1
|
Nakatsutsumi K, Choi W, Johnston W, Pool K, Park DJ, Weaver JL, Coimbra R, Eliceiri B, Costantini TW. Lung contusion complicated by pneumonia worsens lung injury via the inflammatory effect of alveolar small extracellular vesicles on macrophages and epithelial cells. J Trauma Acute Care Surg 2025; 98:55-63. [PMID: 39621452 DOI: 10.1097/ta.0000000000004499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Lung contusion (LC) complicated by pneumonia is associated with a higher risk of acute lung injury (ALI) mediated by activation of immune cells and injury to the lung epithelium. Small extracellular vesicles (sEVs) are essential mediators of cellular crosstalk; however, their role in the development of postinjury ALI remains unclear. We hypothesized that LC complicated by pneumonia increases the pro-inflammatory effect of alveolar sEVs on macrophages and the cytotoxicity of alveolar sEVs to pulmonary epithelial cells, worsening the severity of ALI. METHODS Studies in C57BL/6 mice were designed with four groups: sham, LC, Pneumonia (Pneu), and LC + Pneu. Lung contusion was induced by a cortical controlled impactor, while pneumonia was conducted by intratracheal injection of 10 5 cfu Pseudomonas aeruginosa . Bronchoalveolar lavage fluid (BAL) was harvested 24 hours postinfection, and sEVs were purified by centrifugation and size exclusion chromatography. To evaluate the effect of alveolar sEV on cells, sEVs from each group were cocultured with macrophages (RAW 264.7) to assess cytokine release and lung epithelial cells (MLE 12) to assess epithelial cytotoxicity. RESULTS The LC + Pneu group severely injured lungs histologically and increased the susceptibility to the bacteria. The LC + Pneu group showed higher concentrations of proteins, macrophage inflammatory protein 1-alpha (MIP1α), and intercellular adhesion molecule 1 (ICAM-1) in BAL. MIP1α and ICAM-1 expression in the macrophages increased after incubation with sEVs from the LC + Pneu group. Moreover, the sEVs demonstrated higher cytotoxicity to epithelial cells and increased apoptosis in epithelial cells after incubation with sEVs from the LC + Pneu group. CONCLUSION Lung contusion complicated by pneumonia increased the pro-inflammatory effect of alveolar sEVs on macrophages and the cytotoxicity of alveolar sEVs to pulmonary epithelial cells, worsening the severity of ALI. These results demonstrate the potential importance of alveolar sEVs in lung inflammation following a bacterial infection after trauma.
Collapse
Affiliation(s)
- Keita Nakatsutsumi
- From the Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery (K.N., W.C., W.J., K.P., D.P., J.W., B.E., T.C.), UC San Diego School of Medicine, San Diego; Comparative Effectiveness and Clinical Outcomes Research Center (R.C.), Riverside University Health System, Loma Linda University School of Medicine, Riverside, California; and Trauma and Acute Critical Care Center (K.N.), Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bohl K, Wynia-Smith SL, Lipinski RAJ, Smith BC. Inhibition of Sirtuin Deacylase Activity by Peroxynitrite. Biochemistry 2024; 63:2463-2476. [PMID: 39256054 PMCID: PMC11524680 DOI: 10.1021/acs.biochem.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Sirtuins are a class of enzymes that deacylate protein lysine residues using NAD+ as a cosubstrate. Sirtuin deacylase activity has been historically regarded as protective; loss of sirtuin deacylase activity potentially increases susceptibility to aging-related disease development. However, which factors may inhibit sirtuins during aging or disease is largely unknown. Increased oxidant and inflammatory byproduct production damages cellular proteins. Previously, we and others found that sirtuin deacylase activity is inhibited by the nitric oxide (NO)-derived cysteine post-translational modification S-nitrosation. However, the comparative ability of the NO-derived oxidant peroxynitrite (ONOO-) to affect human sirtuin activity had not yet been assessed under uniform conditions. Here, we compare the ability of ONOO- (donated from SIN-1) to post-translationally modify and inhibit SIRT1, SIRT2, SIRT3, SIRT5, and SIRT6 deacylase activity. In response to SIN-1 treatment, inhibition of SIRT1, SIRT2, SIRT3, SIRT5, and SIRT6 deacylase activity correlated with increased tyrosine nitration. Mass spectrometry identified multiple novel tyrosine nitration sites in SIRT1, SIRT3, SIRT5, and SIRT6. As each sirtuin isoform has at least one tyrosine nitration site within the catalytic core, nitration may result in sirtuin inhibition. ONOO- can also react with cysteine residues, resulting in sulfenylation; however, only SIRT1 showed detectable peroxynitrite-mediated cysteine sulfenylation. While SIRT2, SIRT3, SIRT5, and SIRT6 showed no detectable sulfenylation, SIRT6 likely undergoes transient sulfenylation, quickly resolving into an intermolecular disulfide bond. These results suggest that the aging-related oxidant peroxynitrite can post-translationally modify and inhibit sirtuins, contributing to susceptibility to aging-related disease.
Collapse
Affiliation(s)
- Kelsey Bohl
- Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI, 53097
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| | - Rachel A. Jones Lipinski
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| |
Collapse
|
3
|
Li Z, Li Z, Xu C, Fu J, Maimaiti Z, Hao L, Zhang Q, Chen J. Hypoalbuminemia is Highly Prevalent in Patients with Periprosthetic Joint Infection and Strongly Associated with Treatment Failure. Orthop Surg 2024; 16:2419-2427. [PMID: 39054735 PMCID: PMC11456702 DOI: 10.1111/os.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE The role of hypoalbuminemia throughout the course of chronic periprosthetic joint infection (PJI) remains poorly understood. This study aimed to determine the prevalence and risk factors of hypoalbuminemia in periprosthetic joint infection (PJI) patients and to explore the association between hypoalbuminemia and treatment outcomes. METHODS This retrospective cohort study included 387 PJI cases who underwent two-stage exchange arthroplasty between January 2007 and August 2020, of which 342 were reimplanted. The mean follow-up period was 7.9 years. Multivariate logistic regression analyses were performed to identify risk factors for hypoalbuminemia and to assess the effect of hypoalbuminemia at 1st- and 2nd-stage exchange on the treatment outcome. Furthermore, the impact of dynamic changes in hypoalbuminemia was investigated. RESULTS The prevalence of hypoalbuminemia at 1st- and 2nd-stage exchange was 22.2% and 4.7%, respectively. Patients with age ≥ 68 years and those with isolation of Staphylococcus aureus, Streptococcus, or Gram-negative bacteria exhibited a higher risk of hypoalbuminemia. Hypoalbuminemia at 1st-stage was significantly related to treatment failure (OR = 3.3), while hypoalbuminemia at 2nd-stage raised the OR to 10.0. Patients with persistent hypoalbuminemia at both the 1st- and 2nd-stage exchanges had a significantly higher rate of treatment failure than patients with hypoalbuminemia at the 1st-stage but normal albumin levels at the 2nd-stage exchange (55.6% vs 20.0%, p = 0.036). CONCLUSION One in five patients with chronic PJI exhibits hypoalbuminemia. Hypoalbuminemia is more likely to develop in patients of advanced age and those infected by specific highly virulent organisms. Also, our results highlight the close association between hypoalbuminemia and treatment outcomes.
Collapse
Affiliation(s)
- Zhi‐Yuan Li
- Medical School of Chinese PLABeijingChina
- Department of OrthopedicsThe First Medical Center, Chinese PLA General HospitalBeijingChina
| | - Zhuo Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- School of Medicine, Nankai UniversityTianjinChina
| | - Chi Xu
- Department of OrthopedicsThe First Medical Center, Chinese PLA General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center, Chinese PLA General HospitalBeijingChina
| | - Jun Fu
- Department of OrthopedicsThe First Medical Center, Chinese PLA General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center, Chinese PLA General HospitalBeijingChina
| | - Zulipikaer Maimaiti
- Department of OrthopedicsThe First Medical Center, Chinese PLA General HospitalBeijingChina
- Department of OrthopedicsBeijing Luhe Hospital, Capital Medical UniversityBeijingChina
| | - Li‐Bo Hao
- Department of OrthopedicsThe First Medical Center, Chinese PLA General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center, Chinese PLA General HospitalBeijingChina
| | - Qing‐Meng Zhang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanChina
| | - Ji‐Ying Chen
- Medical School of Chinese PLABeijingChina
- Department of OrthopedicsThe First Medical Center, Chinese PLA General HospitalBeijingChina
- Department of OrthopedicsThe Fourth Medical Center, Chinese PLA General HospitalBeijingChina
| |
Collapse
|
4
|
Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021; 12:763417. [PMID: 34899389 PMCID: PMC8652059 DOI: 10.3389/fphys.2021.763417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Increased sirtuin deacylase activity is correlated with increased lifespan and healthspan in eukaryotes. Conversely, decreased sirtuin deacylase activity is correlated with increased susceptibility to aging-related diseases. However, the mechanisms leading to decreased sirtuin activity during aging are poorly understood. Recent work has shown that oxidative post-translational modification by reactive oxygen (ROS) or nitrogen (RNS) species results in inhibition of sirtuin deacylase activity through cysteine nitrosation, glutathionylation, sulfenylation, and sulfhydration as well as tyrosine nitration. The prevalence of ROS/RNS (e.g., nitric oxide, S-nitrosoglutathione, hydrogen peroxide, oxidized glutathione, and peroxynitrite) is increased during inflammation and as a result of electron transport chain dysfunction. With age, cellular production of ROS/RNS increases; thus, cellular oxidants may serve as a causal link between loss of sirtuin activity and aging-related disease development. Therefore, the prevention of inhibitory oxidative modification may represent a novel means to increase sirtuin activity during aging. In this review, we explore the role of cellular oxidants in inhibiting individual sirtuin human isoform deacylase activity and clarify the relevance of ROS/RNS as regulatory molecules of sirtuin deacylase activity in the context of health and disease.
Collapse
Affiliation(s)
- Kelsey S Kalous
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Wiedermann CJ. Hypoalbuminemia as Surrogate and Culprit of Infections. Int J Mol Sci 2021; 22:4496. [PMID: 33925831 PMCID: PMC8123513 DOI: 10.3390/ijms22094496] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoalbuminemia is associated with the acquisition and severity of infectious diseases, and intact innate and adaptive immune responses depend on albumin. Albumin oxidation and breakdown affect interactions with bioactive lipid mediators that play important roles in antimicrobial defense and repair. There is bio-mechanistic plausibility for a causal link between hypoalbuminemia and increased risks of primary and secondary infections. Serum albumin levels have prognostic value for complications in viral, bacterial and fungal infections, and for infectious complications of non-infective chronic conditions. Hypoalbuminemia predicts the development of healthcare-associated infections, particularly with Clostridium difficile. In coronavirus disease 2019, hypoalbuminemia correlates with viral load and degree of acute lung injury and organ dysfunction. Non-oncotic properties of albumin affect the pharmacokinetics and pharmacodynamics of antimicrobials. Low serum albumin is associated with inadequate antimicrobial treatment. Infusion of human albumin solution (HAS) supplements endogenous albumin in patients with cirrhosis of the liver and effectively supported antimicrobial therapy in randomized controlled trials (RCTs). Evidence of the beneficial effects of HAS on infections in hypoalbuminemic patients without cirrhosis is largely observational. Prospective RCTs are underway and, if hypotheses are confirmed, could lead to changes in clinical practice for the management of hypoalbuminemic patients with infections or at risk of infectious complications.
Collapse
Affiliation(s)
- Christian J. Wiedermann
- Institute of General Practice, Claudiana–College of Health Professions, 39100 Bolzano, Italy;
- Department of Public Health, Medical Decision Making and HTA, University of Health Sciences, Medical Informatics and Technology, 6060 Hall in Tyrol, Austria
| |
Collapse
|
6
|
Kalous KS, Wynia-Smith SL, Summers SB, Smith BC. Human sirtuins are differentially sensitive to inhibition by nitrosating agents and other cysteine oxidants. J Biol Chem 2020; 295:8524-8536. [PMID: 32371394 DOI: 10.1074/jbc.ra119.011988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/29/2020] [Indexed: 01/25/2023] Open
Abstract
Sirtuins (e.g. human Sirt1-7) catalyze the removal of acyl groups from lysine residues in proteins in an NAD+-dependent manner, and loss of sirtuin deacylase activity correlates with the development of aging-related diseases. Although multiple reports suggest that sirtuin activity is regulated by oxidative post-translational modifications of cysteines during inflammation and aging, no systematic comparative study of potential direct sirtuin cysteine oxidative modifications has been performed. Here, using IC50 and k inact/KI analyses, we quantified the ability of nitrosothiols (S-nitrosoglutathione and S-nitroso-N-acetyl-d,l-penicillamine), nitric oxide, oxidized GSH, and hydrogen peroxide to post-translationally modify and inhibit the deacylase activity of Sirt1, Sirt2, Sirt3, Sirt5, and Sirt6. The inhibition was correlated with cysteine modification and assessed with chemical-probe and blot-based assays for cysteine S-nitrosation, sulfenylation, and glutathionylation. We show that the primarily nuclear sirtuins Sirt1 and Sirt6, as well as the primarily cytosolic sirtuin Sirt2, are modified and inhibited by cysteine S-nitrosation in response to exposure to both free nitric oxide and nitrosothiols (k inact/KI ≥ 5 m-1 s-1), which is the first report of Sirt2 and Sirt6 inhibition by S-nitrosation. Surprisingly, the mitochondrial sirtuins Sirt3 and Sirt5 were resistant to inhibition by cysteine oxidants. Collectively, these results suggest that nitric oxide-derived oxidants may causatively link nuclear and cytosolic sirtuin inhibition to aging-related inflammatory disease development.
Collapse
Affiliation(s)
- Kelsey S Kalous
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven B Summers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Vachharajani V, McCall CE. Sirtuins: potential therapeutic targets for regulating acute inflammatory response? Expert Opin Ther Targets 2020; 24:489-497. [PMID: 32174215 PMCID: PMC10514892 DOI: 10.1080/14728222.2020.1743268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
Introduction: Sirtuins are highly conserved nicotinamide adenine dinucleotide (NAD+) sensors that are considered the guardians of homeostasis. Acute inflammation, which is intended to ward off pathogen invasion, is nature's highly conserved stress-associated and molecular-based survival mechanism for most life forms. Acute inflammatory responses deviate cells from the homeostasis to enable survival. It is not surprising perhaps, that these two must interact in the most dramatic way to preserve homeostasis and preserve life.Areas covered: In this review, we present an overview of sirtuin responses in acute life-threatening inflammatory conditions. We examine how the seven sirtuins (sirtuins 1-7) are responsible for modulating the acute inflammatory response in a context-dependent manner, thus presenting novel therapeutic targets. The database search includes Medline (since 1966) and PubMed (since 1996).Expert opinion: Sirtuins fine-tune the inflammatory response to acute infectious and noninfectious inflammatory stimuli. Modulating sirtuin activity leads to profound changes in inflammatory response. Sirtuin-activating and inhibiting agents are emerging as therapeutic agents to resolve inflammation and promote homeostasis in chronic inflammation. The use of sirtuin modulation in acute life-threatening inflammatory conditions has great potential.
Collapse
|