1
|
Sobral AF, Cunha A, Silva V, Gil-Martins E, Silva R, Barbosa DJ. Unveiling the Therapeutic Potential of Folate-Dependent One-Carbon Metabolism in Cancer and Neurodegeneration. Int J Mol Sci 2024; 25:9339. [PMID: 39273288 PMCID: PMC11395277 DOI: 10.3390/ijms25179339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, ensuring genomic stability and preventing carcinogenesis. Additionally, in neurodevelopment, folate is essential for neural tube closure and central nervous system formation. Thus, dysregulation of folate metabolism can contribute to pathologies such as cancer, severe birth defects, and neurodegenerative diseases. Epidemiological evidence highlights folate's impact on disease risk and its potential as a therapeutic target. In cancer, antifolate drugs that inhibit key enzymes of folate-dependent 1C metabolism and strategies targeting folate receptors are current therapeutic options. However, folate's impact on cancer risk is complex, varying among cancer types and dietary contexts. In neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, folate deficiency exacerbates cognitive decline through elevated homocysteine levels, contributing to neuronal damage. Clinical trials of folic acid supplementation show mixed outcomes, underscoring the complexities of its neuroprotective effects. This review integrates current knowledge on folate metabolism in cancer and neurodegeneration, exploring molecular mechanisms, clinical implications, and therapeutic strategies, which can provide crucial information for advancing treatments.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Andrea Cunha
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
| | - Vera Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
2
|
Meijer RPJ, Galema HA, Faber RA, Bijlstra OD, Maat APWM, Cailler F, Braun J, Keereweer S, Hilling DE, Burggraaf J, Vahrmeijer AL, Hutteman M. Intraoperative molecular imaging of colorectal lung metastases with SGM-101: a feasibility study. Eur J Nucl Med Mol Imaging 2024; 51:2970-2979. [PMID: 37552367 PMCID: PMC11300526 DOI: 10.1007/s00259-023-06365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Metastasectomy is a common treatment option for patients with colorectal lung metastases (CLM). Challenges exist with margin assessment and identification of small nodules, especially during minimally invasive surgery. Intraoperative fluorescence imaging has the potential to overcome these challenges. The aim of this study was to assess feasibility of targeting CLM with the carcinoembryonic antigen (CEA) specific fluorescent tracer SGM-101. METHODS This was a prospective, open-label feasibility study. The primary outcome was the number of CLM that showed a true positive fluorescence signal with SGM-101. Fluorescence positive signal was defined as a signal-to-background ratio (SBR) ≥ 1.5. A secondary endpoint was the CEA expression in the colorectal lung metastases, assessed with the immunohistochemistry, and scored by the total immunostaining score. RESULTS Thirteen patients were included in this study. Positive fluorescence signal with in vivo, back table, and closed-field bread loaf imaging was observed in 31%, 45%, and 94% of the tumors respectively. Median SBRs for the three imaging modalities were 1.00 (IQR: 1.00-1.53), 1.45 (IQR: 1.00-1.89), and 4.81 (IQR: 2.70-7.41). All tumor lesions had a maximum total immunostaining score for CEA expression of 12/12. CONCLUSION This study demonstrated the potential of fluorescence imaging of CLM with SGM-101. CEA expression was observed in all tumors, and closed-field imaging showed excellent CEA specific targeting of the tracer to the tumor nodules. The full potential of SGM-101 for in vivo detection of the tracer can be achieved with improved minimal invasive imaging systems and optimal patient selection. TRIAL REGISTRATION The study was registered in ClinicalTrial.gov under identifier NCT04737213 at February 2021.
Collapse
Affiliation(s)
- Ruben P J Meijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Center for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Hidde A Galema
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Robin A Faber
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Okker D Bijlstra
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Alexander P W M Maat
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Françoise Cailler
- Surgimab, 10 Parc Club du Millénaire, 1025 Avenue Henri Becquerel, 34000, Montpellier, France
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Center for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Merlijn Hutteman
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA, 6525, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Kennedy GT, Azari FS, Chang A, Bou-Samra P, Desphande C, Predina J, Delikatny EJ, Olson M, Rice DC, Singhal S. A Phase 2 Multicenter Clinical Trial of Intraoperative Molecular Imaging of Lung Cancer with a pH-Activatable Nanoprobe. Mol Imaging Biol 2024; 26:585-592. [PMID: 38992245 DOI: 10.1007/s11307-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE Intraoperative molecular imaging (IMI) uses tumor-targeted optical contrast agents to improve identification and clearance of cancer. Recently, a probe has been developed that only fluoresces when activated in an acidic pH, which is common to many malignancies. We report the first multicenter Phase 2 trial of a pH-activatable nanoprobe (pegsitacianine, ONM-100) for IMI of lung cancer. METHODS Patients with suspected or biopsy-confirmed lung cancer scheduled for sublobar resection were administered a single intravenous infusion of pegsitacianine (1 mg/kg) one to three days prior to surgery. Intraoperatively, the patients underwent a white light thoracoscopic evaluation, and then were imaged with an NIR thoracoscope to detect tumor fluorescence. The primary study endpoint was the proportion of patients with a clinically significant event (CSE) which was defined as an intraoperative discovery during IMI that led to a change in the surgical procedure. Possible CSEs included (i) localizing the index lung nodule that could not be located by white light, (ii) identifying a synchronous malignant lesion, or (iii) recognizing a close surgical margin (< = 10 mm). Secondary endpoints were sensitivity, specificity, NPV, and PPV of pegsitacianine in detecting tumor-containing tissue. The safety evaluation was based on adverse event reporting, clinical laboratory parameters, and physical examinations. RESULTS Twenty patients were confirmed as eligible and administered pegsitacianine. Most of the patients were female (n = 12 [60%]), middle-aged (mean age 63.4 years), and former smokers (n = 13 [65%], 28.6 mean pack years). Mean lesion size was 1.9 cm, and most lesions (n = 17 [85%]) were malignant. The most common histologic subtype was adenocarcinoma (n = 9). By utilizing IMI with pegsitacianine, one patient had a CSE in the detection of a close margin and another had localization of a tumor not detectable by traditional surgical means. Six of 19 (31.6%) malignant lesions fluoresced with mean tumor-to-background ratio (TBR) of 3.00, as compared to TBR of 1.20 for benign lesions (n = 3). Sensitivity and specificity of pegsitacianine-based IMI for detecting malignant tissue was 31.6% and 33.3%, respectively. Positive predictive value (PPV) and negative predictive value (NPV) of pegsitacianine-based IMI was 75% and 7.1%, respectively. Pegsitacianine-based imaging was not effective in differentiating benign and malignant lymph nodes. From a safety perspective, no drug-related serious adverse events occurred. Four patients experienced mild pegsitacianine-related infusion reactions which required discontinuing the study drug with complete resolution of symptoms. CONCLUSIONS Pegsitacianine-based IMI, though well tolerated from a safety perspective, does not consistently label lung tumors during resection and does not provide significant clinical benefit over existing standards of surgical care. The biology of lung tumors may not be as acidic as other solid tumors in the body thereby not activating the probe as predicted.
Collapse
Affiliation(s)
- Gregory T Kennedy
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard 14th Floor South Pavilion, Philadelphia, PA, 19104, USA.
| | - Feredun S Azari
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard 14th Floor South Pavilion, Philadelphia, PA, 19104, USA
| | - Austin Chang
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard 14th Floor South Pavilion, Philadelphia, PA, 19104, USA
| | - Patrick Bou-Samra
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard 14th Floor South Pavilion, Philadelphia, PA, 19104, USA
| | - Charuhas Desphande
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jarrod Predina
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard 14th Floor South Pavilion, Philadelphia, PA, 19104, USA
| | - Edward J Delikatny
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - David C Rice
- Department of Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard 14th Floor South Pavilion, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Libor L, Pécsy B, Szűcs E, Lantos J, Bakos A, Lázár G, Furák J. Effect of transbronchial or intravenous administration of indocyanine green on resection margins during near-infrared-guided segmentectomy: a review. Front Surg 2024; 11:1430100. [PMID: 39011052 PMCID: PMC11246956 DOI: 10.3389/fsurg.2024.1430100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
For early-stage non-small cell lung cancer, surgical resection remains the best treatment option. Currently, sublobar resection, including segmentectomy, is recommended in these cases, as it provides a better quality of life with the same oncological outcomes; however, is requires adequate resection margins. Accurate preoperative planning and proper identification of the intersegmental planes during thoracic surgery are crucial for ensuring precise surgical management and adequate resection margins. Three dimensional computed tomography reconstruction and near-infrared-guided intersegmental plane identification can greatly facilitate the surgical procedures. Three-dimensional computed tomography reconstruction can simulate both the resection and resection margins. Indocyanine green is one of the most frequently used and affordable fluorophores. There are two ways to identify the intersegmental planes using indocyanine green: intravenous and transbronchial administration. Intravenous application is simple; however, its effectiveness may be affected by underlying lung disease, and it requires the isolation of segmental structures before administration. Transbronchial use requires appropriate bronchoscopic skills and preoperative planning; however, it also allows for delineation deep in the parenchyma and can be used for complex segmentectomies. Both methods can be used to ensure adequate resection margins and, therefore, achieve the correct oncological radicality of the surgical procedure. Here, we summarise these applications and provide an overview of their different possibilities.
Collapse
Affiliation(s)
- László Libor
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Pécsy
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Evelin Szűcs
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Judit Lantos
- Department of Neurology, Bács-Kiskun County Hospital, Kecskemet, Hungary
| | - Annamária Bakos
- Department of Nuclear Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Lázár
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Furák
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Mi J, Li C, Yang F, Shi X, Zhang Z, Guo L, Jiang G, Li Y, Wang J, Yang F, Hu Z, Zhou J. Comparative Study of Indocyanine Green Fluorescence Imaging in Lung Cancer with Near-Infrared-I/II Windows. Ann Surg Oncol 2024; 31:2451-2460. [PMID: 38063990 DOI: 10.1245/s10434-023-14677-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/12/2023] [Indexed: 03/06/2024]
Abstract
BACKGROUND We compare the application of intravenous indocyanine green (ICG) fluorescence imaging in lung cancer with near-infrared-I (NIR-I) and near-infrared-II (NIR-II) windows. METHODS From March to December 2022, we enrolled patients who received an intravenous injection of ICG (5 mg/kg) 1 day before the planned lung cancer surgery. The lung cancer nodules were imaged by NIR-I/II fluorescence imaging systems, and the tumor-to-normal-tissue ratio (TNR) was calculated. In addition, the fluorescence intensity and signal-to-background ratio (SBR) of capillary glass tubes containing ICG covered with different thicknesses of lung tissue were measured by NIR-I/II fluorescence imaging systems. RESULTS In this study, 102 patients were enrolled, and the mean age was 59.9 ± 9.2 years. A total of 96 (94.1%) and 98 (96.1%) lung nodules were successfully imaged with NIR-I and NIR-II fluorescence, and the TNR of NIR-II was significantly higher than that of NIR-I (3.9 ± 1.3 versus 2.4 ± 0.6, P < 0.001). In multiple linear regression, solid nodules (P < 0.001) and squamous cell carcinoma (P < 0.001) were independent predictors of a higher TNR of NIR-I/II. When capillary glass tubes were covered with lung tissue whose thickness was more than 2 mm, the fluorescence intensity and the SBR of NIR-II were significantly higher than those of NIR-I. CONCLUSIONS We verified the feasibility of NIR-II fluorescence imaging in intravenous ICG lung cancer imaging for the first time. NIR-II fluorescence can improve the TNR and penetration depth of lung cancer with promising clinical prospects.
Collapse
Affiliation(s)
- Jiahui Mi
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Changjian Li
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Feng Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Lishuang Guo
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Guanchao Jiang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
| | - Jian Zhou
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
6
|
Kennedy GT, Azari FS, Chang A, Chang A, Bou-Samra P, Desphande C, Delikatny EJ, Eruslanov E, Kucharczuk JC, Rice DC, Singhal S. A pH-Activatable Nanoprobe Labels Diverse Histologic Subtypes of Human Lung Cancer During Resection. Mol Imaging Biol 2023; 25:824-832. [PMID: 37697109 PMCID: PMC11141135 DOI: 10.1007/s11307-023-01853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Intraoperative molecular imaging (IMI) uses tumor-targeted optical contrast agents to improve identification and clearance of cancer during surgery. Recently, pH-activatable contrast agents have been developed but none has been tested in lung cancer. Here, we report the successful clinical translation of pegsitacianine (ONM-100), a pH-activatable nanoprobe, for fluorescence-guided lung cancer resection. METHODS We first characterized the pH setpoint for pegsitacianine fluorescence activation in vitro. We then optimized the specificity, dosing, and timing of pegsitacianine in murine flank xenograft models of lung adenocarcinoma and squamous cell carcinoma. Finally, we tested pegsitacianine in humans undergoing lung cancer surgery as part of an ongoing phase 2 trial. RESULTS We found that the fluorescence activation of pegsitacianine occurred below physiologic pH in vitro. Using preclinical models of lung cancer, we found that the probe selectively labeled both adenocarcinoma and squamous cell carcinoma xenografts (mean tumor-to-background ratio [TBR] > 2.0 for all cell lines). In the human pilot study, we report cases in which pegsitacianine localized pulmonary adenocarcinoma and pulmonary squamous cell carcinoma (TBRs= 2.7 and 2.4) in real time to illustrate its successful clinical translation and potential to improve surgical management. CONCLUSIONS This translational study demonstrates the feasibility of pegsitacianine as an IMI probe to label the two most common histologic subtypes of human lung cancer.
Collapse
Affiliation(s)
- Gregory Thomas Kennedy
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, 14th Floor, South Pavilion, Philadelphia, PA, 19104, USA
| | - Feredun S Azari
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, 14th Floor, South Pavilion, Philadelphia, PA, 19104, USA
| | - Ashley Chang
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, 14th Floor, South Pavilion, Philadelphia, PA, 19104, USA
| | - Austin Chang
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, 14th Floor, South Pavilion, Philadelphia, PA, 19104, USA
| | - Patrick Bou-Samra
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, 14th Floor, South Pavilion, Philadelphia, PA, 19104, USA
| | - Charuhas Desphande
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Edward J Delikatny
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Evgeniy Eruslanov
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, 14th Floor, South Pavilion, Philadelphia, PA, 19104, USA
| | - John C Kucharczuk
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, 14th Floor, South Pavilion, Philadelphia, PA, 19104, USA
| | - David C Rice
- Department of Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, 14th Floor, South Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Wong LY, Lui NS. Intraoperative Molecular Imaging of Lung Cancer. Thorac Surg Clin 2023; 33:227-232. [PMID: 37414478 DOI: 10.1016/j.thorsurg.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Intraoperative molecular imaging innovations have been propelled by the development of fluorescent contrast agents that specifically target tumor tissues and advanced camera systems that can detect the specified fluorescence. The most promising agent to date is OTL38, a targeted and near-infrared agent that was recently approved by the Food and Drug Administration for intraoperative imaging for lung cancer.
Collapse
Affiliation(s)
- Lye-Yeng Wong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Falk Building, Stanford, CA 94305, USA. https://twitter.com/LyeYengWongMD
| | - Natalie S Lui
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Falk Building, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Azari F, Zhang K, Kennedy G, Bou-Samra P, Chang A, Nadeem B, Chang A, Galandarova A, Ibrahimli A, Karimov Z, Din A, Kucharczuk J, Doraid J, Pechet T, Delikatny E, Singhal S. Prospective validation of tumor folate receptor expression density with the association of pafolacianine fluorescence during intraoperative molecular imaging-guided lung cancer resections. Eur J Nucl Med Mol Imaging 2023; 50:2453-2465. [PMID: 36905412 PMCID: PMC10314365 DOI: 10.1007/s00259-023-06141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/08/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE Pafolacianine, a folate receptor alpha-targeted NIR tracer, has demonstrated clear efficacy in intraoperative molecular imaging-guided (IMI) lung cancer surgery. However, the selection of patients who would benefit from IMI remains challenging given the variability of fluorescence with patient-associated and histopathologic factors. Our goal in this study was to prospectively evaluate whether preoperative FRα/FRβ staining can predict pafolacianine-based fluorescence during real-time lung cancer resections. METHODS This was a prospective study conducted between 2018 and 2022 that reviewed core biopsy and intraoperative data from patients with suspected lung cancer. A total of 196 patients were deemed eligible, of whom core biopsies were taken from 38 patients and assessed for FRα and FRβ expression by immunohistochemistry (IHC). All patients underwent infusion of pafolacianine 24 h prior to surgery. Intraoperative fluorescence images were captured with the VisionSense bandpass filter-enabled camera. All histopathologic assessments were performed by a board-certified thoracic pathologist. RESULTS Of the 38 patients, 5 (13.1%) were found to have benign lesions (necrotizing granulomatous inflammation, lymphoid aggregates) and 1 had metastatic non-lung nodule. Thirty (81.5%) had malignant lesions, with the vast majority (23, 77.4%) being lung adenocarcinoma (7 (22.5%) SCC). None of the benign tumors (0/5, 0%) exhibited in vivo fluorescence (mean TBR of 1.72), while 95% of the malignant tumors fluoresced (mean TBR of 3.11 ± 0.31) compared to squamous cell carcinoma (1.89 ± 0.29) of the lung and sarcomatous lung metastasis (2.32 ± 0.09) (p < 0.01). The TBR was significantly higher in the malignant tumors (p = 0.009). The median FRα and FRβ staining intensities were both 1.5 for benign tumors, while the FRα and FRβ staining intensities were 3 and 2 for malignant tumors, respectively. Increased FRα expression was significantly associated with the presence of fluorescence (p = 0.01), CONCLUSION: This prospective study sought to determine whether preoperative FRα and FRβ expression on core biopsy IHC correlates with intraoperative fluorescence during pafolacianine-guided surgery. These results, although of small sample size, including limited non-adenocarcinoma cohort, suggest that performing FRα IHC on preoperative core biopsies of adenocarcinomas as compared to squamous cell carcinomas could provide low-cost, clinically useful information for optimal patient selection which should be further explored in advanced clinical trials.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - Kevin Zhang
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory Kennedy
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - Patrick Bou-Samra
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
- Ohio State University School of Medicine, Ohio, Columbus, USA
| | - Ashley Chang
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - Bilal Nadeem
- Ankara Yildirim Beyazit Faculty of Medicine, Ankara, Turkey
| | - Austin Chang
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | | | | | - Ziya Karimov
- Faculty of Medicine, Ege University, Izimir, Turkey
| | - Azra Din
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - John Kucharczuk
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - Jarrar Doraid
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - Taine Pechet
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - Edward Delikatny
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|