1
|
Pan SC, Wu YF, Lin YC, Cheng CM. Monocyte chemoattractant protein-1 detection in wound tissue fluids for the assisted diagnosis of wound infection. Surgery 2024; 176:154-161. [PMID: 38599982 DOI: 10.1016/j.surg.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Infections are commonly seen in wounds. The overall infection rate is 1.8% to 4.2%. Improper infection management can lead to serious conditions and may progress to life-threatening sepsis. Because there is a need for assistance in predicting wound infection before obvious clinical symptoms, the measurement of cytokines in wound tissue fluids has attracted our attention for determining the overall status of wound infection. Our intent was to assess the potential biomarkers in the diagnosis of wound infection. METHODS We collected 146 tissue fluids (acute: 59, chronic: 61, and normal: 26) for analysis of biomarkers using a human cytokine array. Serum C-reactive protein was also measured from 104 patients. The sensitivity and specificity of significant wound cytokines and serum C-reactive protein for the diagnosis of wound infection were evaluated. RESULTS Among biomarkers examined, serum C-reactive protein and tissue C-reactive protein were highly expressed in acute infection wounds, whereas monocyte chemoattractant protein-1 was significantly expressed in chronic infection wounds. Because the expression of wound biomarkers varied in different types of wounds, relationships among them were studied. A high correlation between tissue C-reactive protein and interleukin-8 (R2 = 0.7) and a moderate correlation between systemic and local C-reactive protein (R2 = 0.47) were observed. In addition, tissue monocyte chemoattractant protein-1 had better sensitivity (74%) and specificity (65%) in the diagnosis of wound infection. Moreover, combined serum C-reactive protein with monocyte chemoattractant protein-1 examination provided a higher area under the curve in the receiver operator characteristic curve (0.75). CONCLUSION We found that tissue monocyte chemoattractant protein-1 is a superior diagnostic marker for assistance with the diagnosis of wound infection.
Collapse
Affiliation(s)
- Shin-Chen Pan
- Section of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.
| | - Yu-Feng Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan; Section of Plastic and Reconstructive Surgery, Department of Surgery, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Yu-Chen Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| |
Collapse
|
2
|
Schobel SA, Gann ER, Unselt D, Grey SF, Lisboa FA, Upadhyay MM, Rouse M, Tallowin S, Be NA, Zhang X, Dalgard CL, Wilkerson MD, Hauskrecht M, Badylak SF, Zamora R, Vodovotz Y, Potter BK, Davis TA, Elster EA. The influence of microbial colonization on inflammatory versus pro-healing trajectories in combat extremity wounds. Sci Rep 2024; 14:5006. [PMID: 38438404 PMCID: PMC10912443 DOI: 10.1038/s41598-024-52479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024] Open
Abstract
A combination of improved body armor, medical transportation, and treatment has led to the increased survival of warfighters from combat extremity injuries predominantly caused by blasts in modern conflicts. Despite advances, a high rate of complications such as wound infections, wound failure, amputations, and a decreased quality of life exist. To study the molecular underpinnings of wound failure, wound tissue biopsies from combat extremity injuries had RNA extracted and sequenced. Wounds were classified by colonization (colonized vs. non-colonized) and outcome (healed vs. failed) status. Differences in gene expression were investigated between timepoints at a gene level, and longitudinally by multi-gene networks, inferred proportions of immune cells, and expression of healing-related functions. Differences between wound outcomes in colonized wounds were more apparent than in non-colonized wounds. Colonized/healed wounds appeared able to mount an adaptive immune response to infection and progress beyond the inflammatory stage of healing, while colonized/failed wounds did not. Although, both colonized and non-colonized failed wounds showed increasing inferred immune and inflammatory programs, non-colonized/failed wounds progressed beyond the inflammatory stage, suggesting different mechanisms of failure dependent on colonization status. Overall, these data reveal gene expression profile differences in healing wounds that may be utilized to improve clinical treatment paradigms.
Collapse
Affiliation(s)
- Seth A Schobel
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Eric R Gann
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Desiree Unselt
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Q2 Solutions, Durham, NC, USA
| | - Scott F Grey
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Felipe A Lisboa
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Meenu M Upadhyay
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
| | - Michael Rouse
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Simon Tallowin
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Nicholas A Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Xijun Zhang
- Uniformed Services University (USU) The American Genome Center (TAGC), Bethesda, MD, USA
| | - Clifton L Dalgard
- Uniformed Services University (USU) The American Genome Center (TAGC), Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew D Wilkerson
- Uniformed Services University (USU) The American Genome Center (TAGC), Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Milos Hauskrecht
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
3
|
Kok CR, Mulakken N, Thissen JB, Grey SF, Avila-Herrera A, Upadhyay MM, Lisboa FA, Mabery S, Elster EA, Schobel SA, Be NA. Targeted metagenomic assessment reflects critical colonization in battlefield injuries. Microbiol Spectr 2023; 11:e0252023. [PMID: 37874143 PMCID: PMC10714869 DOI: 10.1128/spectrum.02520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Microbial contamination in combat wounds can lead to opportunistic infections and adverse outcomes. However, current microbiological detection has a limited ability to capture microbial functional genes. This work describes the application of targeted metagenomic sequencing to profile wound bioburden and capture relevant wound-associated signatures for clinical utility. Ultimately, the ability to detect such signatures will help guide clinical decisions regarding wound care and management and aid in the prediction of wound outcomes.
Collapse
Affiliation(s)
- Car Reen Kok
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nisha Mulakken
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - James B. Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Scott F. Grey
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Meenu M. Upadhyay
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Felipe A. Lisboa
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Shalini Mabery
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Eric A. Elster
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Seth A. Schobel
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Nicholas A. Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
4
|
Kotronoulas A, de Lomana ALG, Einarsdóttir HK, Kjartansson H, Stone R, Rolfsson Ó. Fish Skin Grafts Affect Adenosine and Methionine Metabolism during Burn Wound Healing. Antioxidants (Basel) 2023; 12:2076. [PMID: 38136196 PMCID: PMC10741162 DOI: 10.3390/antiox12122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Burn wound healing is a complex process orchestrated through successive biochemical events that span from weeks to months depending on the depth of the wound. Here, we report an untargeted metabolomics discovery approach to capture metabolic changes during the healing of deep partial-thickness (DPT) and full-thickness (FT) burn wounds in a porcine burn wound model. The metabolic changes during healing could be described with six and seven distinct metabolic trajectories for DPT and FT wounds, respectively. Arginine and histidine metabolism were the most affected metabolic pathways during healing, irrespective of burn depth. Metabolic proxies for oxidative stress were different in the wound types, reaching maximum levels at day 14 in DPT burns but at day 7 in FT burns. We examined how acellular fish skin graft (AFSG) influences the wound metabolome compared to other standard-or-care burn wound treatments. We identified changes in metabolites within the methionine salvage pathway, specifically in DPT burn wounds that is novel to the understanding of the wound healing process. Furthermore, we found that AFSGs boost glutamate and adenosine in wounds that is of relevance given the importance of purinergic signaling in regulating oxidative stress and wound healing. Collectively, these results serve to define biomarkers of burn wound healing. These results conclusively contribute to the understanding of the multifactorial mechanism of the action of AFSG that has traditionally been attributed to its structural properties and omega-3 fatty acid content.
Collapse
Affiliation(s)
- Aristotelis Kotronoulas
- Center for Systems Biology, Medical Department, University of Iceland, Sturlugata 8, 102 Reykjavik, Iceland
| | | | | | | | - Randolph Stone
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234, USA
| | - Óttar Rolfsson
- Center for Systems Biology, Medical Department, University of Iceland, Sturlugata 8, 102 Reykjavik, Iceland
| |
Collapse
|
5
|
Zamora R, Forsberg JA, Shah AM, Unselt D, Grey S, Lisboa FA, Billiar TR, Schobel SA, Potter BK, Elster EA, Vodovotz Y. Central role for neurally dysregulated IL-17A in dynamic networks of systemic and local inflammation in combat casualties. Sci Rep 2023; 13:6618. [PMID: 37095162 PMCID: PMC10126120 DOI: 10.1038/s41598-023-33623-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
Dynamic Network Analysis (DyNA) and Dynamic Hypergraphs (DyHyp) were used to define protein-level inflammatory networks at the local (wound effluent) and systemic circulation (serum) levels from 140 active-duty, injured service members (59 with TBI and 81 non-TBI). Interleukin (IL)-17A was the only biomarker elevated significantly in both serum and effluent in TBI vs. non-TBI casualties, and the mediator with the most DyNA connections in TBI wounds. DyNA combining serum and effluent data to define cross-compartment correlations suggested that IL-17A bridges local and systemic circulation at late time points. DyHyp suggested that systemic IL-17A upregulation in TBI patients was associated with tumor necrosis factor-α, while IL-17A downregulation in non-TBI patients was associated with interferon-γ. Correlation analysis suggested differential upregulation of pathogenic Th17 cells, non-pathogenic Th17 cells, and memory/effector T cells. This was associated with reduced procalcitonin in both effluent and serum of TBI patients, in support of an antibacterial effect of Th17 cells in TBI patients. Dysregulation of Th17 responses following TBI may drive cross-compartment inflammation following combat injury, counteracting wound infection at the cost of elevated systemic inflammation.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan A Forsberg
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Ashti M Shah
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Desiree Unselt
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Scott Grey
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Felipe A Lisboa
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Seth A Schobel
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Crum RJ, Johnson SA, Jiang P, Jui JH, Zamora R, Cortes D, Kulkarni M, Prabahar A, Bolin J, Gann E, Elster E, Schobel SA, Larie D, Cockrell C, An G, Brown B, Hauskrecht M, Vodovotz Y, Badylak SF. Transcriptomic, Proteomic, and Morphologic Characterization of Healing in Volumetric Muscle Loss. Tissue Eng Part A 2022; 28:941-957. [PMID: 36039923 DOI: 10.1089/ten.tea.2022.0113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle has a robust, inherent ability to regenerate in response to injury from acute to chronic. In severe trauma, however, complete regeneration is not possible, resulting in a permanent loss of skeletal muscle tissue referred to as volumetric muscle loss (VML). There are few consistently reliable therapeutic or surgical options to address VML. A major limitation in investigation of possible therapies is the absence of a well-characterized large animal model. Here, we present results of a comprehensive transcriptomic, proteomic, and morphologic characterization of wound healing following volumetric muscle loss in a novel canine model of VML which we compare to a nine-patient cohort of combat-associated VML. The canine model is translationally relevant as it provides both a regional (spatial) and temporal map of the wound healing processes that occur in human VML. Collectively, these data show the spatiotemporal transcriptomic, proteomic, and morphologic properties of canine VML healing as a framework and model system applicable to future studies investigating novel therapies for human VML.
Collapse
Affiliation(s)
- Raphael John Crum
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Dr., Suite 300, Pittsburgh, Pennsylvania, United States, 15219;
| | - Scott A Johnson
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Dr, Suite 300, Pittsburgh, Pennsylvania, United States, 15219;
| | - Peng Jiang
- Cleveland State University, Center for Gene Regulation in Health and Disease, Cleveland, Ohio, United States.,Cleveland State University, Center for Applied Data Analysis and Modeling (ADAM), Cleveland, Ohio, United States.,Cleveland State University, Department of Biological, Geological, and Environmental Sciences (BGES), Cleveland, Ohio, United States;
| | - Jayati H Jui
- University of Pittsburgh, Department of Computer Science, Pittsburgh, Pennsylvania, United States;
| | - Ruben Zamora
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Center for Inflammation and Regeneration Modeling, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Center for Systems Immunology, Pittsburgh, Pennsylvania, United States;
| | - Devin Cortes
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Bioengineering, Pittsburgh, Pennsylvania, United States;
| | - Mangesh Kulkarni
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Bioengineering, Pittsburgh, Pennsylvania, United States;
| | - Archana Prabahar
- Cleveland State University, Center for Gene Regulation in Health and Disease, Cleveland, Ohio, United States;
| | - Jennifer Bolin
- Morgridge Institute for Research, Madison, Wisconsin, United States;
| | - Eric Gann
- Uniformed Services University of the Health Sciences, Surgery, Bethesda, Maryland, United States.,Uniformed Services University of the Health Sciences, Surgical Critical Care Initiative, Department of Surgery, Bethesda, Maryland, United States.,Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, Maryland, United States;
| | - Eric Elster
- Uniformed Services University of the Health Sciences, Surgery, Bethesda, Maryland, United States.,Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, Maryland, United States.,Uniformed Services University of the Health Sciences, Surgical Critical Care Initiative, Department of Surgery, Bethesda, Maryland, United States.,Walter Reed Army Medical Center, Bethesda, Maryland, United States;
| | - Seth A Schobel
- Uniformed Services University of the Health Sciences, Surgery, Bethesda, Maryland, United States.,Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, Maryland, United States.,Uniformed Services University of the Health Sciences, Surgical Critical Care Initiative, Department of Surgery, Bethesda, Maryland, United States;
| | - Dale Larie
- University of Vermont, Department of Surgery, Burlington, Vermont, United States;
| | - Chase Cockrell
- University of Vermont, Department of Surgery, Burlington, Vermont, United States;
| | - Gary An
- University of Vermont, Department of Surgery, Burlington, Vermont, United States;
| | - Bryan Brown
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Bioengineering, Pittsburgh, Pennsylvania, United States;
| | - Milos Hauskrecht
- University of Pittsburgh, Department of Computer Science, Pittsburgh, Pennsylvania, United States;
| | - Yoram Vodovotz
- University of Pittsburgh, Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Center for Inflammation and Regeneration Modeling, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, Center for Systems Immunology, Pittsburgh, Pennsylvania, United States;
| | - Stephen F Badylak
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States;
| |
Collapse
|
7
|
Metagenomic features of bioburden serve as outcome indicators in combat extremity wounds. Sci Rep 2022; 12:13816. [PMID: 35970993 PMCID: PMC9378645 DOI: 10.1038/s41598-022-16170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Battlefield injury management requires specialized care, and wound infection is a frequent complication. Challenges related to characterizing relevant pathogens further complicates treatment. Applying metagenomics to wounds offers a comprehensive path toward assessing microbial genomic fingerprints and could indicate prognostic variables for future decision support tools. Wound specimens from combat-injured U.S. service members, obtained during surgical debridements before delayed wound closure, were subjected to whole metagenome analysis and targeted enrichment of antimicrobial resistance genes. Results did not indicate a singular, common microbial metagenomic profile for wound failure, instead reflecting a complex microenvironment with varying bioburden diversity across outcomes. Genus-level Pseudomonas detection was associated with wound failure at all surgeries. A logistic regression model was fit to the presence and absence of antimicrobial resistance classes to assess associations with nosocomial pathogens. A. baumannii detection was associated with detection of genomic signatures for resistance to trimethoprim, aminoglycosides, bacitracin, and polymyxin. Machine learning classifiers were applied to identify wound and microbial variables associated with outcome. Feature importance rankings averaged across models indicated the variables with the largest effects on predicting wound outcome, including an increase in P. putida sequence reads. These results describe the microbial genomic determinants in combat wound bioburden and demonstrate metagenomic investigation as a comprehensive tool for providing information toward aiding treatment of combat-related injuries.
Collapse
|
8
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Walsh SA, Davis TA. Key early proinflammatory signaling molecules encapsulated within circulating exosomes following traumatic injury. J Inflamm (Lond) 2022; 19:6. [PMID: 35551611 PMCID: PMC9097360 DOI: 10.1186/s12950-022-00303-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/26/2022] [Indexed: 12/28/2022] Open
Abstract
Background Assessment of immune status in critically ill patients is often based on serial tracking of systemic cytokine levels and clinical laboratory values. Exosomes are extracellular vesicles that can be secreted and internalized by cells to transport important cellular cargo in the regulation of numerous physiological and pathological processes. Here, we characterize the early compartmentalization profile of key proinflammatory mediators in serum exosomes in the steady state and following trauma. Adult male Sprague-Dawley rats (91 including naïve) were divided into one of four traumatic injury model groups incorporating whole-body blast, fracture, soft-tissue crush injury, tourniquet-induced ischemia, and limb amputation. Serum was collected at 1, 3, 6, and 24 h, and 3- and 7-day post-injury. Electrochemiluminescence-based immunoassays for 9 key proinflammatory mediators in whole serum, isolated serum exosomes, and exosome depleted serum were analyzed and compared between naïve and injured rats. Serum clinical chemistry analysis was performed to determine pathological changes. Results In naïve animals, substantial amounts of IL-1β, IL-10, and TNF-α were encapsulated, IL-6 was completely encapsulated, and CXCL1 freely circulating. One hour after blast injury alone, levels of exosome encapsulated IFN-γ, IL-10, IL-6, IL-13, IL-4, and TNF-α increased, whereas freely circulating and membrane-associated levels remained undetectable or low. Rats with the most severe polytraumatic injuries with end organ complications had the earliest rise and most pronounced concentration of IL-1β, IL-10, TNF-α, and IL-6 across all serum compartments. Moreover, CXCL1 levels increased in relation to injury severity, but remained almost entirely freely circulating at all timepoints. Conclusion These findings highlight that conventional ELISA-based assessments, which detect only free circulating and exosome membrane-bound mediators, underestimate the full immunoinflammatory response to trauma. Inclusion of exosome encapsulated mediators may be a better, more accurate and clinically useful early strategy to identify, diagnose, and monitor patients at highest risk for post-traumatic inflammation-associated complications.
Collapse
Affiliation(s)
- Sarah A Walsh
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
10
|
Harvey J, Mellody KT, Cullum N, Watson REB, Dumville J. Wound fluid sampling methods for proteomic studies: A scoping review. Wound Repair Regen 2022; 30:317-333. [PMID: 35381119 PMCID: PMC9322564 DOI: 10.1111/wrr.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 01/02/2023]
Abstract
Understanding why some wounds are hard to heal is important for improving care and developing more effective treatments. The method of sample collection used is an integral step in the research process and thus may affect the results obtained. The primary objective of this study was to summarise and map the methods currently used to sample wound fluid for protein profiling and analysis. Eligible studies were those that used a sampling method to collect wound fluid from any human wound for analysis of proteins. A search for eligible studies was performed using MEDLINE, Embase and CINAHL Plus in May 2020. All references were screened for eligibility by one reviewer, followed by discussion and consensus with a second reviewer. Quantitative data were mapped and visualised using appropriate software and summarised via a narrative summary. After screening, 280 studies were included in this review. The most commonly used group of wound fluid collection methods were vacuum, drainage or use of other external devices, with surgical wounds being the most common sample source. Other frequently used collection methods were extraction from absorbent materials, collection beneath an occlusive dressing and direct collection of wound fluid. This scoping review highlights the variety of methods used for wound fluid collection. Many studies had small sample sizes and short sample collection periods; these weaknesses have hampered the discovery and validation of novel biomarkers. Future research should aim to assess the reproducibility and feasibility of sampling and analytical methods for use in larger longitudinal studies.
Collapse
Affiliation(s)
- Joe Harvey
- Centre for Dermatology Research, School of Biological SciencesThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreUK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Kieran T. Mellody
- Centre for Dermatology Research, School of Biological SciencesThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreUK
| | - Nicky Cullum
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
- Division of Nursing, Midwifery & Social WorkSchool of Health Sciences, The University of ManchesterManchesterUK
| | - Rachel E. B. Watson
- Centre for Dermatology Research, School of Biological SciencesThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreUK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
- Manchester Institute for Collaborative Research on AgeingThe University of ManchesterManchesterUK
| | - Jo Dumville
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
- Division of Nursing, Midwifery & Social WorkSchool of Health Sciences, The University of ManchesterManchesterUK
| |
Collapse
|
11
|
Bonaroti J, Abdelhamid S, Kar U, Sperry J, Zamora R, Namas RA, McKinley T, Vodovotz Y, Billiar T. The Use of Multiplexing to Identify Cytokine and Chemokine Networks in the Immune-Inflammatory Response to Trauma. Antioxid Redox Signal 2021; 35:1393-1406. [PMID: 33860683 PMCID: PMC8905234 DOI: 10.1089/ars.2021.0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The immunoinflammatory responses that follow trauma contribute to clinical trajectory and patient outcomes. While remarkable advances have been made in trauma services and injury management, clarity on how the immune system in humans responds to trauma is lagging. Recent Advances: Multiplexing platforms have transformed our ability to analyze comprehensive immune mediator responses in human trauma. In parallel, with the establishment of large data sets, computational methods have been adapted to yield new insights based on mediator patterns. These efforts have added an important data layer to the emerging multiomic characterization of the human response to injury. Critical Issues: Outcome after trauma is greatly affected by the host immunoinflammatory response. Excessive or sustained responses can contribute to organ damage. Hence, understanding the pathophysiology behind traumatic injury is of vital importance. Future Directions: This review summarizes our work in the study of circulating immune mediators in trauma patients. Our foundational studies into dynamic patterns of inflammatory mediators represent an important contribution to the concepts and computational challenges that these large data sets present. We hope to see further integration and understanding of multiomics strategies in the field of trauma that can aid in patient endotyping and in potentially identifiying certain therapeutic targets in the future. Antioxid. Redox Signal. 35, 1393-1406.
Collapse
Affiliation(s)
- Jillian Bonaroti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sultan Abdelhamid
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Upendra Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rami Ahmd Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Todd McKinley
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Amini MR, Aalaa M, Nasli-Esfahani E, Atlasi R, Sanjari M, Namazi N. The effects of dietary/herbal supplements and the serum levels of micronutrients on the healing of diabetic foot ulcers in animal and human models: a systematic review. J Diabetes Metab Disord 2021; 20:973-988. [PMID: 34178870 PMCID: PMC8212333 DOI: 10.1007/s40200-021-00793-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Diabetic Foot Ulcer (DFU) is one of the common and serious complications in patients with Diabetes Mellitus (DM) worldwide. Given the considerable tendency of patients suffering from DFU to use the complementary therapies, the objectives of this study were to: (i) summarize the effects of dietary and herbal supplements on DFU characteristics and metabolic parameters in both animal models and clinical trials, and (ii) evaluate any links between the serum levels of micronutrients and DFU in observational studies. METHODS A systematic search in five electronic databases including PubMed/Medline, Scopus, Web of Science, Embase, and Cochrane Library was conducted to find relevant English language published from 1990 until 31 December 2018. RESULTS Of a total of 8603 studies, 30 eligible papers including animal studies (n = 15), clinical trials (n = 7), and observational works (n = 8) were included in the systematic review. We found that some dietary/herbal supplements and micronutrients had positive effects on the wound healing. However, limited evidence is existed. Also, lower serum levels of vitamin D, C, vitamin E, and selenium in patients with DFU were likely to increase the risk of DFU, leading to impaired wound healing. CONCLUSION Findings suggested that some dietary and herbal supplements such as Vitamin D, Magnesium, Vitamin E, Probiotic, Zinc, and Pycnogenol would be effective on wound healing of DFUs. However, further high-quality randomized controlled clinical trials and prospective cohort studies are needed to clarify the roles of micronutrients and other dietary and herbal supplements on the progress and treatment of DFU.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Aalaa
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of medical Sciences, Tehran, Iran
- Center for Educational Research in Medical Sciences (CERMS), Department of Medical Education, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasha Atlasi
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of medical Sciences, Tehran, Iran
| | - Mahnaz Sanjari
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Walsh SA, Hoyt BW, Rowe CJ, Dey D, Davis TA. Alarming Cargo: The Role of Exosomes in Trauma-Induced Inflammation. Biomolecules 2021; 11:biom11040522. [PMID: 33807302 PMCID: PMC8065643 DOI: 10.3390/biom11040522] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Severe polytraumatic injury initiates a robust immune response. Broad immune dysfunction in patients with such injuries has been well-documented; however, early biomarkers of immune dysfunction post-injury, which are critical for comprehensive intervention and can predict the clinical course of patients, have not been reported. Current circulating markers such as IL-6 and IL-10 are broad, non-specific, and lag behind the clinical course of patients. General blockade of the inflammatory response is detrimental to patients, as a certain degree of regulated inflammation is critical and necessary following trauma. Exosomes, small membrane-bound extracellular vesicles, found in a variety of biofluids, carry within them a complex functional cargo, comprised of coding and non-coding RNAs, proteins, and metabolites. Composition of circulating exosomal cargo is modulated by changes in the intra- and extracellular microenvironment, thereby serving as a homeostasis sensor. With its extensively documented involvement in immune regulation in multiple pathologies, study of exosomal cargo in polytrauma patients can provide critical insights on trauma-specific, temporal immune dysregulation, with tremendous potential to serve as unique biomarkers and therapeutic targets for timely and precise intervention.
Collapse
Affiliation(s)
- Sarah A. Walsh
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
| | - Benjamin W. Hoyt
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
| | - Cassie J. Rowe
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Devaveena Dey
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Thomas A. Davis
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
- Correspondence:
| |
Collapse
|
14
|
Howard JT, Janak JC, Santos-Lozada AR, McEvilla S, Ansley SD, Walker LE, Spiro A, Stewart IJ. Telomere Shortening and Accelerated Aging in US Military Veterans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041743. [PMID: 33670145 PMCID: PMC7916830 DOI: 10.3390/ijerph18041743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/24/2023]
Abstract
A growing body of literature on military personnel and veterans’ health suggests that prior military service may be associated with exposures that increase the risk of cardiovascular disease (CVD), which may differ by race/ethnicity. This study examined the hypothesis that differential telomere shortening, a measure of cellular aging, by race/ethnicity may explain prior findings of differential CVD risk in racial/ethnic groups with military service. Data from the first two continuous waves of the National Health and Nutrition Examination Survey (NHANES), administered from 1999–2002 were analyzed. Mean telomere length in base pairs was analyzed with multivariable adjusted linear regression with complex sample design, stratified by sex. The unadjusted mean telomere length was 225.8 base shorter for individuals with prior military service. The mean telomere length for men was 47.2 (95% CI: −92.9, −1.5; p < 0.05) base pairs shorter for men with military service after adjustment for demographic, socioeconomic, and behavioral variables, but did not differ significantly in women with and without prior military service. The interaction between military service and race/ethnicity was not significant for men or women. The results suggest that military service may contribute to accelerated aging as a result of health damaging exposures, such as combat, injury, and environmental contaminants, though other unmeasured confounders could also potentially explain the results.
Collapse
Affiliation(s)
- Jeffrey T. Howard
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; (S.M.); (S.D.A.)
- Consequences of Trauma Working Group, the Center for Community-Based and Applied Health Research, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
- Correspondence: ; Tel.: +1-210-458-2987
| | | | - Alexis R. Santos-Lozada
- Department of Human Development and Family Studies, Pennsylvania State University, 119 Health and Human Development Building, University Park, PA 16802, USA;
| | - Sarah McEvilla
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; (S.M.); (S.D.A.)
| | - Stephanie D. Ansley
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; (S.M.); (S.D.A.)
- Consequences of Trauma Working Group, the Center for Community-Based and Applied Health Research, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lauren E. Walker
- David Grant USAF Medical Center, Travis Air Force Base, Fairfield, CA 94535, USA;
| | - Avron Spiro
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA 02130, USA;
- Departments of Epidemiology and Psychiatry, Boston University Schools of Public Health and Medicine, Boston, MA 02118, USA
| | - Ian J. Stewart
- Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA;
| |
Collapse
|
15
|
Theocharidis G, Baltzis D, Roustit M, Tellechea A, Dangwal S, Khetani RS, Shu B, Zhao W, Fu J, Bhasin S, Kafanas A, Hui D, Sui SH, Patsopoulos NA, Bhasin M, Veves A. Integrated Skin Transcriptomics and Serum Multiplex Assays Reveal Novel Mechanisms of Wound Healing in Diabetic Foot Ulcers. Diabetes 2020; 69:2157-2169. [PMID: 32763913 PMCID: PMC7506837 DOI: 10.2337/db20-0188] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Nonhealing diabetic foot ulcers (DFUs) are characterized by low-grade chronic inflammation, both locally and systemically. We prospectively followed a group of patients who either healed or developed nonhealing chronic DFUs. Serum and forearm skin analysis, both at the protein expression and the transcriptomic level, indicated that increased expression of factors such as interferon-γ (IFN-γ), vascular endothelial growth factor, and soluble vascular cell adhesion molecule-1 were associated with DFU healing. Furthermore, foot skin single-cell RNA sequencing analysis showed multiple fibroblast cell clusters and increased inflammation in the dorsal skin of patients with diabetes mellitus (DM) and DFU specimens compared with control subjects. In addition, in myeloid cell DM and DFU upstream regulator analysis, we observed inhibition of interleukin-13 and IFN-γ and dysregulation of biological processes that included cell movement of monocytes, migration of dendritic cells, and chemotaxis of antigen-presenting cells pointing to an impaired migratory profile of immune cells in DM skin. The SLCO2A1 and CYP1A1 genes, which were upregulated at the forearm of nonhealers, were mainly expressed by the vascular endothelial cell cluster almost exclusively in DFU, indicating a potential important role in wound healing. These results from integrated protein and transcriptome analyses identified individual genes and pathways that can potentially be targeted for enhancing DFU healing.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Dimitrios Baltzis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Matthieu Roustit
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Ana Tellechea
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Seema Dangwal
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Radhika S Khetani
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Bin Shu
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Wanni Zhao
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jianfang Fu
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Swati Bhasin
- Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Antonios Kafanas
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Daniel Hui
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Nikolaos A Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Manoj Bhasin
- Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Muñoz B, Schobel SA, Lisboa FA, Khatri V, Grey SF, Dente CJ, Kirk AD, Buchman T, Elster EA. Clinical risk factors and inflammatory biomarkers of post-traumatic acute kidney injury in combat patients. Surgery 2020; 168:662-670. [PMID: 32600883 DOI: 10.1016/j.surg.2020.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Post-traumatic acute kidney injury has occurred in every major military conflict since its initial description during World War II. To ensure the proper treatment of combat casualties, early detection is critical. This study therefore aimed to investigate combat-related post-traumatic acute kidney injury in recent military conflicts, used machine learning algorithms to identify clinical and biomarker variables associated with the development of post-traumatic acute kidney injury, and evaluated the effects of post-traumatic acute kidney injury on wound healing and nosocomial infection. METHODS We conducted a retrospective clinical cohort review of 73 critically injured US military service members who sustained major combat-related extremity wounds and had collected injury characteristics, assayed serum and tissue biopsy samples for the expression of protein and messenger ribonucleic acid biomarkers. Bivariate analyses and random forest recursive feature elimination classification algorithms were used to identify associated injury characteristics and biomarker variables. RESULTS The incidence of post-traumatic acute kidney injury was 20.5%. Of that, 86% recovered baseline renal function and only 2 (15%) of the acute kidney injury group required renal replacement therapy. Random forest recursive feature elimination algorithms were able to estimate post-traumatic acute kidney injury with the area under the curve of 0.93, sensitivity of 0.91, and specificity of 0.91. Post-traumatic acute kidney injury was associated with injury severity score, serum epidermal growth factor, and tissue activin A type receptor 1, matrix metallopeptidase 10, and X-C motif chemokine ligand 1 expression. Patients with post-traumatic acute kidney injury exhibited poor wound healing and increased incidence of nosocomial infections. CONCLUSION The occurrence of acute kidney injury in combat casualties may be estimated using injury characteristics and serum and tissue biomarkers. External validations of these models are necessary to generalize for all trauma patients.
Collapse
Affiliation(s)
- Beau Muñoz
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD
| | - Seth A Schobel
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Henry Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD
| | - Felipe A Lisboa
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Henry Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD
| | - Vivek Khatri
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Henry Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD
| | - Scott F Grey
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Henry Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD
| | - Christopher J Dente
- Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Emory University, Atlanta, GA
| | - Allan D Kirk
- Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Duke University, Durham, NC
| | - Timothy Buchman
- Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Emory University, Atlanta, GA
| | - Eric A Elster
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD.
| |
Collapse
|
17
|
Samelko L, Petfield J, McAllister K, Hsu J, Hawkinson M, Jacobs JJ, Hallab NJ. Do Battlefield Injury-acquired Indwelling Metal Fragments Induce Metal Immunogenicity? Clin Orthop Relat Res 2020; 478:752-766. [PMID: 32229747 PMCID: PMC7282599 DOI: 10.1097/corr.0000000000000953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/13/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND A battlefield-related injury results in increased local and systemic innate immune inflammatory responses, resulting in wound-specific complications and an increased incidence of osteoarthritis. However, little is known about whether severe injuries affect long-term systemic homeostasis, for example, immune function. Moreover, it also remains unknown whether battlefield-acquired metal fragments retained over the long term result in residual systemic effects such as altered immune reactivity to metals. QUESTIONS/PURPOSES Does a retained metal fragment from a battlefield injury contribute to increased (1) adaptive metal-specific immune responses, (2) systemically elevated metal ion serum levels, and (3) serum immunoglobulin levels compared with combat injuries that did not result in a retained metal fragment? METHODS In this pilot study, we analyzed metal-immunogenicity in injured military personnel and noninjured control participants using lymphocyte transformation testing (LTT, lymphocyte proliferation responses to cobalt, chromium and nickel challenge at 0.001, 0.01 and 0.1-mM concentrations in triplicate for each participant), serum metal ion analysis (ICP-mass spectroscopy), and serum immunoglobulin analysis (IgE, IgG, IgA, and IgM ). Military personnel with a battlefield-sustained injury self-recruited without any exclusion for sex, age, degree of injury. Those with battlefield injury resulting in retained metal fragments (INJ-FRAG, n = 20 male, mean time since injury ± SD was 12 ± 10 years) were compared with those with a battlefield injury but without retained metal fragments (INJ-NO-FRAG, n = 12 male, mean time since injury ± SD was 13 ± 12 years). A control group comprised of male noninjured participants was used to compare measured immunogenicity metrics (n = 11, males were selected to match battlefield injury group demographics). RESULTS Military participants with sustained metal fragments had increased levels of metal-induced lymphocyte responses. The lymphocyte stimulation index among military participants with metal fragments was higher than in those with nonretained metal fragments (stimulation index = 4.2 ± 6.0 versus stimulation index = 2.1 ± 1.2 (mean difference 2.1 ± 1.4 [95% confidence interval 5.1 to 0.8]; p = 0.07) and an average stimulation index = 2 ± 1 in noninjured controls. Four of 20 participants injured with retained fragments had a lymphocyte proliferation index greater than 2 to cobalt compared with 0 in the group without a retained metal fragment or 0 in the control participants. However, with the numbers available, military personnel with retained metal fragments did not have higher serum metal ion levels than military participants without retained metal fragment-related injuries or control participants. Military personnel with retained metal fragments had lower serum immunoglobulin levels (IgG, IgA, and IgM) than military personnel without retained metal fragments and noninjured controls, except for IgE. Individuals who were metal-reactive positive (that is, a stimulation index > 2) with retained metal fragments had higher median IgE serum levels than participants who metal-reactive with nonmetal injuries (1198 ± 383 IU/mL versus 171 ± 67 IU/mL, mean difference 1027 ± 477 IU/mL [95% CI 2029 to 25]; p = 0.02). CONCLUSIONS We found that males with retained metal fragments after a battlefield-related injury had altered adaptive immune responses compared with battlefield-injured military personnel without indwelling metal fragments. Military participants with a retained metal fragment had an increased proportion of group members and increased average lymphocyte reactivity to common implant metals such as nickel and cobalt. Further studies are needed to determine a causal association between exposure to amounts of retained metal fragments, type of injury, personnel demographics and general immune function/reactivity that may affect personal health or future metal implant performance. LEVEL OF EVIDENCE Level IV, therapeutic study.
Collapse
Affiliation(s)
- Lauryn Samelko
- L. Samelko, K. McAllister, J. J. Jacobs, Rush University Medical Center, Chicago, IL, USA
| | - Joseph Petfield
- J. Petfield, M. Hawkinson, San Antonio Medical Center, San Antonio, TX, USA
| | - Kyron McAllister
- L. Samelko, K. McAllister, J. J. Jacobs, Rush University Medical Center, Chicago, IL, USA
| | - Joseph Hsu
- J. Hsu, Carolinas Medical Center, Charlotte, NC, USA
| | - Michael Hawkinson
- J. Petfield, M. Hawkinson, San Antonio Medical Center, San Antonio, TX, USA
| | - Joshua J Jacobs
- L. Samelko, K. McAllister, J. J. Jacobs, Rush University Medical Center, Chicago, IL, USA
| | - Nadim J Hallab
- N. J. Hallab, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Utilizing Precision Medicine to Estimate Timing for Surgical Closure of Traumatic Extremity Wounds. Ann Surg 2019; 270:535-543. [DOI: 10.1097/sla.0000000000003470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Thompson KB, Krispinsky LT, Stark RJ. Late immune consequences of combat trauma: a review of trauma-related immune dysfunction and potential therapies. Mil Med Res 2019; 6:11. [PMID: 31014397 PMCID: PMC6480837 DOI: 10.1186/s40779-019-0202-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/07/2019] [Indexed: 12/29/2022] Open
Abstract
With improvements in personnel and vehicular body armor, robust casualty evacuation capabilities, and damage control resuscitation strategies, more combat casualties are surviving to reach higher levels of care throughout the casualty evacuation system. As such, medical centers are becoming more accustomed to managing the deleterious late consequences of combat trauma related to the dysregulation of the immune system. In this review, we aim to highlight these late consequences and identify areas for future research and therapeutic strategies. Trauma leads to the dysregulation of both the innate and adaptive immune responses, which places the injured at risk for several late consequences, including delayed wound healing, late onset sepsis and infection, multi-organ dysfunction syndrome, and acute respiratory distress syndrome, which are significant for their association with the increased morbidity and mortality of wounded personnel. The mechanisms by which these consequences develop are complex but include an imbalance of the immune system leading to robust inflammatory responses, triggered by the presence of damage-associated molecules and other immune-modifying agents following trauma. Treatment strategies to improve outcomes have been difficult to develop as the immunophenotype of injured personnel following trauma is variable, fluid and difficult to determine. As more information regarding the triggers that lead to immune dysfunction following trauma is elucidated, it may be possible to identify the immunophenotype of injured personnel and provide targeted treatments to reduce the late consequences of trauma, which are known to lead to significant morbidity and mortality.
Collapse
Affiliation(s)
- Kelly B Thompson
- Division of Critical Care Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children's Way, Nashville, TN, 37232, USA.
| | - Luke T Krispinsky
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Uniformed Services University, Naval Medical Center Portsmouth, Portsmouth, VA, 23708, USA
| | - Ryan J Stark
- Division of Critical Care Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children's Way, Nashville, TN, 37232, USA
| |
Collapse
|
20
|
Union Rates and Reported Range of Motion Are Acceptable After Open Forearm Fractures in Military Combatants. Clin Orthop Relat Res 2019; 477:813-820. [PMID: 30811353 PMCID: PMC6437354 DOI: 10.1097/corr.0000000000000645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND High-energy open forearm fractures are unique injuries frequently complicated by neurovascular and soft tissue injuries. Few studies have evaluated the factors associated with nonunion and loss of motion after these injuries, particularly in the setting of blast injuries. QUESTIONS/PURPOSES (1) In military service members with high-energy open forearm fractures, what proportion achieved primary or secondary union? (2) What is the pronation-supination arc of motion as stratified by the presence or absence of heterotopic ossification (HO) and synostosis? (3) What are the risks of heterotopic ossification and synostosis? (4) What factors may be associated with forearm fracture nonunion? METHODS A retrospective study of all open forearm fractures treated at a tertiary military referral center from January 2004 to December 2014 was performed. In all, 76 patients were identified and three were excluded, leaving 73 patients for inclusion. All 73 patients had serial radiographs to assess for HO and union. Only 64 patients had rotational range of motion (ROM) data. All patients returned to the operating room at least once after initial irrigation and débridement to ensure the soft tissue envelope was stable before definitive fixation. The indication for repeat irrigation and débridement was determined by clinical appearance. Patient demographics, fracture and soft tissue injury patterns, surgical treatments, neurovascular status at the time of injury, incidence of infection, heterotopic ossification (defined as the presence of heterotopic bone visible on serial radiographs), radioulnar synostosis, bony status after initial definitive treatment (union, nonunion, or amputation), and forearm rotation at final followup were retrospectively obtained from chart review by someone other than the operating surgeon. Seventy-six open forearm fractures in 76 patients were reviewed; 73 patients were examined for osseous union as three went on to early amputation, and 64 patients had forearm ROM data available for analysis. Union was determined by earliest radiology or orthopaedic staff official dictation stating the fracture was healed. Nonunion was defined as the clinical determination by the orthopaedist for a repeat procedure to achieve bony union. Secondary union was defined as union after reoperation to achieve bony union, and final union was defined as overall percentage of patients who were healed at final followup. Of the patients analyzed for union, 20 had less than 1 year of followup, and of these, none had nonunion. Of the patients analyzed for ROM, eight patients had less than 6 months of followup (range, 84-176 days). Of these, one patient had decreased ROM, none had a synostosis, and the remaining had > 140° of motion. RESULTS Initial treatment resulted in primary union in 62 of 73 patients (85%); secondary union was achieved in eight of 11 patients (73%); and final union was achieved in 70 of 73 patients (96%). Although pronation-supination arc in patients without HO was 140° ± 35°, a limited pronation-supination arc was primarily associated with synostosis (arc: 40° ± 40°; mean difference from patients without HO: 103° [95% confidence interval {CI}, 77°-129°], p < 0.001); patients with HO but without synostosis had fewer limitations to ROM than those with synostosis (arc: 110° ± 80°, mean difference: 77° [35°-119°], p < 0.001). Heterotopic ossification developed in 40 of 73 patients (55%), including a radioulnar synostosis in 14 patients (19%). Bone loss at the fracture site (relative risk (RR) 6.2; 95% CI, 1.8-21) and healing complicated by infection (RR, 9.9; 95% CI, 4.9-20) were associated with the development of nonunion after initial treatment. Other potential factors such as smoking status, vascular injury, both-bone involvement, need for free flap coverage and blast mechanism were not associated. CONCLUSIONS Despite a high-energy mechanism of injury and high rate of soft tissue defects, the ultimate probability of fracture union in our series was high with a low infection risk. Nonunions were associated with bone loss and deep infection. Functional motion was achieved in most patients despite increased burden of HO and synostosis compared with civilian populations. However, if synostosis did not develop, HO itself did not appear to interfere with functional ROM. Future investigations may provide improved decision-making tools for timing of fixation and prophylactic means against HO synostosis. LEVEL OF EVIDENCE Level III, therapeutic study.
Collapse
|
21
|
Lassig AAD, Lindgren BR, Itabiyi R, Joseph AM, Gupta K. Excessive inflammation portends complications: Wound cytokines and head and neck surgery outcomes. Laryngoscope 2019; 129:E238-E246. [DOI: 10.1002/lary.27796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/06/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Amy Anne D. Lassig
- Department of Otolaryngology-Head and Neck Surgery; Hennepin County Medical Center, Minneapolis Medical Research Foundation; Minneapolis Minnesota
- Department of Otolaryngology-Head and Neck Surgery, Division of Head and Neck Surgery; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Bruce R. Lindgren
- Biostatistics and Bioinformatics Core, Masonic Cancer Center; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Ridwan Itabiyi
- Department of Otolaryngology-Head and Neck Surgery, Division of Head and Neck Surgery; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Anne M. Joseph
- Department of Medicine, Division of General Internal Medicine; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Kalpna Gupta
- Department of Medicine, Hematology, Oncology, and Transplantation; University of Minnesota; Minneapolis Minnesota U.S.A
| |
Collapse
|
22
|
Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci 2018; 19:ijms19103217. [PMID: 30340330 PMCID: PMC6214117 DOI: 10.3390/ijms19103217] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
Wound healing is a multistep process with four overlapping but distinct stages: hemostasis, inflammation, proliferation, and remodeling. An alteration at any stage may lead to the development of chronic non-healing wounds or excessive scar formation. Impaired wound healing presents a significant health and economic burden to millions of individuals worldwide, with diabetes mellitus and aging being major risk factors. Ongoing understanding of the mechanisms that underly wound healing is required for the development of new and improved therapies that increase repair. Chemokines are key regulators of the wound healing process. They are involved in the promotion and inhibition of angiogenesis and the recruitment of inflammatory cells, which release growth factors and cytokines to facilitate the wound healing process. Preclinical research studies in mice show that the administration of CCL2, CCL21, CXCL12, and a CXCR4 antagonist as well as broad-spectrum inhibition of the CC-chemokine class improve the wound healing process. The focus of this review is to highlight the contributions of chemokines during each stage of wound healing and to discuss the related molecular pathologies in complex and chronic non-healing wounds. We explore the therapeutic potential of targeting chemokines as a novel approach to overcome the debilitating effects of impaired wound healing.
Collapse
Affiliation(s)
- Anisyah Ridiandries
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia.
- Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia.
| | - Joanne T M Tan
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Christina A Bursill
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
23
|
Radowsky JS, Neely R, Forsberg JA, Lisboa FA, Dente CJ, Elster EA, Crane NJ. Preclosure spectroscopic differences between healed and dehisced traumatic wounds. PLoS One 2018; 13:e0204453. [PMID: 30261011 PMCID: PMC6160065 DOI: 10.1371/journal.pone.0204453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/07/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The complexity and severity of traumatic wounds in military and civilian trauma demands improved wound assessment, before, during, and after treatment. Here, we explore the potential of 3 charge-coupled device (3CCD) imaging values to distinguish between traumatic wounds that heal following closure and those that fail. Previous studies demonstrate that normalized 3CCD imaging values exhibit a high correlation with oxygen saturation and allow for comparison of values between diverse clinical settings, including utilizing different equipment and lighting. METHODS We screened 119 patients at Walter Reed National Military Medical Center and at Grady Memorial Hospital with at least one traumatic extremity wound of ≥ 75 cm2. We collected images of each wound during each débridement surgery for a total of 66 patients. An in-house written computer application selected a region of interest in the images, separated the pixel color values, calculated relative values, and normalized them. We followed patients until the enrolled wounds were surgically closed, quantifying the number of wounds that dehisced (defined as wound failure or infection requiring return to the operating room after closure) or healed. RESULTS Wound failure occurred in 20% (19 of 96) of traumatic wounds. Normalized intensity values for patients with wounds that healed successfully were, on average, significantly different from values for patients with wounds that failed (p ≤ 0.05). Simple thresholding models and partial least squares discriminant analysis models performed poorly. However, a hierarchical cluster analysis model created with 17 variables including 3CCD data, wound surface area, and time from injury predicts wound failure with 76.9% sensitivity, 76.5% specificity, 76.6% accuracy, and a diagnostic odds ratio of 10.8 (95% confidence interval: 2.6-45.9). CONCLUSIONS Imaging using 3CCD technology may provide a non-invasive and cost-effective method of aiding surgeons in deciding if wounds are ready for closure and could potentially decrease the number of required débridements and hospital days. The process may be automated to provide real-time feedback in the operating room and clinic. The low cost and small size of the cameras makes this technology attractive for austere and shipboard environments where space and weight are at a premium.
Collapse
Affiliation(s)
- Jason S. Radowsky
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center (USUHS-Walter Reed Surgery), Bethesda, Maryland, United States of America
- * E-mail:
| | - Romon Neely
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center (USUHS-Walter Reed Surgery), Bethesda, Maryland, United States of America
| | - Jonathan A. Forsberg
- Orthopaedics, USUHS-Walter Reed Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- Orthopaedics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Felipe A. Lisboa
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center (USUHS-Walter Reed Surgery), Bethesda, Maryland, United States of America
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Surgical Critical Care Initiative, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Christopher J. Dente
- Surgical Critical Care Initiative, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Trauma/Surgical Critical Care, Grady Memorial Hospital, Atlanta, Georgia, United States of America
| | - Eric A. Elster
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center (USUHS-Walter Reed Surgery), Bethesda, Maryland, United States of America
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Surgical Critical Care Initiative, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Nicole J. Crane
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center (USUHS-Walter Reed Surgery), Bethesda, Maryland, United States of America
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| |
Collapse
|
24
|
|
25
|
Bradley MJ, Baird DE, Peterson PG, Baird MD, Elster EA, Rodriguez CJ. Primary Pulmonary Thrombus in Combat Casualties: Is Treatment Necessary? Am Surg 2018. [DOI: 10.1177/000313481808400640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to describe the natural history of primary pulmonary thrombus (PPT) in combat casualties. This was a retrospective study of casualties treated at a major military treatment facility from 2010 to 2012. Patients with a downrange chest CTwere included. CTs were reviewed by two independent, blinded radiologists to confirm PPTon initial imaging. Follow-up CTs, if obtained, were also independently reviewed to determine the extent of clot burden. Two hundred and forty-nine casualties with a downrange, acceptable quality chest CT were included. 9 per cent (23/249) of patients sustained PPT. Thirty nine per cent (9/23) were initially treated with therapeutic anticoagulation (AC). Conversely, 61 per cent (14/23) arrived to our military treatment facility without AC. Seven arriving without AC-developed pulmonary symptoms during their hospitalization and had interval chest CTs. Of those, three had no evidence of pulmonary thrombus. The other four had subsegmental filling defects and three were started AC whereas one had an IVC (Inferior Vena Cava) filter inserted. In total, 11/23 (48%) PPT patients were managed without AC and discharged without complications. This is the first study attempting to look at PPT natural history. There were no adverse sequelae from managing PPT without AC. Further studies are warranted to further characterize PPT.
Collapse
Affiliation(s)
- Matthew J. Bradley
- Department of Surgery, Walter Reed National Military Medical Center/Uniformed Services University, Bethesda, Maryland
| | - Dean E. Baird
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Paul G. Peterson
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | - Eric A. Elster
- Department of Surgery, Walter Reed National Military Medical Center/Uniformed Services University, Bethesda, Maryland
| | - Carlos J. Rodriguez
- Department of Surgery, Walter Reed National Military Medical Center/Uniformed Services University, Bethesda, Maryland
| |
Collapse
|
26
|
Vicente DA, Bradley MJ, Bograd B, Leonhardt C, Elster EA, Davis TA. The impact of septic stimuli on the systemic inflammatory response and physiologic insult in a preclinical non-human primate model of polytraumatic injury. J Inflamm (Lond) 2018; 15:11. [PMID: 29849508 PMCID: PMC5968671 DOI: 10.1186/s12950-018-0187-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Established animal trauma models are limited in recapitulating the pathophysiology of human traumatic injury. Herein, we characterize the physiologic insult and inflammatory response in two clinically relevant non-human primate (NHP) trauma models. METHODS Mauritian Cynomolgus Macaques underwent either a laparoscopic closed abdomen liver injury (laparoscopic 60% left-lobe hepatectomy) in an established uncontrolled severe hemorrhage model (THM), or a polytrauma hemorrhage model (PHM) involving combined liver and bowel injury, uncontrolled severe hemorrhage as well as an open full-thickness cutaneous flank wound. Fixed volume resuscitation strategies were employed in the THM and goal directed resuscitation was used in the PHM. Complete peripheral blood and critical clinical chemistry parameters, serum biomarkers of systemic inflammation, tissue perfusion parameters, as well as survival, were compared between the models throughout the 2-week study period. RESULTS NHPs in both the THM (n = 7) and the PHM (n = 21) demonstrated tissue hypoperfusion (peak lactate 6.3 ± 0.71 mmol/L) with end organ injury (peak creatinine 3.08 ± 0.69 mg/dL) from a similar liver injury (60% left hemi-hepatectomy), though the PHM NHPs had a significantly higher blood loss (68.1% ± 12.7% vs. 34.3% ± 2.3%, p = 0.02), lower platelet counts (59 ± 25 vs. 205 ± 46 K/uL, p = 0.03) and a trend towards higher mortality (90.5% vs. 33.3%, p = 0.09). The inflammatory response was robust in both models with peak cytokine (IL-6 > 6000-fold above baseline) and peak leukocyte values (WBC 27 K/uL) typically occurring around t = 240 min from the time of hepatic injury. A more robust systemic inflammatory response was appreciated in the PHM resulting in marked elevations in peak serum IL-6 (7887 ± 2521 pg/mL vs.1076 ± 4833 pg/mL, p = 0.02), IL-1ra (34,499 ± 5987 pg/mL vs. 2511 ± 1228 pg/mL, p < 0.00), and IL-10 (13,411 pg/mL ± 5598 pg/mL vs. 617 pg/mL ± 252 pg/mL, p = 0.03). CONCLUSION This comparative analysis provides a unique longitudinal perspective on the post-injury inflammatory response in two clinically relevant models, and demonstrates that the addition of septic stimuli to solid organ injury increases both the hemorrhagic insult and inflammatory response.
Collapse
Affiliation(s)
- Diego A. Vicente
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD USA
- Department of Surgery, Uniformed Services University of the Health Sciences & the Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Matthew J. Bradley
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD USA
- Department of Surgery, Uniformed Services University of the Health Sciences & the Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Benjamin Bograd
- Department of Surgery, Uniformed Services University of the Health Sciences & the Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Crystal Leonhardt
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD USA
| | - Eric A. Elster
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD USA
- Department of Surgery, Uniformed Services University of the Health Sciences & the Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Thomas A. Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD USA
- Department of Surgery, Uniformed Services University of the Health Sciences & the Walter Reed National Military Medical Center, Bethesda, MD USA
| |
Collapse
|
27
|
Wheatley BM, Cilwa KE, Dey D, Qureshi AT, Seavey JG, Tomasino AM, Sanders EM, Bova W, Boehm CA, Iwamoto M, Potter BK, Forsberg JA, Muschler GF, Davis TA. Palovarotene inhibits connective tissue progenitor cell proliferation in a rat model of combat-related heterotopic ossification. J Orthop Res 2018; 36:1135-1144. [PMID: 28960501 DOI: 10.1002/jor.23747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) develops in the extremities of wounded service members and is common in the setting of high-energy penetrating injuries and blast-related amputations. No safe and effective prophylaxis modality has been identified for this patient population. Palovarotene has been shown to reduce bone formation in traumatic and genetic models of HO. The purpose of this study was to determine the effects of Palovarotene on inflammation, progenitor cell proliferation, and gene expression following a blast-related amputation in a rodent model (n = 72 animals), as well as the ability of Raman spectroscopy to detect early HO before radiographic changes are present. Treatment with Palovarotene was found to dampen the systemic inflammatory response including the cytokines IL-6 (p = 0.01), TNF-α (p = 0.001), and IFN-γ (p = 0.03) as well as the local inflammatory response via a 76% reduction in the cellular infiltration at post-operative day (POD)-7 (p = 0.03). Palovarotene decreased osteogenic connective tissue progenitor (CTP-O) colonies by as much as 98% both in vitro (p = 0.04) and in vivo (p = 0.01). Palovarotene treated animals exhibited significantly decreased expression of osteo- and chondrogenic genes by POD-7, including BMP4 (p = 0.02). Finally, Raman spectroscopy was able to detect differences between the two groups by POD-1 (p < 0.001). These results indicate that Palovarotene inhibits traumatic HO formation through multiple inter-related mechanisms including anti-inflammatory, anti-proliferative, and gene expression modulation. Further, that Raman spectroscopy is able to detect markers of early HO formation before it becomes radiographically evident, which could facilitate earlier diagnosis and treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1135-1144, 2018.
Collapse
Affiliation(s)
- Benjamin M Wheatley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| | - Katherine E Cilwa
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Ammar T Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Jonathan G Seavey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| | - Allison M Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Erin M Sanders
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Wesley Bova
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Cynthia A Boehm
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland, Baltimore, Maryland
| | - Benjamin K Potter
- Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| | - Jonathan A Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| | - George F Muschler
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio.,Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| |
Collapse
|
28
|
Hoyt BW, Pavey GJ, Potter BK, Forsberg JA. Heterotopic ossification and lessons learned from fifteen years at war: A review of therapy, novel research, and future directions for military and civilian orthopaedic trauma. Bone 2018; 109:3-11. [PMID: 29462673 DOI: 10.1016/j.bone.2018.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Heterotopic ossification, the formation of bone in soft tissues, is a common complication of the high-energy extremity trauma sustained in modern armed conflict. In the past 15years, military treatment facilities and aligned laboratories have been in a unique position to study and treat this process due to the high volume of patients with these injuries secondary to blast trauma. The devastating nature of these wounds has limited traditional therapeutic options, necessitating alternative solutions to prophylaxis and initial treatment producing substantial advances in modeling, prophylaxis, detection, and therapy. Specific developments include establishment of an animal model that reproduces the systemic and local tissue injury of blast injuries, the use of molecular assays and predictive modeling in clinical decision making, advances in early detection including Raman spectroscopy, and investigation of prophylactic and therapeutic pharmacotherapy targeting the molecular pathways of aberrant bone formation. In this review article, we will present the literature to date, ongoing studies, and future directions for investigation of heterotopic ossification, with a focus on military-specific research.
Collapse
Affiliation(s)
- Benjamin W Hoyt
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Gabriel J Pavey
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Benjamin K Potter
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Jonathan A Forsberg
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States..
| |
Collapse
|
29
|
Lassig AAD, Bechtold JE, Lindgren BR, Pisansky A, Itabiyi A, Yueh B, Joseph AM. Tobacco exposure and wound healing in head and neck surgical wounds. Laryngoscope 2018; 128:618-625. [PMID: 28940252 PMCID: PMC6015653 DOI: 10.1002/lary.26813] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Smoking impairs wound healing, yet the underlying pathophysiological mechanisms are unclear. We evaluated tobacco-altered healing in head and neck surgery by studying the association between biomarkers and tobacco exposure, as well as cutaneous perfusion by smoking status. STUDY DESIGN Prospective cohort study, tertiary/academic care center, 2011 to present. METHODS Patients who required head and neck surgery were enrolled prospectively. Postsurgical drain fluid was collected 24 hours postoperatively. Biomarkers associated with postulated mechanisms of smoking-impaired healing were assayed. These included interleukin-1, -6, and -8; tumor necrosis factor- alpha; transforming growth factor-beta; epidermal growth factor (EGF); basic fibroblastic growth factor (bFGF); C-reactive protein; vascular endothelial growth factor; soluble FMS-like tyrosine kinase-1 (sFLT-1); and placental growth factor. Tobacco exposure and clinical outcomes were recorded. Two sample two-sided t tests evaluated the differences in cytokine levels by tobacco exposure. In a second cohort, cutaneous vascular assessment via indocyanine green angiography was compared by smoking status. RESULTS Twenty-eight patients were enrolled with drain fluid collection. Twenty-one subjects were current/former smokers, whereas seven were never smokers. EGF was higher in never smokers than smokers in a statistically significant manner (P = 0.030). Likewise, sFLT-1 was significantly higher in never smokers (P = 0.011). Cutaneous angiography revealed nonsmokers to have significantly higher cutaneous perfusion than smokers. CONCLUSION In this head and neck surgical cohort, significantly higher EGF and sFLT-1 levels in wound fluid were associated with never smoking, suggesting that smoking has adverse effects on the inflammatory phase of wound healing. Cutaneous angiography supports the detrimental effect of smoking on skin perfusion. These findings suggest the need for further study as well as therapeutic targets for smokers undergoing surgery. LEVEL OF EVIDENCE 2b. Laryngoscope, 128:618-625, 2018.
Collapse
Affiliation(s)
- Amy Anne D Lassig
- Department of Otolaryngology-Head and Neck Surgery, Division of Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, Division of Head and Neck Surgery, Hennepin County Medical Center, Minneapolis, Minnesota, U.S.A
| | - Joan E Bechtold
- Department of Orthopedic Surgery, Departments of Mechanical and Biomedical Engineering, Minneapolis Medical Research Foundation, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Bruce R Lindgren
- Biostatistics and Bioinformatics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Andrew Pisansky
- Department of Otolaryngology-Head and Neck Surgery, Division of Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Abayo Itabiyi
- Department of Otolaryngology-Head and Neck Surgery, Division of Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Bevan Yueh
- Department of Otolaryngology-Head and Neck Surgery, Division of Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Anne M Joseph
- Department of Medicine, Division of General Internal Medicine, University of Minnesota, Minneapolis, Minnesota, U.S.A
| |
Collapse
|
30
|
Computational analysis identifies putative prognostic biomarkers of pathological scarring in skin wounds. J Transl Med 2018; 16:32. [PMID: 29458433 PMCID: PMC5819197 DOI: 10.1186/s12967-018-1406-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background Pathological scarring in wounds is a prevalent clinical outcome with limited prognostic options. The objective of this study was to investigate whether cellular signaling proteins could be used as prognostic biomarkers of pathological scarring in traumatic skin wounds. Methods We used our previously developed and validated computational model of injury-initiated wound healing to simulate the time courses for platelets, 6 cell types, and 21 proteins involved in the inflammatory and proliferative phases of wound healing. Next, we analysed thousands of simulated wound-healing scenarios to identify those that resulted in pathological (i.e., excessive) scarring. Then, we identified candidate proteins that were elevated (or decreased) at the early stages of wound healing in those simulations and could therefore serve as predictive biomarkers of pathological scarring outcomes. Finally, we performed logistic regression analysis and calculated the area under the receiver operating characteristic curve to quantitatively assess the predictive accuracy of the model-identified putative biomarkers. Results We identified three proteins (interleukin-10, tissue inhibitor of matrix metalloproteinase-1, and fibronectin) whose levels were elevated in pathological scars as early as 2 weeks post-wounding and could predict a pathological scarring outcome occurring 40 days after wounding with 80% accuracy. Conclusion Our method for predicting putative prognostic wound-outcome biomarkers may serve as an effective means to guide the identification of proteins predictive of pathological scarring. Electronic supplementary material The online version of this article (10.1186/s12967-018-1406-x) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
|
32
|
Abstract
BACKGROUND As the population grows older, the incidence and prevalence of conditions that lead to a predisposition for poor wound healing also increase. Ultimately, this increase in nonhealing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has and will continue to be the leading pathway to the discovery of therapeutic targets, as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of nonhealing patients for whom biomarker-guided approaches may aid in healing. METHODS A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. RESULTS Currently, biomarkers are being identified using biomaterials sourced locally from human wounds and/or systemically using high-throughput "omics" modalities (genomic, proteomic, lipidomic, and metabolomic analysis). In this review, we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum, including those measured in tissue specimens, for example, β-catenin and c-myc, wound fluid, matrix metalloproteinases and interleukins, swabs, wound microbiota, and serum, for example, procalcitonin and matrix metalloproteinases. CONCLUSIONS Identification of numerous potential biomarkers using different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity and consistent implementation of these biomarkers, as well as an emphasis on efficacious follow-up therapeutics, is necessary for transition of this technology to clinically feasible point-of-care applications.
Collapse
|
33
|
Sung Hsieh HH, Chung MT, Allen RM, Ranganathan K, Habbouche J, Cholok D, Butts J, Kaura A, Tiruvannamalai-Annamalai R, Breuler C, Priest C, Loder SJ, Li J, Li S, Stegemann J, Kunkel SL, Levi B. Evaluation of Salivary Cytokines for Diagnosis of both Trauma-Induced and Genetic Heterotopic Ossification. Front Endocrinol (Lausanne) 2017; 8:74. [PMID: 28484423 PMCID: PMC5401868 DOI: 10.3389/fendo.2017.00074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/27/2017] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Heterotopic ossification (HO) occurs in the setting of persistent systemic inflammation. The identification of reliable biomarkers can serve as an early diagnostic tool for HO, especially given the current lack of effective treatment strategies. Although serum biomarkers have great utility, they can be inappropriate or ineffective in traumatic acute injuries and in patients with fibrodysplasia ossificans progressiva (FOP). Therefore, the goal of this study is to profile the cytokines associated with HO using a different non-invasive source of biomarkers. METHODS Serum and saliva were collected from a model of trauma-induced HO (tHO) with hind limb Achilles' tenotomy and dorsal burn injury at indicated time points (pre-injury, 48 h, 1 week, and 3 weeks post-injury) and a genetic non-trauma HO model (Nfatc1-Cre/caAcvr1fl/wt ). Samples were analyzed for 27 cytokines using the Bio-Plex assay. Histologic evaluation was performed in Nfatc1-Cre/caAcvr1fl/wt mice and at 48 h and 1 week post-injury in burn tenotomy mice. The mRNA expression levels of these cytokines at the tenotomy site were also quantified with quantitative real-time PCR. Pearson correlation coefficient was assessed between saliva and serum. RESULTS Levels of TNF-α and IL-1β peaked at 48 h and 1 week post-injury in the burn/tenotomy cohort, and these values were significantly higher when compared with both uninjured (p < 0.01, p < 0.03) and burn-only mice (p < 0.01, p < 0.01). Immunofluorescence staining confirmed enhanced expression of IL-1β, TNF-α, and MCP-1 at the tenotomy site 48 h after injury. Monocyte chemoattractant protein-1 (MCP-1) and VEGF was detected in saliva showing elevated levels at 1 week post-injury in our tHO model when compared with both uninjured (p < 0.001, p < 0.01) and burn-only mice (p < 0.005, p < 0.01). The Pearson correlation between serum MCP-1 and salivary MCP-1 was statistically significant (r = 0.9686, p < 0.001) Similarly, the Pearson correlation between serum VEGF and salivary VEGF was statistically significant (r = 0.9709, p < 0.05). CONCLUSION In this preliminary study, we characterized the diagnostic potential of specific salivary cytokines that may serve as biomarkers for an early-stage diagnosis of HO. This study identified two candidate biomarkers for further study and suggests a novel method for diagnosis in the context of current difficult diagnosis and risks of current diagnostic methods in certain patients.
Collapse
Affiliation(s)
- Hsiao Hsin Sung Hsieh
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael T. Chung
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ronald M. Allen
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kavitha Ranganathan
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joe Habbouche
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - David Cholok
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Butts
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Arminder Kaura
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Chris Breuler
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Caitlin Priest
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shawn J. Loder
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - John Li
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shuli Li
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jan Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Levi
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Front Physiol 2017; 8:194. [PMID: 28421001 PMCID: PMC5376571 DOI: 10.3389/fphys.2017.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK.,School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Yang Liu
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough UniversityLoughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| |
Collapse
|
35
|
Rowan MP, Niece KL, Rizzo JA, Akers KS. Wound Penetration of Cefazolin, Ciprofloxacin, Piperacillin, Tazobactam, and Vancomycin During Negative Pressure Wound Therapy. Adv Wound Care (New Rochelle) 2017; 6:55-62. [PMID: 28224048 DOI: 10.1089/wound.2016.0698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022] Open
Abstract
Objective: Negative pressure wound therapy (NPWT) uses subatmospheric pressure as a noninvasive adjunct to treat wounds and has demonstrated clinical efficacy by accelerating healing of a variety of acute and chronic wounds. NPWT may also play a role in preventing or treating wound infections, possibly by increasing wound penetration of antibiotics. However, clinical data in patients undergoing antibiotic and NPWT treatment are limited. Approach: To evaluate the wound penetration of antibiotics in NPWT patients, we conducted a prospective, observational study of burn and trauma patients treated with NPWT and systemic antibiotics. We evaluated the plasma pharmacokinetic profile of systemic vancomycin, ciprofloxacin, cefazolin, and piperacillin/tazobactam, as well as total and unbound antibiotic concentrations in wound exudate from the same patients. Results: Data from 32 patients with 37 wounds undergoing NPWT demonstrated that vancomycin, ciprofloxacin, and piperacillin/tazobactam all penetrated wounds with exudate to plasma concentration ratios more than 0.8. Cefazolin did not penetrate wounds in patients undergoing NPWT as effectively, with an average exudate to plasma concentration ratio of 0.51. Innovation: Clinical data on the wound penetration of antibiotics in patients undergoing NPWT are limited, but these data suggest that antibiotics have different capacities for wound penetration during NPWT that should be considered when making clinical decisions. Conclusion: This initial report suggests that (1) vancomycin, ciprofloxacin, and piperacillin/tazobactam effectively penetrate wounds during NPWT and (2) cefazolin as well as other antibiotics may not penetrate wounds during NPWT.
Collapse
Affiliation(s)
- Matthew P. Rowan
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Krista L. Niece
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Julie A. Rizzo
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kevin S. Akers
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Infectious Disease Service, Department of Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, Texas
| |
Collapse
|
36
|
Lisboa FA, Bradley MJ, Hueman MT, Schobel SA, Gaucher BJ, Styrmisdottir EL, Potter BK, Forsberg JA, Elster EA. Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds. Surgery 2016; 161:1164-1173. [PMID: 27919449 DOI: 10.1016/j.surg.2016.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/05/2016] [Accepted: 10/15/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND After adequate operative debridement and antimicrobial therapies, combat-related extremity wounds that either heal or fail are both associated with a distinct inflammatory response. Short-term use of nonsteroidal anti-inflammatory drugs in postoperative pain management may affect this response and, by consequence, the healing potential of these wounds. We investigated whether patients treated with nonsteroidal anti-inflammatory drugs had a distinct inflammatory response; different rates of critical colonization, defined as >105 colony forming units on quantitative bacteriology; and healing potential. METHODS We retrospectively reviewed the records of 73 patients with combat-related extremity wounds. Patients were separated into 2 groups: those who received nonsteroidal anti-inflammatory drugs during the debridement period (nonsteroidal anti-inflammatory drugs group, N = 17) and those who did not (control group; N = 56). Serum and wound tissue samples collected during each operative debridement were measured for 32 known cytokines and tested for quantitative bacteriology, respectively. We compared cytokine concentrations between groups and then designed a logistic regression model to identify variables associated with successful wound healing, while controlling for known confounders. RESULTS Despite similar demographics and wound characteristics, the nonsteroidal anti-inflammatory drugs group had significant lesser concentrations of inflammatory cytokines, interleukin-2, interleukin-6, interleukin-8, and monocyte chemoattractant protein-1. On multivariate analysis, nonsteroidal anti-inflammatory drug treatment emerged as a predictor of successful wound healing after controlling for known confounders such as wound size, tobacco use, Acute Physiology and Chronic Health Evaluation II score, and critical colonization. CONCLUSION Treatment with nonsteroidal anti-inflammatory drugs for postoperative pain management after major combat-related extremity trauma is associated with lesser concentrations of inflammatory cytokines and may contribute to a more favorable inflammatory response leading to successful wound healing.
Collapse
Affiliation(s)
- Felipe A Lisboa
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Matthew J Bradley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Matthew T Hueman
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Seth A Schobel
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Beverly J Gaucher
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Edda L Styrmisdottir
- Surgical Critical Care Initiative (SC2i), Bethesda, MD; DecisionQ, Arlington, VA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Jonathan A Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD
| | - Eric A Elster
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD; Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD; Surgical Critical Care Initiative (SC2i), Bethesda, MD.
| |
Collapse
|
37
|
Chen J, Zhang B, Chen W, Kang JY, Chen KJ, Wang AM, Wang JM. Local and distant trauma after hypervelocity ballistic impact to the pig hind limb. SPRINGERPLUS 2016; 5:1497. [PMID: 27652070 PMCID: PMC5014777 DOI: 10.1186/s40064-016-3160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022]
Abstract
The development of high-energy weapons could increase the velocity of projectiles to well over 1000 m/s. The nature of the injuries caused by the ballistic impact of projectiles at velocities much faster than 1000 m/s is unclear. This study characterizes the mechanical and biochemical alterations caused by high-speed ballistic impact generated by spherical steel ball to the hind limbs of the pig. That the local and distal injuries caused by hypervelocity ballistic impact to the living body are also identified. It is showed that the severity of the injury was positively correlated with the velocity of the projectile. And 4000 m/s seems to be the critical velocity for the 5.6 mm spherical steel ball, which would cause severe damage to either local or distal organs, as below that speed the projectile penetrated the body while above that speed it caused severe damage to the body. In addition, vaporization prevented the projectile from penetrating the body and the consequent pressure wave seems to be the causal factor for the distant damage.
Collapse
Affiliation(s)
- Jin Chen
- 6th Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhang
- 6th Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ; Department of Orthopedics, Nanchong Central Hospital, North Sichuan Medical College, Nanchong, China
| | - Wei Chen
- 6th Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Jian-Yi Kang
- 6th Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Kui-Jun Chen
- 6th Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ai-Min Wang
- Department of Orthopedics, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Jian-Min Wang
- 6th Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
38
|
Nagaraja S, Reifman J, Mitrophanov AY. Computational Identification of Mechanistic Factors That Determine the Timing and Intensity of the Inflammatory Response. PLoS Comput Biol 2015; 11:e1004460. [PMID: 26633296 PMCID: PMC4669096 DOI: 10.1371/journal.pcbi.1004460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
Abstract
Timely resolution of inflammation is critical for the restoration of homeostasis in injured or infected tissue. Chronic inflammation is often characterized by a persistent increase in the concentrations of inflammatory cells and molecular mediators, whose distinct amount and timing characteristics offer an opportunity to identify effective therapeutic regulatory targets. Here, we used our recently developed computational model of local inflammation to identify potential targets for molecular interventions and to investigate the effects of individual and combined inhibition of such targets. This was accomplished via the development and application of computational strategies involving the simulation and analysis of thousands of inflammatory scenarios. We found that modulation of macrophage influx and efflux is an effective potential strategy to regulate the amount of inflammatory cells and molecular mediators in both normal and chronic inflammatory scenarios. We identified three molecular mediators − tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and the chemokine CXCL8 − as potential molecular targets whose individual or combined inhibition may robustly regulate both the amount and timing properties of the kinetic trajectories for neutrophils and macrophages in chronic inflammation. Modulation of macrophage flux, as well as of the abundance of TNF-α, TGF-β, and CXCL8, may improve the resolution of chronic inflammation. A recent approach to quantitatively characterize the timing and intensity of the inflammatory response relies on the use of four quantities termed inflammation indices. The values of the inflammation indices may reflect the differences between normal and pathological inflammation, and may be used to gauge the effects of therapeutic interventions aimed to control inflammation. Yet, the specific inflammatory mechanisms that can be targeted to selectively control these indices remain unknown. Here, we developed and applied a computational strategy to identify potential target mechanisms to regulate such indices. We used our recently developed model of local inflammation to simulate thousands of inflammatory scenarios. We then subjected the corresponding inflammation index values to sensitivity and correlation analysis. We found that the inflammation indices may be significantly influenced by the macrophage influx and efflux rates, as well as by the degradation rates of three specific molecular mediators. These results suggested that the indices can be effectively regulated by individual or combined inhibition of those molecular mediators, which we confirmed by computational experiments. Taken together, our results highlight possible targets of therapeutic intervention that can be used to control both the timing and the intensity of the inflammatory response.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Alexander Y. Mitrophanov
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
39
|
Abstract
OBJECTIVES Trauma-related hemipelvectomy is a rare and often fatal injury that poses a number of challenges to the treating surgeon. Our objective was to identify patient and injury characteristics that have proven difficult to treat, and to describe management techniques. DESIGN Retrospective review. SETTING Level II trauma center. PATIENTS Thirteen consecutive patients who underwent 14 combat-related hemipelvectomies between 2001 and 2013. INTERVENTION We reviewed our prospective trauma registry, along with the patients' medical records, radiographs, and clinical photographs. MAIN OUTCOME MEASUREMENTS Injury severity scores, required surgical procedures, ambulatory status, and bowel and bladder function. RESULTS Hemipelvectomy was indicated for insufficient soft tissue coverage, complicated by life-threatening local infection and/or a dysvascular hemipelvis. Five patients underwent resection for angioinvasive fungal infections. All patients sustained a genitourinary injury, with 7 requiring suprapubic catheters and all undergoing diverting colostomy. After a median of 2 years of follow-up, 2 patients had normal urinary continence and 3 regained fecal continence. The surviving patients required a mean of 44 operations. One patient returned to community ambulation. CONCLUSIONS This is the largest published series of trauma-related hemipelvectomies. Our lessons learned may benefit civilian surgeons who are confronted with high-energy open injuries to the pelvic girdle. Although the decision to perform hemipelvectomy should not be taken lightly, this procedure can be lifesaving and should be performed in a timely fashion when indicated. LEVEL OF EVIDENCE Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
|
40
|
Balazs GC, Dickens JF, Brelin AM, Wolfe JA, Rue JPH, Potter BK. Analysis of Orthopaedic Research Produced During the Wars in Iraq and Afghanistan. Clin Orthop Relat Res 2015; 473:2777-84. [PMID: 25758377 PMCID: PMC4523534 DOI: 10.1007/s11999-015-4244-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Military orthopaedic surgeons have published a substantial amount of original research based on our care of combat-wounded service members and related studies during the wars in Iraq and Afghanistan. However, to our knowledge, the influence of this body of work has not been evaluated bibliometrically, and doing so is important to determine the modern impact of combat casualty research in the wider medical community. QUESTIONS/PURPOSES We sought to identify the 20 most commonly cited works from military surgeons published during the Iraq and Afghanistan conflicts and analyze them to answer the following questions: (1) What were the subject areas of these 20 articles and what was the 2013 Impact Factor of each journal that published them? (2) How many citations did they receive and what were the characteristics of the journals that cited them? (3) Do the citation analysis results obtained from Google Scholar mirror the results obtained from Thompson-Reuters' Web of Science? METHODS We searched the Web of Science Citation Index Expanded for relevant original research performed by US military orthopaedic surgeons related to Operation Iraqi Freedom and Operation Enduring Freedom between 2001 and 2014. Articles citing these studies were reviewed using both Web of Science and Google Scholar data. The 20 most cited articles meeting inclusion criteria were identified and analyzed by content domain, frequency of citation, and sources in which they were cited. RESULTS Nine of these studies examined the epidemiology and outcome of combat injury. Six studies dealt with wound management, wound dehiscence, and formation of heterotopic ossification. Five studies examined infectious complications of combat trauma. The median number of citations garnered by these 20 articles was 41 (range, 28-264) in Web of Science. Other research citing these studies has appeared in 279 different journals, covering 26 different medical and surgical subspecialties, from authors in 31 different countries. Google Scholar contained 97% of the Web of Science citations, but also had 31 duplicate entries and 29 citations with defective links. CONCLUSIONS Modern combat casualty research by military orthopaedic surgeons is widely cited by researchers in a diverse range of subspecialties and geographic locales. This suggests that the military continues to be a source of innovation that is broadly applicable to civilian medical and surgical practice and should encourage expansion of military-civilian collaboration to maximize the utility of the knowledge gained in the treatment of war trauma. LEVEL OF EVIDENCE Level IV, therapeutic study.
Collapse
Affiliation(s)
- George C. Balazs
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Building 19, Floor 2, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Jonathan F. Dickens
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Building 19, Floor 2, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Alaina M. Brelin
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Building 19, Floor 2, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Jared A. Wolfe
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Building 19, Floor 2, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | | | - Benjamin K. Potter
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Building 19, Floor 2, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- />Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA
| |
Collapse
|
41
|
Forsberg JA, Potter BK, Wagner MB, Vickers A, Dente CJ, Kirk AD, Elster EA. Lessons of War: Turning Data Into Decisions. EBioMedicine 2015; 2:1235-42. [PMID: 26501123 PMCID: PMC4588374 DOI: 10.1016/j.ebiom.2015.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 02/03/2023] Open
Abstract
Background Recent conflicts in Afghanistan and Iraq produced a substantial number of critically wounded service-members. We collected biomarker and clinical information from 73 patients who sustained 116 life-threatening combat wounds, and sought to determine if the data could be used to predict the likelihood of wound failure. Methods From each patient, we collected clinical information, serum, wound effluent, and tissue prior to and at each surgical débridement. Inflammatory cytokines were quantified in both the serum and effluent, as were gene expression targets. The primary outcome was successful wound healing. Computer intensive methods were used to derive prognostic models that were internally validated using target shuffling and cross-validation methods. A second cohort of eighteen critically injured civilian patients was evaluated to determine if similar inflammatory responses were observed. Findings The best-performing models enhanced clinical observation with biomarker data from the serum and wound effluent, an indicator that systemic inflammatory conditions contribute to local wound failure. A Random Forest model containing ten variables demonstrated the highest accuracy (AUC 0.79). Decision Curve Analysis indicated that the use of this model would improve clinical outcomes and reduce unnecessary surgical procedures. Civilian trauma patients demonstrated similar inflammatory responses and an equivalent wound failure rate, indicating that the model may be generalizable to civilian settings. Interpretation Using advanced analytics, we successfully codified clinical and biomarker data from combat patients into a potentially generalizable decision support tool. Analysis of inflammatory data from critically ill patients with acute injury may inform decision-making to improve clinical outcomes and reduce healthcare costs. Funding United States Department of Defense Health Programs. We analyzed biomarker and clinical data to predict the likelihood of wound failure. We found that systematic inflammatory conditions contribute to local wound failure. This response is comparable between combat wounded and civilian patients. This response can be measured and translated into clinical decision support tools. These predictive models will benefit both military and civilian health systems.
Collapse
Affiliation(s)
- Jonathan A Forsberg
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD USA ; Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD USA ; Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
| | - Benjamin K Potter
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD USA ; Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
| | - Matthew B Wagner
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD USA ; Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD USA ; Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
| | - Andrew Vickers
- Department of Epidemiology and Biostatistics Memorial Sloan-Kettering Cancer Center, New York, NY USA
| | - Christopher J Dente
- Department of Surgery, Emory University, Atlanta, GA USA ; Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
| | - Allan D Kirk
- Department of Surgery, Duke University Medical Center, Durham, NC USA ; Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
| | - Eric A Elster
- Department of Surgery at the Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD USA ; Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD USA ; Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
| |
Collapse
|
42
|
Radowsky JS, Brown TS, Lisboa FA, Rodriguez CJ, Forsberg JA, Elster EA. Serum Inflammatory Cytokine Markers of Invasive Fungal Infection in Previously Immunocompetent Battle Casualties. Surg Infect (Larchmt) 2015; 16:526-32. [PMID: 26110227 DOI: 10.1089/sur.2013.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Invasive fungal infection (IFI) is described increasingly in individuals experiencing high-energy military trauma. Hallmarks of successful treatment involve aggressive surgical debridement and early initiation of systemic antimicrobial therapy. Currently, intravenous anti-fungal therapy commences based on appearance of wounds and patient's clinical course. Whereas some clinical protocols exist to predict which critically injured patients should receive anti-fungal therapies, there are no established serum markers associated with IFI. Our hypothesis is that serum inflammatory cytokines exist that can assist in identifying individuals at risk for IFI. METHODS This is a retrospective case control study at a single institution. Nine patients with IFI (Saksenaea vasiformis, Fusarium sp., Graphium sp., Scedosporium sp., Aspergillus sp., Mucor sp., and Alternaria sp.) after battlefield trauma were matched to nine individuals with similar injury patterns whose laboratory results were negative for IFI. The combination of serum inflammatory cytokines from the first and second debridements was examined with multiplex platform proteomic analysis. We defined statistical significance as a two-tailed α<0.05 after adjusting for multiple comparisons using the false discovery rate method. This model was refined further with correlation-based filter selection and the area under the curve of the receiver operating characteristics (AUROC) was tested. RESULTS Both groups had similar Injury Severity Scores (ISS) (mean±standard deviation [SD]) (26.8±15.5 vs. 29.2±16.8, p=0.766). Elevated RANTES (regulated on activation, normal T cell expressed and secreted) alone (10,492.8±4,450.1 vs. 5,333.3±4,162.2, p=0.006) correlated with IFI. Also, the combination of persistent elevations in RANTES, interleukin (IL)-2R, and IL-15 was a robust model for predicting IFI with the AUROC being 0.9. CONCLUSIONS Elevation in serum cytokines, particularly RANTES, correlated with IFI in this small group of patients. This demonstrates the potential of future rapid serum testing for early initiation and guidance of anti-fungal therapies.
Collapse
Affiliation(s)
- Jason S Radowsky
- 1 Department of General Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Trevor S Brown
- 2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| | - Felipe A Lisboa
- 2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| | - Carlos J Rodriguez
- 1 Department of General Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Jonathan A Forsberg
- 2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,3 Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| | - Eric A Elster
- 1 Department of General Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| |
Collapse
|
43
|
Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, Chan RK, Christy RJ, Chung KK. Burn wound healing and treatment: review and advancements. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:243. [PMID: 26067660 PMCID: PMC4464872 DOI: 10.1186/s13054-015-0961-2] [Citation(s) in RCA: 538] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Burns are a prevalent and burdensome critical care problem. The priorities of specialized facilities focus on stabilizing the patient, preventing infection, and optimizing functional recovery. Research on burns has generated sustained interest over the past few decades, and several important advancements have resulted in more effective patient stabilization and decreased mortality, especially among young patients and those with burns of intermediate extent. However, for the intensivist, challenges often exist that complicate patient support and stabilization. Furthermore, burn wounds are complex and can present unique difficulties that require late intervention or life-long rehabilitation. In addition to improvements in patient stabilization and care, research in burn wound care has yielded advancements that will continue to improve functional recovery. This article reviews recent advancements in the care of burn patients with a focus on the pathophysiology and treatment of burn wounds.
Collapse
Affiliation(s)
- Matthew P Rowan
- United States Army Institute for Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA.
| | - Leopoldo C Cancio
- United States Army Institute for Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA
| | - Eric A Elster
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - David M Burmeister
- United States Army Institute for Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA
| | - Lloyd F Rose
- United States Army Institute for Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA
| | - Shanmugasundaram Natesan
- United States Army Institute for Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA
| | - Rodney K Chan
- United States Army Institute for Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA.,Brooke Army Medical Center, 3551 Roger Brook Dr, Fort Sam Houston, TX, 78234, USA
| | - Robert J Christy
- United States Army Institute for Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA
| | - Kevin K Chung
- United States Army Institute for Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA.,Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| |
Collapse
|
44
|
Akers KS, Rowan MP, Niece KL, Graybill JC, Mende K, Chung KK, Murray CK. Antifungal wound penetration of amphotericin and voriconazole in combat-related injuries: case report. BMC Infect Dis 2015; 15:184. [PMID: 25886578 PMCID: PMC4403850 DOI: 10.1186/s12879-015-0918-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/31/2015] [Indexed: 12/02/2022] Open
Abstract
Background Survivors of combat trauma can have long and challenging recoveries, which may be complicated by infection. Invasive fungal infections are a rare but serious complication with limited treatment options. Currently, aggressive surgical debridement is the standard of care, with antifungal agents used adjunctively with uncertain efficacy. Anecdotal evidence suggests that antifungal agents may be ineffective in the absence of surgical debridement, and studies have yet to correlate antifungal concentrations in plasma and wounds. Case presentation Here we report the systemic pharmacokinetics and wound effluent antifungal concentrations of five wounds from two male patients, aged 28 and 30 years old who sustained combat-related blast injuries in southern Afghanistan, with proven or possible invasive fungal infection. Our data demonstrate that while voriconazole sufficiently penetrated the wound resulting in detectable effluent levels, free amphotericin B (unbound to plasma) was not present in wound effluent despite sufficient concentrations in circulating plasma. In addition, considerable between-patient and within-patient variability was observed in antifungal pharmacokinetic parameters. Conclusion These data highlight the need for further studies evaluating wound penetration of commonly used antifungals and the role for therapeutic drug monitoring in providing optimal care for critically ill and injured war fighters.
Collapse
Affiliation(s)
- Kevin S Akers
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - Matthew P Rowan
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - Krista L Niece
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - John C Graybill
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - Katrin Mende
- Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Kevin K Chung
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Clinton K Murray
- Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
45
|
Harris M, Cilwa K, Elster EA, Potter BK, Forsberg JA, Crane NJ. Pilot study for detection of early changes in tissue associated with heterotopic ossification: moving toward clinical use of Raman spectroscopy. Connect Tissue Res 2015; 56:144-52. [PMID: 25738521 DOI: 10.3109/03008207.2015.1013190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over 60% of combat-wounded patients develop heterotopic ossification (HO). Nearly 33% of them require surgical excision for symptomatic lesions, a procedure that is both fraught with complications and can delay or regress functional rehabilitation. Relative medical contraindications limit widespread use of conventional means of primary prophylaxis, such as nonspecific nonsteroidal anti-inflammatory medications and radiotherapy. Better methods for risk stratification are needed to both mitigate the risk of current means of primary prophylaxis as well as to evaluate novel preventive strategies currently in development. We asked whether Raman spectral changes, measured ex vivo, could be associated with histologic evidence of the earliest signs of HO formation and substance P (SP) expression in tissue biopsies from the wounds of combat casualties. In this pilot study, we compared normal muscle tissue, injured muscle tissue, very early HO lesions (< 16 d post-injury), early HO lesions (> 16 d post-injury) and mature HO lesions. The Raman spectra of these tissues demonstrate clear differences in the Amide I and III spectral regions of HO lesions compared to normal tissue, denoted by changes in the Amide I band center (p < 0.01) and the 1340/1270 cm(-1) (p < 0.05) band area and band height ratios. SP expression in the HO lesions appears to peak between 16 and 30 d post-injury, as determined by SP immunohistochemistry of corresponding tissue sections, potentially indicating optimal timing for administration of therapeutics. Raman spectroscopy may therefore prove a useful, non-invasive and early diagnostic modality to detect HO formation before it becomes evident either clinically or radiographically.
Collapse
Affiliation(s)
- Mitchell Harris
- Department of Surgery, Uniformed Services University of Health Science , Bethesda, MD , USA
| | | | | | | | | | | |
Collapse
|
46
|
Jones CL, Clancy M, Honnold C, Singh S, Snesrud E, Onmus-Leone F, McGann P, Ong AC, Kwak Y, Waterman P, Zurawski DV, Clifford RJ, Lesho E. Fatal Outbreak of an Emerging Clone of Extensively Drug-ResistantAcinetobacter baumanniiWith Enhanced Virulence. Clin Infect Dis 2015; 61:145-54. [DOI: 10.1093/cid/civ225] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/28/2014] [Indexed: 01/17/2023] Open
|
47
|
Valparaiso AP, Vicente DA, Bograd BA, Elster EA, Davis TA. Modeling acute traumatic injury. J Surg Res 2014; 194:220-32. [PMID: 25481528 DOI: 10.1016/j.jss.2014.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
Acute traumatic injury is a complex disease that has remained a leading cause of death, which affects all ages in our society. Direct mechanical insult to tissues may result in physiological and immunologic disturbances brought about by blood loss, coagulopathy, as well as ischemia and reperfusion insults. This inappropriate response leads to an abnormal release of endogenous mediators of inflammation that synergistically contribute to the incidence of morbidity and mortality. This aberrant activation and suppression of the immune system follows a bimodal pattern, wherein activation of the innate immune responses is followed by an anti-inflammatory response with suppression of the adaptive immunity, which can subsequently lead secondary insults and multiple organ dysfunction. Traumatic injury rodent and swine models have been used to describe many of the underlying pathologic mechanisms, which have led to an improved understanding of the morbidity and mortality associated with critically ill trauma patients. The enigmatic immunopathology of the human immunologic response after severe trauma, however, has never more been apparent and there grows a need for a clinically relevant animal model, which mimics this immune physiology to enhance the care of the most severely injured. This has necessitated preclinical studies in a more closely related model system, the nonhuman primate. In this review article, we summarize animal models of trauma that have provided insight into the clinical response and understanding of cellular mechanisms involved in the onset and progression of ischemia-reperfusion injury as well as describe future treatment options using immunomodulation-based strategies.
Collapse
Affiliation(s)
- Apple P Valparaiso
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Diego A Vicente
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Benjamin A Bograd
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Eric A Elster
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Thomas A Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
48
|
Polfer EM, Hoyt BW, Senchak LT, Murphey MD, Forsberg JA, Potter BK. Fluid collections in amputations are not indicative or predictive of infection. Clin Orthop Relat Res 2014; 472:2978-83. [PMID: 24691841 PMCID: PMC4160471 DOI: 10.1007/s11999-014-3586-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND In the acute postoperative period, fluid collections are common in lower extremity amputations. Whether these fluid collections increase the risk of infection is unknown. QUESTIONS/PURPOSES The purposes of this study were to determine (1) the percentage of patients who develop postoperative fluid collections in posttraumatic amputations and the natural course of the collection; (2) whether patients who develop these collections are at increased risk for infection; and to ask (3) are there objective clinical or radiologic signs that are associated with likelihood of infection when a fluid collection is present? METHODS We performed a review of all 300 patients injured in combat operations who sustained at least one major lower extremity amputation (at or proximal to the tibiotalar joint) and were treated definitively at our institution between March 2005 and April 2009. We segregated the groups based on whether cross-sectional imaging was performed less than 3 months (early group) after closure, greater than 3 months (late group) after closure, or not at all (control group, baseline frequency of infection). Our primary study cohort where those patients with a fluid collection in the first three months. The clinical course was reviewed and the primary outcome was a return to the operating room for irrigation and débridement with positive cultures. For those patients with cross-sectional imaging, we also collected objective clinical parameters within 24 hours of the scan (white blood cell count, maximum temperature, presence of bacteremia, tachycardia, oxygen desaturation), extremity examination (presence of erythema, warmth, and/or drainage), and characteristics of the fluid collections seen (size of the fluid collection, enhancement, complexity (simple versus loculated), surrounding edema, skin changes, tract formation, presence of air, and changes within the bone itself). The presence of a fluid collection on imaging was analyzed to determine whether it was associated with infection. We further analyzed clinical parameters, objective physical examination findings at the extremity, and characteristics of the fluid collection to determine if there were other parameters associated with infection. RESULTS Over half (55%) of the limbs demonstrated fluid collection in the early postoperative period and the prevalence decreased in the late group (11%; p = 0.001). There was no association between the presence of a fluid collection and infection. However, there was an association between objective clinical signs at the extremity (erythema and/or drainage) and infection (p < 0.001) in our primary study cohort. CONCLUSIONS Fluid collections are common in combat-related amputations in the immediate postoperative period and become smaller and less frequent over time. In the absence of extremity erythema and wound drainage, imaging of a residual limb to evaluate for the presence of a fluid collection appears to be of little clinical use.
Collapse
Affiliation(s)
- Elizabeth M. Polfer
- />Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
- />Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Benjamin W. Hoyt
- />Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Lien T. Senchak
- />Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD USA
- />The American Institute for Radiologic Pathology, Silver Spring, MD USA
| | - Mark D. Murphey
- />Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD USA
- />The American Institute for Radiologic Pathology, Silver Spring, MD USA
- />Department of Radiology and Nuclear Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Jonathan A. Forsberg
- />Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
- />Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Benjamin K. Potter
- />Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
- />Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- />Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA
| |
Collapse
|
49
|
CORR Insights®: Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res 2014; 472:2855-6. [PMID: 24973084 PMCID: PMC4117882 DOI: 10.1007/s11999-014-3728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 01/31/2023]
|
50
|
Forsberg JA, Potter BK, Polfer EM, Safford SD, Elster EA. Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res 2014; 472:2845-54. [PMID: 24879568 PMCID: PMC4117913 DOI: 10.1007/s11999-014-3694-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/09/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND After a decade of war in Iraq and Afghanistan, we have observed an increase in combat-related injury survival and a paradoxical increase in injury severity, mainly because of the effects of blasts. These severe injuries have a devastating effect on each patient's immune system resulting in massive upregulation of the systemic inflammatory response. By examining inflammatory mediators, preliminary data suggest that it may be possible to correlate complications such as wound failure and heterotopic ossification (HO) with distinct systemic and local inflammatory profiles, but this is a relatively new topic. QUESTIONS/PURPOSES We asked whether systemic or local markers of inflammation could be used as an objective means, independent of demographic and subjective factors, to estimate the likelihood of (1) HO and/or (2) wound failure (defined as wounds requiring surgical débridement after definitive closure, or wounds that were not closed or covered within 21 days of injury) in patients sustaining combat wounds. METHODS Two hundred combat wounded active-duty service members who sustained high-energy extremity injuries were prospectively enrolled between 2008 and 2012. Of these 200 patients, 189 had adequate followups to determine the presence or absence of HO, and 191 had adequate followups to determine the presence or absence of wound failure. In addition to injury-specific and demographic data, we quantified 24 cytokines and chemokines during each débridement. Patients were followed clinically for 6 weeks, and radiographs were obtained 3 months after definitive wound closure. Associations were investigated between these markers and wound failure or HO, while controlling for known confounders. RESULTS The presence of an amputation (p < 0.001; odds ratio [OR], 6.1; 95% CI. 1.63-27.2), Injury Severity Score (p = 0.002; OR, 33.2; 95% CI, 4.2-413), wound surface area (p = 0.001; OR, 1.01; 95% CI, 1.002-1.009), serum interleukin (IL)-3 (p = 0.002; OR, 2.41; 95% CI, 1.5-4.5), serum IL-12p70 (p = 0.01; OR, 0.49; 95% CI, 0.27-0.81), effluent IL-3 (p = 0.02; OR, 1.75; 95% CI, 1.2-2.9), and effluent IL-13 (p = 0.006; OR, 0.67; 95% CI, 0.50-0.87) were independently associated with HO formation. Injury Severity Score (p = 0.05; OR, 18; 95% CI, 5.1-87), wound surface area (p = 0.05; OR, 28.7; 95% CI, 1.5-1250), serum procalcitonin ([ProCT] (p = 0.03; OR, 1596; 95% CI, 5.1-1,758,613) and effluent IL-6 (p = 0.02; OR, 83; 95% CI, 2.5-5820) were independently associated with wound failure. CONCLUSIONS We identified associations between patients' systemic and local inflammatory responses and wound-specific complications such as HO and wound failure. However, future efforts to model these data must account for their complex, time dependent, and nonlinear nature. LEVEL OF EVIDENCE Level II, prognostic study. See the Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Jonathan A. Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA ,Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Section of Orthopaedics and Sports Medicine, Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden ,Surgical Critical Care Initiative (SC2I), Bethesda, MD USA
| | - Benjamin K. Potter
- Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA ,Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Surgical Critical Care Initiative (SC2I), Bethesda, MD USA
| | - Elizabeth M. Polfer
- Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA ,Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA
| | - Shawn D. Safford
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Eric A. Elster
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD USA ,Surgical Critical Care Initiative (SC2I), Bethesda, MD USA
| |
Collapse
|