00300. [PMID: 26744383 PMCID: PMC4759610 DOI: 10.1042/bsr20150239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/06/2016] [Indexed: 02/02/2023] Open
Abstract
Osteoblast migration is significant in skeletal development. Recently, high mobility group box 1 protein (HMGB1) has been shown to highly expressed in cartilage to regulate endochondral ossification. Nevertheless, whether HMGB1 can modulate osteoblast proliferation and migration is poorly understood, as well as the intracellular signalling pathways that are involved in this process. Herein, we examined the effects of recombinant human HMGB1 (rhHMGB1) on the proliferation and migration of rat osteoblasts and investigated whether Toll-like receptor 2 (TLR2)- and TLR4-dependent signalling pathways are involved in the regulation of intracellular signalling. A transwell chamber assay was used to evaluate the migration of osteoblasts and the MTT assay was used to assess osteoblast proliferation. rhHMGB1 could significantly promote the migration of osteoblasts without inhibiting their proliferation. Meanwhile, rhHMGB1 can increase the nuclear translocation of nuclear factor-kappa B (NF-κB) p65. Specific siRNA constructs that target TLR2 or TLR4 could markedly inhibit HMGB1-induced migration of osteoblasts and HMGB1-enhanced activation of NF-κB. Collectively, HMGB1 could significantly enhance the migration of osteoblasts in vitro, and TLR2/TLR4-dependent NF-κB pathways are involved in HMGB1-induced osteoblast migration.
Collapse
|
12
|
Yuan Z, Luo G, Li X, Chen J, Wu J, Peng Y. PPARγ inhibits HMGB1 expression through upregulation of miR-142-3p in vitro and in vivo. Cell Signal 2015; 28:158-164. [PMID: 26721185 DOI: 10.1016/j.cellsig.2015.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 02/09/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to the nuclear receptor superfamily and it has received much attention because of its anti-inflammatory activity. However, the underlying molecular mechanism is not completely understood. In the present study, we demonstrated that the level of PPARγ is inversely correlated with that of high mobility group box 1 (HMGB1, a late proinflammatory mediator) in patients with sepsis. Activation of PPARγ inhibits the basal and LPS-induced expression of HMGB1. The PPARγ-mediated inhibition of HMGB1 is associated with the upregulation of miR-142-3p, which can target the 3'-UTR of HMGB1, by directly binding to the PPRE in the miR-142-3p promoter region. Functional experiments reveal that the PPARγ-induced miR-142-3p suppresses inflammatory response in vivo. These results suggest that PPARγ-mediated upregulation of miR-142-3p inhibits the HMGB1 expression, which, in turn, is a novel anti-inflammatory mechanism of PPARγ and has an important role in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhiqiang Yuan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xiaolu Li
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jing Chen
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jun Wu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
13
|
Shao M, Tang ST, Liu B, Zhu HQ. Rac1 mediates HMGB1‑induced hyperpermeability in pulmonary microvascular endothelial cells via MAPK signal transduction. Mol Med Rep 2015; 13:529-35. [PMID: 26549372 DOI: 10.3892/mmr.2015.4521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 09/16/2015] [Indexed: 11/06/2022] Open
Abstract
The pathology of acute respiratory distress syndrome (ARDS) is closely associated with the failure of alveolar‑capillary barrier integrity and alveolar filling by high protein pulmonary edema, resulting from hyperpermeability. High mobility group box 1 (HMGB1) is a novel late mediator of sepsis, which is specifically involved in endotoxin‑induced acute lung injury and sepsis‑associated lethality. Although the role of HMGB1 in endothelial cell cytoskeletal rearrangement and vascular permeability have been investigated preliminarily, the molecular mechanisms remain to be fully elucidated. As the ras‑related C3 botulinum toxin substrate 1 (Rac1) gene is important role in regulating microvascular barrier maintenance, the present study was designed to determine whether Rac1 is involved in HMGB1‑induced hyperpermeability in pulmonary microvascular endothelial cells (PMVECs). The results of the present study demonstrated that HMGB1 induced dose and time‑dependent decreases in transendothelial electrical resistance (TER). Notably, HMGB1 induced a dose‑dependent increase in the activity and expression levels of Rac1. Using small interfering RNA and an agonist of Rac1, the present study demonstrated that Rac1 was a novel factor mediating the HMGB1‑induced decrease in TER via extracellular signal‑regulated kinase and p38 mitogen‑activated protein kinase (MAPK) activation. These data suggested that Rac1 is involved in HMGB1‑induced hyperpermeability in PMVECs via MAPK signal transduction.
Collapse
Affiliation(s)
- Min Shao
- Department of Critical Care Medicine, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Song-Tao Tang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bao Liu
- Department of Critical Care Medicine, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Hua-Qing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
14
|
Green DE, Murphy TC, Kang BY, Searles CD, Hart CM. PPARγ Ligands Attenuate Hypoxia-Induced Proliferation in Human Pulmonary Artery Smooth Muscle Cells through Modulation of MicroRNA-21. PLoS One 2015. [PMID: 26208095 PMCID: PMC4514882 DOI: 10.1371/journal.pone.0133391] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive and often fatal disorder whose pathogenesis involves pulmonary artery smooth muscle cell (PASMC) proliferation. Although modern PH therapies have significantly improved survival, continued progress rests on the discovery of novel therapies and molecular targets. MicroRNA (miR)-21 has emerged as an important non-coding RNA that contributes to PH pathogenesis by enhancing vascular cell proliferation, however little is known about available therapies that modulate its expression. We previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) agonists attenuated hypoxia-induced HPASMC proliferation, vascular remodeling and PH through pleiotropic actions on multiple targets, including transforming growth factor (TGF)-β1 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN). PTEN is a validated target of miR-21. We therefore hypothesized that antiproliferative effects conferred by PPARγ activation are mediated through inhibition of hypoxia-induced miR-21 expression. Human PASMC monolayers were exposed to hypoxia then treated with the PPARγ agonist, rosiglitazone (RSG,10 μM), or in parallel, C57Bl/6J mice were exposed to hypoxia then treated with RSG. RSG attenuated hypoxic increases in miR-21 expression in vitro and in vivo and abrogated reductions in PTEN and PASMC proliferation. Antiproliferative effects of RSG were lost following siRNA-mediated PTEN depletion. Furthermore, miR-21 mimic decreased PTEN and stimulated PASMC proliferation, whereas miR-21 inhibition increased PTEN and attenuated hypoxia-induced HPASMC proliferation. Collectively, these results demonstrate that PPARγ ligands regulate proliferative responses to hypoxia by preventing hypoxic increases in miR-21 and reductions in PTEN. These findings further clarify molecular mechanisms that support targeting PPARγ to attenuate pathogenic derangements in PH.
Collapse
Affiliation(s)
- David E Green
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| | - Tamara C Murphy
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| | - Bum-Yong Kang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| | - Charles D Searles
- Department of Medicine, Division of Cardiology, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| | - C Michael Hart
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| |
Collapse
|
15
|
Marcone S, Haughton K, Simpson PJ, Belton O, Fitzgerald DJ. Milk-derived bioactive peptides inhibit human endothelial-monocyte interactions via PPAR-γ dependent regulation of NF-κB. JOURNAL OF INFLAMMATION-LONDON 2015; 12:1. [PMID: 25632270 PMCID: PMC4308943 DOI: 10.1186/s12950-014-0044-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Background Milk-derived bioactive peptides retain many biological properties and have therapeutic effects in cardiovascular disorders such as atherosclerosis. Under inflammatory conditions the expression of endothelial cells adhesion molecules is induced, increasing monocyte adhesion to human vessel wall, a critical step in the pathogenesis of atherosclerosis. In the present work we explored the effects of milk-derived bioactive peptides on the expression of the inflammatory phenotype of human endothelial cells and their effects on monocyte adherence to endothelial cells. Results Treatment of endothelial cells with milk-derived hydrolysate inhibited their production of inflammatory proteins MCP-1 and IL-8 and expression of VCAM-1, ICAM-1 and E-selectin. Milk derived hydrolysate also attenuated the adhesion of human monocytes to activated endothelial cells. The effect was similar to that obtained in endothelial cells treated with troglitazone, a ligand of peroxisome proliferators-activator receptor-gamma (PPAR-γ). PPAR-γ is a transcription factor which when activated antagonises the pro-inflammatory capability of nuclear factor κB (NF-κB). We further examined whether the effects of milk-derived hydrolysates on endothelial cells may be mediated through NF-κB activation via a PPAR-γ dependent mechanism. The specific PPAR-γ inhibitor, GW9662 blocked the effects of the hydrolysate on the NF-κB-mediated chemokines and adhesion molecules expression in endothelial cells. Conclusions These results suggest that milk-derived bioactive peptides work as anti-atherogenic agents through the inhibition of endothelial-dependent adhesive interactions with monocytes by inhibiting the NF-κB pathway through a PPAR-γ dependent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12950-014-0044-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Marcone
- FHI, Food for Health Ireland, University College Dublin, Dublin, Ireland ; School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, 4 Ireland
| | - Karen Haughton
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Paul J Simpson
- Teagasc, Biotechnology Centre, Moorepark, Fermoy, County Cork Ireland
| | - Orina Belton
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Desmond J Fitzgerald
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, 4 Ireland
| |
Collapse
|
16
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
17
|
Hwang JS, Lee WJ, Kang ES, Ham SA, Yoo T, Paek KS, Lim DS, Do JT, Seo HG. Ligand-activated peroxisome proliferator-activated receptor-δ and -γ inhibit lipopolysaccharide-primed release of high mobility group box 1 through upregulation of SIRT1. Cell Death Dis 2014; 5:e1432. [PMID: 25275593 PMCID: PMC4649513 DOI: 10.1038/cddis.2014.406] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/25/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) inhibit lipopolysaccharide (LPS)-primed release of high mobility group box 1 (HMGB1), a late proinflammatory mediator, but the underlying molecular mechanism is not completely understood. In this study, we demonstrated that the inhibition of HMGB1 release by PPAR-δ and -γ is associated with the deacetylase activity of SIRT1. Ligand-activated PPAR-δ and -γ inhibited LPS-primed release of HMGB1, concomitant with elevation in SIRT1 expression and promoter activity. These effects were significantly reduced in the presence of small interfering (si)RNAs against PPAR, indicating that PPAR-δ and -γ are involved in both HMGB1 release and SIRT1 expression. In addition, modulation of SIRT1 expression and activity by siRNA or chemicals correspondingly influenced the effects of PPARs on HMGB1 release, suggesting a mechanism in which SIRT1 modulates HMGB1 release. Furthermore, we showed for the first time that HMGB1 acetylated in response to LPS or p300/CBP-associated factor (PCAF) is an effective substrate for SIRT1, and that deacetylation of HMGB1 is responsible for blockade of HMGB1 release in macrophages. Finally, acetylation of HMGB1 was elevated in mouse embryonic fibroblasts from SIRT1-knockout mice, whereas this increase was completely reversed by ectopic expression of SIRT1. These results indicate that PPAR-mediated upregulation of SIRT1 modulates the status of HMGB1 acetylation, which, in turn, has a critical role in the cellular response to inflammation through deacetylation-mediated regulation of HMGB1 release.
Collapse
Affiliation(s)
- J S Hwang
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - W J Lee
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - E S Kang
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - S A Ham
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - T Yoo
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - K S Paek
- Department of Nursing, Semyung University, Jecheon, Republic of Korea
| | - D S Lim
- Department of Applied Bioscience, College of Life Science, CHA University, Seongnam, Korea
| | - J T Do
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - H G Seo
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Yuan M, Qiu M, Cui J, Zhang X, Zhang P. Protective effects of pioglitazone against immunoglobulin deposition on heart of streptozotocin-induced diabetic rats. J Endocrinol Invest 2014; 37:375-84. [PMID: 24682915 DOI: 10.1007/s40618-013-0046-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/17/2013] [Indexed: 11/28/2022]
Abstract
AIM Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have immunomodulatory and anti-inflammatory effects. The study investigated the autoimmune injuries of diabetic cardiomyopathy (DCM) and tested the hypothesis that PPAR-γ agonists suppress disordered immune responses in diabetic heart, thereby preventing evolution of DCM. METHODS STZ-induced diabetic rats were assigned to five groups: DM group, given no treatment; INS group, given insulin (4 U kg(-1) d(-1)); PIL group, given low dose pioglitazone (4 mg kg(-1) d(-1)); PIL/INS group, given both low dose pioglitazone and insulin; PIH group, given high dose pioglitazone (20 mg kg(-1) d(-1)). Normal rats (CON group) were also monitored as control. The pathologic abnormalities of hearts were observed. The immunoglobulin deposition was examined by immunohistochemistry and immunofluorescence. RESULTS At 16 weeks, interstitial fibrosis was shown in diabetic heart which was accompanied by plenty of inflammatory cells infiltrated. Pioglitazone therapy could ameliorate the cardiac injuries. Shown by immunohistochemistry, the difference of integrated optical density (IOD) of immunoglobulin deposition among each group had statistic significance. No obvious immunoglobulins were deposited in the intercellular substance of heart in CON group (IgA 290.8 ± 88.1, IgG 960.4 ± 316.0 and IgM 341.3 ± 67.9). But the deposition of immunoglobulins increased significantly in DM group (IgA 7,047.5 ± 1,328.3, P < 0.05; IgG 28,945.9 ± 5,160.7, P < 0.05 and IgM 8,580.8 ± 1,336.8, P < 0.05). Administration of pioglitazone greatly reduced the increased deposition in a dose-dependent fashion. Moreover, the statistical significance was the same with immunofluorescence analysis as with immunohistochemical examination. CONCLUSIONS The data suggest that disordered immune responses play an important role in the pathogenesis of DCM. Pioglitazone showed protective effects by inhibiting the immunoglobulin deposition on diabetic myocardium.
Collapse
Affiliation(s)
- M Yuan
- Department of Endocrinology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | | | | | | | | |
Collapse
|
19
|
Wang G, Liu L, Zhang Y, Han D, Lu J, Xu J, Xie X, Wu Y, Zhang D, Ke R, Li S, Zhu Y, Feng W, Li M. Activation of PPARγ attenuates LPS-induced acute lung injury by inhibition of HMGB1-RAGE levels. Eur J Pharmacol 2014; 726:27-32. [DOI: 10.1016/j.ejphar.2014.01.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 01/10/2014] [Accepted: 01/21/2014] [Indexed: 02/03/2023]
|
20
|
HMGB1 Is Involved in the Protective Effect of the PPAR α Agonist Fenofibrate against Cardiac Hypertrophy. PPAR Res 2014; 2014:541394. [PMID: 24523730 PMCID: PMC3913009 DOI: 10.1155/2014/541394] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 11/17/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear DNA-binding protein whose function is dependent on its cellular location. Extracellular HMGB1 is regarded as a delayed mediator of proinflammatory cytokines for initiating and amplifying inflammatory responses, whereas nuclear HMGB1 has been found to prevent cardiac hypertrophy and heart failure. Because fenofibrate, a peroxisome proliferator-activated receptor α (PPAR α ) agonist, has shown both protective effects against cardiac hypertrophy and inhibitory effects against inflammation, the potential modulation of HMGB1 expression and secretion by fenofibrate is of great interest. We herein provide evidence that fenofibrate modulates basal and LPS-stimulated HMGB1 expression and localization in addition to secretion of HMGB1 in cardiomyocytes. In addition, administration of fenofibrate to mice prevented the development of cardiac hypertrophy induced by thoracic transverse aortic constriction (TAC) while increasing levels of nuclear HMGB1. Altogether, these data suggest that fenofibrate may inhibit the development of cardiac hypertrophy by regulating HMGB1 expression, which provides a new potential strategy to treat cardiac hypertrophy.
Collapse
|
21
|
The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 2013; 63:405-12. [DOI: 10.1016/j.neuint.2013.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/14/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022]
|
22
|
Upregulation of thrombomodulin expression by activation of farnesoid X receptor in vascular endothelial cells. Eur J Pharmacol 2013; 718:283-9. [DOI: 10.1016/j.ejphar.2013.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 07/28/2013] [Accepted: 08/26/2013] [Indexed: 12/20/2022]
|
23
|
Activation of peroxisome proliferator-activated receptor γ by rosiglitazone inhibits lipopolysaccharide-induced release of high mobility group box 1. Mediators Inflamm 2012; 2012:352807. [PMID: 23316104 PMCID: PMC3539392 DOI: 10.1155/2012/352807] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are shown to modulate the pathological status of sepsis by regulating the release of high mobility group box 1 (HMGB1), a well-known late proinflammatory mediator of sepsis. Ligand-activated PPARs markedly inhibited lipopolysaccharide- (LPS) induced release of HMGB1 in RAW 264.7 cells. Among the ligands of PPAR, the effect of rosiglitazone, a specific ligand for PPARγ, was superior in the inhibition of HMGB1 release induced by LPS. This effect was observed in cells that received rosiglitazone before LPS or after LPS treatment, indicating that rosiglitazone is effective in both treatment and prevention. Ablation of PPARγ with small interfering RNA or GW9662-mediated inhibition of PPARγ abolished the effect of rosiglitazone on HMGB1 release. Furthermore, the overexpression of PPARγ markedly potentiated the inhibitory effect of rosiglitazone on HMGB1 release. In addition, rosiglitazone inhibited LPS-induced expression of Toll-like receptor 4 signal molecules, suggesting a possible mechanism by which rosiglitazone modulates HMGB1 release. Notably, the administration of rosiglitazone to mice improved survival rates in an LPS-induced animal model of endotoxemia, where reduced levels of circulating HMGB1 were demonstrated. Taken together, these results suggest that PPARs play an important role in the cellular response to inflammation by inhibiting HMGB1 release.
Collapse
|
24
|
LI JIANZHE, WU JIANHUA, YU SHUYI, SHAO QINGRUI, DONG XIAOMIN. Inhibitory effects of paeoniflorin on lysophosphatidylcholine-induced inflammatory factor production in human umbilical vein endothelial cells. Int J Mol Med 2012; 31:493-7. [DOI: 10.3892/ijmm.2012.1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/29/2012] [Indexed: 11/05/2022] Open
|
25
|
Rabadi MM, Ghaly T, Goligorksy MS, Ratliff BB. HMGB1 in renal ischemic injury. Am J Physiol Renal Physiol 2012; 303:F873-85. [PMID: 22759395 PMCID: PMC3468521 DOI: 10.1152/ajprenal.00092.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/22/2012] [Indexed: 11/22/2022] Open
Abstract
Factors that initiate cellular damage and trigger the inflammatory response cascade and renal injury are not completely understood after renal ischemia-reperfusion injury (IRI). High-mobility group box-1 protein (HMGB1) is a damage-associated molecular pattern molecule that binds to chromatin, but upon signaling undergoes nuclear-cytoplasmic translocation and release from cells. Immunohistochemical and Western blot analysis identified HMGB1 nuclear-cytoplasmic translocation and release from renal cells (particularly vascular and tubular cells) into the venous circulation after IRI. Time course analysis indicated HMGB1 release into the venous circulation progressively increased parallel to increased renal ischemic duration. Ethyl pyruvate (EP) treatment blocked H(2)O(2) (oxidative stress)-induced HMGB1 release from human umbilical vein endothelial cells in vitro, and in vivo resulted in nuclear retention and significant blunting of HMGB1 release into the circulation after IRI. EP treatment before IRI improved short-term serum creatinine and albuminuria, proinflammatory cyto-/chemokine release, and long-term albuminuria and fibrosis. The renoprotective effect of EP was abolished when exogenous HMGB1 was injected, suggesting EP's therapeutic efficacy is mediated by blocking HMGB1 translocation and release. To determine the independent effects of circulating HMGB1 after injury, exogenous HMGB1 was administered to healthy animals at pathophysiological dose. HMGB1 administration induced a rapid surge in systemic circulating cyto-/chemokines (including TNF-α, eotaxin, G-CSF, IFN-γ, IL-10, IL-1α, IL-6, IP-10, and KC) and led to mobilization of bone marrow CD34+Flk1+ cells into the circulation. Our results indicate that increased ischemic duration causes progressively enhanced HMGB1 release into the circulation triggering damage/repair signaling, an effect inhibited by EP because of its ability to block HMGB1 nuclear-cytoplasmic translocation.
Collapse
Affiliation(s)
- May M Rabadi
- Departments of Medicine, Pharmacology, and Physiology, New York Medical College, Valhalla, 10595, USA
| | | | | | | |
Collapse
|
26
|
Rabadi MM, Kuo MC, Ghaly T, Rabadi SM, Weber M, Goligorsky MS, Ratliff BB. Interaction between uric acid and HMGB1 translocation and release from endothelial cells. Am J Physiol Renal Physiol 2011; 302:F730-41. [PMID: 22189943 DOI: 10.1152/ajprenal.00520.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We aimed to investigate the potential relationship between alarmins [acting via Toll-like receptor-4 (TLR4)], uric acid (UA), and high-mobility group box-1 protein (HMGB1) during acute kidney injury. UA, which is significantly increased in the circulation following renal ischemia-reperfusion injury (IRI), was used both in vitro and in vivo as an early response-signaling molecule to determine its ability to induce the secretion of HMGB1 from endothelial cells. Treatment of human umbilical vein endothelial cells (HUVEC) with UA resulted in increased HMGB1 mRNA expression, acetylation of nuclear HMGB1, and its subsequent nuclear-cytoplasmic translocation and release into the circulation, as determined by Western blotting and immunofluorescence. Treatment of HUVEC with UA and a calcium mobilization inhibitor (TMB-8) or a MEK/Erk pathway inhibitor (U0126) prevented translocation of HMGB1 from the nucleus, resulting in reduced cytoplasmic and circulating levels of HMGB1. Once released, HMGB1 in autocrine fashion promoted further HMGB1 release while also stimulating NF-κB activity and increased angiopoietin-2 expression and protein release. Transfection of HUVEC with TLR4 small interfering (si) RNA reduced HMGB1 levels during UA and HMGB1 treatment. In summary, UA after IRI mediates the acetylation and release of HMGB1 from endothelial cells by mechanisms that involve calcium mobilization, the MEK/Erk pathway, and activation of TLR4. Once released, HMGB1 promotes its own further cellular release while acting as an autocrine and paracrine to activate both proinflammatory and proreparative mediators.
Collapse
Affiliation(s)
- May M Rabadi
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
What's new in Shock, September 2011? Shock 2011; 36:205-7. [PMID: 21844786 DOI: 10.1097/shk.0b013e318228ec3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|