1
|
Dong Y, Speer CP, Glaser K. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence 2018; 9:621-633. [PMID: 29405832 PMCID: PMC5955464 DOI: 10.1080/21505594.2017.1419117] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus epidermidis accounts for the majority of cases of neonatal sepsis. Moreover, it has been demonstrated to be associated with neonatal morbidities, such as bronchopulmonary dysplasia (BPD), white matter injury (WMI), necrotizing enterocolitis (NEC) and retinopathy of prematurity (ROP), which affect short-term and long-term neonatal outcome. Imbalanced inflammation has been considered to be a major underlying mechanism of each entity. Conventionally regarded as a harmless commensal on human skin, S. epidermidis has received less attention than its more virulent relative Staphylococcus aureus. Particularities of neonatal innate immunity and nosocomial environmental factors, however, may contribute to the emergence of S. epidermidis as a significant nosocomial pathogen. Neonatal host response to S. epidermidis sepsis has not been fully elucidated. Evidence is emerging regarding the implication of S. epidermidis sepsis in the pathogenesis of neonatal inflammatory diseases. This review focuses on the interplay among S. epidermidis, neonatal innate immunity and inflammation-driven organ injury.
Collapse
Affiliation(s)
- Ying Dong
- a University Children's Hospital , University of Wuerzburg , Wuerzburg , Germany.,b Department of Neonatology , Children's Hospital of Fudan University , Shanghai , China
| | - Christian P Speer
- a University Children's Hospital , University of Wuerzburg , Wuerzburg , Germany
| | - Kirsten Glaser
- a University Children's Hospital , University of Wuerzburg , Wuerzburg , Germany
| |
Collapse
|
2
|
Abstract
Despite an array of cogent antibiotics, bacterial infections, notably those produced by nosocomial pathogens, still remain a leading factor of morbidity and mortality around the globe. They target the severely ill, hospitalized and immunocompromised patients with incapacitated immune system, who are prone to infections. The choice of antimicrobial therapy is largely empirical and not devoid of toxicity, hypersensitivity, teratogenicity and/or mutagenicity. The emergence of multidrug-resistant bacteria further intensifies the clinical predicament as it directly impacts public health due to diminished potency of current antibiotics. In addition, there is an escalating concern with respect to biofilm-associated infections that are refractory to the presently available antimicrobial armory, leaving almost no therapeutic option. Hence, there is a dire need to develop alternate antibacterial agents. The past decade has witnessed a substantial upsurge in the global use of nanomedicines as innovative tools for combating the high rates of antimicrobial resistance. Antibacterial activity of metal and metal oxide nanoparticles (NPs) has been extensively reported. The microbes are eliminated either by microbicidal effects of the NPs, such as release of free metal ions culminating in cell membrane damage, DNA interactions or free radical generation, or by microbiostatic effects coupled with killing potentiated by the host's immune system. This review encompasses the magnitude of multidrug resistance in nosocomial infections, bacterial evasion of the host immune system, mechanisms used by bacteria to develop drug resistance and the use of nanomaterials based on metals to overcome these challenges. The diverse annihilative effects of conventional and biogenic metal NPs for antibacterial activity are also discussed. The use of polymer-based nanomaterials and nanocomposites, alone or functionalized with ligands, antibodies or antibiotics, as alternative antimicrobial agents for treating severe bacterial infections is also discussed. Combinatorial therapy with metallic NPs, as adjunct to the existing antibiotics, may aid to restrain the mounting menace of bacterial resistance and nosocomial threat.
Collapse
Affiliation(s)
- Hassan A Hemeg
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M, O'Mahony L, Richards RG, Moriarty TF. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front Microbiol 2017; 8:1401. [PMID: 28824556 PMCID: PMC5539136 DOI: 10.3389/fmicb.2017.01401] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50% in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus. This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years.
Collapse
Affiliation(s)
- Marina Sabaté Brescó
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland.,Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - Llinos G Harris
- Microbiology and Infectious Diseases, Institute of Life Science, Swansea University Medical SchoolSwansea, United Kingdom
| | - Keith Thompson
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Barbara Stanic
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Mario Morgenstern
- Department of Orthopedic and Trauma Surgery, University Hospital BaselBasel, Switzerland
| | - Liam O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - R Geoff Richards
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - T Fintan Moriarty
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| |
Collapse
|
4
|
Abstract
Given the increasing evidence of safe application of elevated temperature in other clinical contexts, we consider the potential for supplemental hyperthermia to augment the effects of vancomycin against staphylococci, a major source of postoperative and posttraumatic sepsis. Laboratory reference strains and libraries of clinical blood isolates of Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus, both as planktonic cells and as established biofilms, were assessed for thermosensitivity and increased susceptibility to vancomycin in the setting of thermal treatment. In addition to viability measures, patterns of stress gene expression were assessed with quantitative polymerase chain reaction, and structural changes were measured using quantitative transmission electron microscopy. Laboratory strains of both species had reduced growth and biofilm viability at 45°C, a temperature commonly used in other domains such as adjuvant treatments of malignancy. Blood isolates of S. epidermidis were consistent in this regard as well, but significant between-isolate variability in thermosensitivity was seen in blood isolates of S. aureus. Expression profiling and ultrastructural measurements confirmed that elevated temperature was a substantial stressor with or without vancomycin treatment. Our findings suggest that temperature elevations shown to be tolerated in humans in other settings hold the potential to be used as an adjuvant to antibiotic therapy against staphylococcal biofilms.
Collapse
|
5
|
McGuffie MJ, Hong J, Bahng JH, Glynos E, Green PF, Kotov NA, Younger JG, VanEpps JS. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:33-42. [PMID: 26515755 DOI: 10.1016/j.nano.2015.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022]
Abstract
Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices.
Collapse
Affiliation(s)
- Matthew J McGuffie
- Department of Emergency Medicine, Ann Arbor, MI, USA; Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA; Biointerfaces Institute University of Michigan, Ann Arbor, MI, USA
| | - Jin Hong
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, China
| | | | - Emmanouil Glynos
- Department of Materials Science and Engineering, Ann Arbor, MI, USA; Biointerfaces Institute University of Michigan, Ann Arbor, MI, USA
| | - Peter F Green
- Department of Chemical Engineering, Ann Arbor, MI, USA; Department of Materials Science and Engineering, Ann Arbor, MI, USA; Department of Applied Physics, Ann Arbor, MI, USA
| | - Nicholas A Kotov
- Department of Chemical Engineering, Ann Arbor, MI, USA; Department of Biomedical Engineering, Ann Arbor, MI, USA; Department of Materials Science and Engineering, Ann Arbor, MI, USA; Department of Macromolecular Science and Engineering, Ann Arbor, MI, USA; Biointerfaces Institute University of Michigan, Ann Arbor, MI, USA
| | - John G Younger
- Department of Emergency Medicine, Ann Arbor, MI, USA; Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA; Biointerfaces Institute University of Michigan, Ann Arbor, MI, USA
| | - J Scott VanEpps
- Department of Emergency Medicine, Ann Arbor, MI, USA; Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA; Biointerfaces Institute University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Al-Ishaq R, Armstrong J, Gregory M, O'Hara M, Phiri K, Harris LG, Rohde H, Siemssen N, Frommelt L, Mack D, Wilkinson TS. Effects of polysaccharide intercellular adhesin (PIA) in an ex vivo model of whole blood killing and in prosthetic joint infection (PJI): A role for C5a. Int J Med Microbiol 2015; 305:948-56. [PMID: 26365169 DOI: 10.1016/j.ijmm.2015.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/05/2015] [Accepted: 08/16/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A major complication of using medical devices is the development of biofilm-associated infection caused by Staphylococcus epidermidis where polysaccharide intercellular adhesin (PIA) is a major mechanism of biofilm accumulation. PIA affects innate and humoral immunity in isolated cells and animal models. Few studies have examined these effects in prosthetic joint infection (PJI). METHODS This study used ex vivo whole blood modelling in controls together with matched-serum and staphylococcal isolates from patients with PJI. RESULTS Whole blood killing of PIA positive S. epidermidis and its isogenic negative mutant was identical. Differences were unmasked in immunosuppressed whole blood pre-treated with dexamethasone where PIA positive bacteria showed a more resistant phenotype. PIA expression was identified in three unique patterns associated with bacteria and leukocytes, implicating a soluble form of PIA. Purified PIA reduced whole blood killing while increasing C5a levels. In clinically relevant staphylococcal isolates and serum samples from PJI patients; firstly complement C5a was increased 3-fold compared to controls; secondly, the C5a levels were significantly higher in serum from PJI patients whose isolates preferentially formed PIA-associated biofilms. CONCLUSIONS These data demonstrate for the first time that the biological effects of PIA are mediated through C5a in patients with PJI.
Collapse
Affiliation(s)
- Rand Al-Ishaq
- Institute of Life Science, Microbiology and Infectious Disease, Swansea University, First Floor, Room 137, Singleton Park SA2 8PP, United Kingdom
| | - Jayne Armstrong
- Institute of Life Science, Microbiology and Infectious Disease, Swansea University, First Floor, Room 137, Singleton Park SA2 8PP, United Kingdom
| | - Martin Gregory
- Institute of Life Science, Microbiology and Infectious Disease, Swansea University, First Floor, Room 137, Singleton Park SA2 8PP, United Kingdom
| | - Miriam O'Hara
- Institute of Life Science, Microbiology and Infectious Disease, Swansea University, First Floor, Room 137, Singleton Park SA2 8PP, United Kingdom
| | - Kudzai Phiri
- Institute of Life Science, Microbiology and Infectious Disease, Swansea University, First Floor, Room 137, Singleton Park SA2 8PP, United Kingdom
| | - Llinos G Harris
- Institute of Life Science, Microbiology and Infectious Disease, Swansea University, First Floor, Room 137, Singleton Park SA2 8PP, United Kingdom
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Nicolaus Siemssen
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Lars Frommelt
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dietrich Mack
- Institute of Life Science, Microbiology and Infectious Disease, Swansea University, First Floor, Room 137, Singleton Park SA2 8PP, United Kingdom; Bioscientia Labor Ingelheim, Institut für Medizinische Diagnostik GmbH, Mikrobiologie Konrad-Adenauer-Straße 17, 55218 Ingelheim, Germany
| | - Thomas S Wilkinson
- Institute of Life Science, Microbiology and Infectious Disease, Swansea University, First Floor, Room 137, Singleton Park SA2 8PP, United Kingdom.
| |
Collapse
|
7
|
What’s New in Shock? April 2013. Shock 2013. [DOI: 10.1097/shk.0b013e31828f0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|