1
|
Ghetmiri DE, Venturi AJ, Cohen MJ, Menezes AA. Quick model-based viscoelastic clot strength predictions from blood protein concentrations for cybermedical coagulation control. Nat Commun 2024; 15:314. [PMID: 38182562 PMCID: PMC10770315 DOI: 10.1038/s41467-023-44231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Cybermedical systems that regulate patient clotting in real time with personalized blood product delivery will improve treatment outcomes. These systems will harness popular viscoelastic assays of clot strength such as thromboelastography (TEG), which help evaluate coagulation status in numerous conditions: major surgery (e.g., heart, vascular, hip fracture, and trauma); liver cirrhosis and transplants; COVID-19; ICU stays; sepsis; obstetrics; diabetes; and coagulopathies like hemophilia. But these measurements are time-consuming, and thus impractical for urgent care and automated coagulation control. Because protein concentrations in a blood sample can be measured in about five minutes, we develop personalized, phenomenological, quick, control-oriented models that predict TEG curve outputs from input blood protein concentrations, to facilitate treatment decisions based on TEG curves. Here, we accurately predict, experimentally validate, and mechanistically justify curves and parameters for common TEG assays (Functional Fibrinogen, Citrated Native, Platelet Mapping, and Rapid TEG), and verify results with trauma patient clotting data.
Collapse
Affiliation(s)
- Damon E Ghetmiri
- Department of Mechanical and Aerospace Engineering, University of Florida, 527 Gale Lemerand Drive, Gainesville, FL, 32611-6250, USA
- ASML, 17075 Thornmint Court, San Diego, CA, 92127-2413, USA
| | - Alessia J Venturi
- Department of Mechanical and Aerospace Engineering, University of Florida, 527 Gale Lemerand Drive, Gainesville, FL, 32611-6250, USA
| | - Mitchell J Cohen
- Department of Surgery, University of Colorado Denver, 12631 East 17th Avenue, Mailstop C305, Aurora, CO, 80045-2527, USA
- Center for Combat Medicine and Battlefield (COMBAT) Research, Department of Emergency Medicine, University of Colorado Denver, 12401 East 17th Avenue, Mailstop B215, Aurora, CO, 80045-2589, USA
| | - Amor A Menezes
- Department of Mechanical and Aerospace Engineering, University of Florida, 527 Gale Lemerand Drive, Gainesville, FL, 32611-6250, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32611-6131, USA.
- Department of Agricultural and Biological Engineering, University of Florida, 1741 Museum Road, Gainesville, FL, 32611-0570, USA.
- Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610-3610, USA.
| |
Collapse
|
2
|
Lantry JH, Mason P, Logsdon MG, Bunch CM, Peck EE, Moore EE, Moore HB, Neal MD, Thomas SG, Khan RZ, Gillespie L, Florance C, Korzan J, Preuss FR, Mason D, Saleh T, Marsee MK, Vande Lune S, Ayoub Q, Fries D, Walsh MM. Hemorrhagic Resuscitation Guided by Viscoelastography in Far-Forward Combat and Austere Civilian Environments: Goal-Directed Whole-Blood and Blood-Component Therapy Far from the Trauma Center. J Clin Med 2022; 11:356. [PMID: 35054050 PMCID: PMC8778082 DOI: 10.3390/jcm11020356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Modern approaches to resuscitation seek to bring patient interventions as close as possible to the initial trauma. In recent decades, fresh or cold-stored whole blood has gained widespread support in multiple settings as the best first agent in resuscitation after massive blood loss. However, whole blood is not a panacea, and while current guidelines promote continued resuscitation with fixed ratios of blood products, the debate about the optimal resuscitation strategy-especially in austere or challenging environments-is by no means settled. In this narrative review, we give a brief history of military resuscitation and how whole blood became the mainstay of initial resuscitation. We then outline the principles of viscoelastic hemostatic assays as well as their adoption for providing goal-directed blood-component therapy in trauma centers. After summarizing the nascent research on the strengths and limitations of viscoelastic platforms in challenging environmental conditions, we conclude with our vision of how these platforms can be deployed in far-forward combat and austere civilian environments to maximize survival.
Collapse
Affiliation(s)
- James H. Lantry
- Department of Medicine Critical Care Services, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA;
| | - Phillip Mason
- Department of Critical Care Medicine, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX 78234, USA;
| | - Matthew G. Logsdon
- Department of Emergency Medicine, Indiana University School of Medicine—South Bend, Notre Dame, IN 46617, USA; (M.G.L.); (C.M.B.)
- Department of Emergency Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (E.E.P.); (C.F.); (J.K.)
| | - Connor M. Bunch
- Department of Emergency Medicine, Indiana University School of Medicine—South Bend, Notre Dame, IN 46617, USA; (M.G.L.); (C.M.B.)
- Department of Emergency Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (E.E.P.); (C.F.); (J.K.)
| | - Ethan E. Peck
- Department of Emergency Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (E.E.P.); (C.F.); (J.K.)
| | - Ernest E. Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health and University of Colorado Health Sciences Center, Denver, CO 80204, USA; (E.E.M.); (H.B.M.)
| | - Hunter B. Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health and University of Colorado Health Sciences Center, Denver, CO 80204, USA; (E.E.M.); (H.B.M.)
| | - Matthew D. Neal
- Pittsburgh Trauma Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
| | - Scott G. Thomas
- Department of Trauma Surgery, Memorial Leighton Trauma Center, Beacon Health System, South Bend, IN 46601, USA;
| | - Rashid Z. Khan
- Department of Hematology, Michiana Hematology Oncology, Mishawaka, IN 46545, USA;
| | - Laura Gillespie
- Department of Quality Assurance and Performance Improvement, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA;
| | - Charles Florance
- Department of Emergency Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (E.E.P.); (C.F.); (J.K.)
| | - Josh Korzan
- Department of Emergency Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (E.E.P.); (C.F.); (J.K.)
| | - Fletcher R. Preuss
- Department of Orthopaedic Surgery, UCLA Santa Monica Medical Center and Orthopaedic Institute, Santa Monica, CA 90404, USA;
| | - Dan Mason
- Department of Medical Science and Devices, Haemonetics Corporation, Braintree, MA 02184, USA;
| | - Tarek Saleh
- Department of Critical Care Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA;
| | - Mathew K. Marsee
- Department of Graduate Medical Education, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA;
| | - Stefani Vande Lune
- Department of Emergency Medicine, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA;
| | | | - Dietmar Fries
- Department of Surgical and General Care Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Mark M. Walsh
- Department of Emergency Medicine, Indiana University School of Medicine—South Bend, Notre Dame, IN 46617, USA; (M.G.L.); (C.M.B.)
- Department of Emergency Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (E.E.P.); (C.F.); (J.K.)
| |
Collapse
|
3
|
Herbstreit F, Grissom TE, Pivalizza EG. Viscoelastic Hemostatic Assays in Trauma: And the Winner Is…. Anesth Analg 2022; 134:19-20. [PMID: 34908542 DOI: 10.1213/ane.0000000000005765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Frank Herbstreit
- From the Department of Anesthesiology and Intensive Care Medicine, University Duisburg-Essen, Faculty of Medicine, University Hospital Essen, Essen, Germany
| | - Thomas E Grissom
- Department of Anesthesiology, University of Maryland School of Medicine, R Adams Cowley Shock Trauma Center, Baltimore, Maryland
| | - Evan G Pivalizza
- Department of Anesthesiology, University of Texas, Health Science Center, McGovern Medical School, Houston, Texas
| |
Collapse
|
4
|
Ghetmiri DE, Cohen MJ, Menezes AA. Personalized modulation of coagulation factors using a thrombin dynamics model to treat trauma-induced coagulopathy. NPJ Syst Biol Appl 2021; 7:44. [PMID: 34876597 PMCID: PMC8651743 DOI: 10.1038/s41540-021-00202-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023] Open
Abstract
Current trauma-induced coagulopathy resuscitation protocols use slow laboratory measurements, rules-of-thumb, and clinician gestalt to administer large volumes of uncharacterized, non-tailored blood products. These one-size-fits-all treatment approaches have high mortality. Here, we provide significant evidence that trauma patient survival 24 h after hospital admission occurs if and only if blood protein coagulation factor concentrations equilibrate at a normal value, either from inadvertent plasma-based modulation or from innate compensation. This result motivates quantitatively guiding trauma patient coagulation factor levels while accounting for protein interactions. Toward such treatment, we develop a Goal-oriented Coagulation Management (GCM) algorithm, a personalized and automated ordered sequence of operations to compute and specify coagulation factor concentrations that rectify clotting. This novel GCM algorithm also integrates new control-oriented advancements that we make in this work: an improvement of a prior thrombin dynamics model that captures the coagulation process to control, a use of rapidly-measurable concentrations to help predict patient state, and an accounting of patient-specific effects and limitations when adding coagulation factors to remedy coagulopathy. Validation of the GCM algorithm's guidance shows superior performance over clinical practice in attaining normal coagulation factor concentrations and normal clotting profiles simultaneously.
Collapse
Affiliation(s)
- Damon E Ghetmiri
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Mitchell J Cohen
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amor A Menezes
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Sayce AC, Neal MD, Leeper CM. Viscoelastic monitoring in trauma resuscitation. Transfusion 2021; 60 Suppl 6:S33-S51. [PMID: 33089933 DOI: 10.1111/trf.16074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Traumatic injury results in both physical and physiologic insult. Successful care of the trauma patient depends upon timely correction of both physical and biochemical injury. Trauma-induced coagulopathy is a derangement of hemostasis and thrombosis that develops rapidly and can be fatal if not corrected. Viscoelastic monitoring (VEM) assays have been developed to provide rapid, accurate, and relatively comprehensive depictions of an individual's coagulation profile. VEM are increasingly being integrated into trauma resuscitation guidelines to provide dynamic and individualized guidance to correct coagulopathy. STUDY DESIGN AND METHODS We performed a narrative review of the search terms viscoelastic, thromboelastography, thromboelastometry, TEG, ROTEM, trauma, injury, resuscitation, and coagulopathy using PubMed. Particular focus was directed to articles describing algorithms for management of traumatic coagulopathy based on VEM assay parameters. RESULTS Our search identified 16 papers with VEM-guided resuscitation strategies in adult patients based on TEG, 12 such protocols in adults based on ROTEM, 1 protocol for children based on TEG, and 2 protocols for children based on ROTEM. CONCLUSIONS This review presents evidence to support VEM use to detect traumatic coagulopathy, discusses the role of VEM in trauma resuscitation, provides a summary of proposed treatment algorithms, and discusses pending questions in the field.
Collapse
Affiliation(s)
- Andrew C Sayce
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christine M Leeper
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Zhao WJ, Liu GE, Tian Y, Song SM, Li L. What's new in trauma 2020. Chin J Traumatol 2021; 24:63-68. [PMID: 33612396 PMCID: PMC7849435 DOI: 10.1016/j.cjtee.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 02/04/2023] Open
Abstract
Throughout the past 2020, the pandemic COVID-19 has caused a big global shock, meanwhile it brought a great impact on the public health network. Trauma emergency system faced a giant challenge and how to manage trauma under the pandemic of COVID-19 was widely discussed. However, the trauma treatment of special population (geriatric patients and patients taking anticoagulant drugs) has received inadequate attention. Due to the high mortality following severe traumatic hemorrhage, hemostasis and trauma-induced coagulopathy are the important concerns in trauma treatment. Sepsis is another topic should not be ignored when we talking about trauma. COVID-19 itself is a special kind of sepsis, and it may even be called as serious systemic infection syndrome. Sepsis has been become a serious problem waiting to be solved urgently no matter in the fields of trauma, or in intensive care and infection, etc. This article reviewed the research progress in areas including trauma emergency care, trauma bleeding and coagulation, geriatric trauma and basic research of trauma within 2020.
Collapse
|