1
|
Chea M, Bouvier S, Gris JC. The hemostatic system in chronic brain diseases: A new challenging frontier? Thromb Res 2024; 243:109154. [PMID: 39305718 DOI: 10.1016/j.thromres.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Neurological diseases (ND), including neurodegenerative diseases (NDD) and psychiatric disorders (PD), present a significant public health challenge, ranking third in Europe for disability and premature death, following cardiovascular diseases and cancers. In 2017, approximately 540 million cases of ND were reported among Europe's 925 million people, with strokes, dementia, and headaches being most prevalent. Nowadays, more and more evidence highlight the hemostasis critical role in cerebral homeostasis and vascular events. Indeed, hemostasis, thrombosis, and brain abnormalities contributing to ND form a complex and poorly understood equilibrium. Alterations in vascular biology, particularly involving the blood-brain barrier, are implicated in ND, especially dementia, and PD. While the roles of key coagulation players such as thrombin and fibrinogen are established, the roles of other hemostasis components are less clear. Moreover, the involvement of these elements in psychiatric disease pathogenesis is virtually unstudied, except in specific pathological models such as antiphospholipid syndrome. Advanced imaging techniques, primarily functional magnetic resonance imaging and its derivatives like diffusion tensor imaging, have been developed to study brain areas affected by ND and to improve our understanding of the pathophysiology of these diseases. This literature review aims to clarify the current understanding of the connections between hemostasis, thrombosis, and neurological diseases, as well as explore potential future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mathias Chea
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France.
| | - Sylvie Bouvier
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France
| | - Jean-Christophe Gris
- Department of Hematology, Nîmes University Hospital, Place du Professeur Robert Debré, Nîmes, France; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, University of Montpellier, Montpellier, France; Faculty of Pharmaceutical and Biological Sciences, University of Montpellier, Montpellier, France; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
2
|
Kršek A, Batičić L, Ćurko-Cofek B, Batinac T, Laškarin G, Miletić-Gršković S, Sotošek V. Insights into the Molecular Mechanism of Endothelial Glycocalyx Dysfunction during Heart Surgery. Curr Issues Mol Biol 2024; 46:3794-3809. [PMID: 38785504 PMCID: PMC11119104 DOI: 10.3390/cimb46050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
The endothelial glycocalyx (EGC) is a layer of proteoglycans (associated with glycosaminoglycans) and glycoproteins, which adsorbs plasma proteins on the luminal surface of endothelial cells. Its main function is to participate in separating the circulating blood from the inner layers of the vessels and the surrounding tissues. Physiologically, the EGC stimulates mechanotransduction, the endothelial charge, thrombocyte adhesion, leukocyte tissue recruitment, and molecule extravasation. Hence, severe impairment of the EGC has been implicated in various pathological conditions, including sepsis, diabetes, chronic kidney disease, inflammatory disorders, hypernatremia, hypervolemia, atherosclerosis, and ischemia/reperfusion injury. Moreover, alterations in EGC have been associated with altered responses to therapeutic interventions in conditions such as cardiovascular diseases. Investigation into the function of the glycocalyx has expanded knowledge about vascular disorders and indicated the need to consider new approaches in the treatment of severe endothelial dysfunction. This review aims to present the current understanding of the molecular mechanisms underlying cardiovascular diseases and to elucidate the impact of heart surgery on EGC dysfunction.
Collapse
Affiliation(s)
- Antea Kršek
- Faculty of Rijeka, University of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Silvija Miletić-Gršković
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
4
|
Graham MA, Juzang PT, White TE. Effects of repetitive mild traumatic brain injury on weight gain and chronic behavioral outcomes in male rats. PLoS One 2023; 18:e0287506. [PMID: 37471309 PMCID: PMC10358892 DOI: 10.1371/journal.pone.0287506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/07/2023] [Indexed: 07/22/2023] Open
Abstract
To assess the long-term behavioral effects of repetitive mild traumatic brain injury (rmTBI), we employed a preclinical model of rmTBI and performed a battery of behavioral tests starting 14 weeks post-injury. Male Sprague-Dawley rats received four unilateral mild (6 m/s; 0.5 mm depth) controlled cortical impacts (CCI), centered 4 mm posterior and 3-4 mm lateral to the bregma, administered at five-day intervals. The animals' weights were monitored throughout the study. We tested the rats for anxiety-like (elevated plus maze, open field test), depression-like (forced swim test), locomotor (rotarod, open field test), and spatial learning and memory (Morris water maze (MWM)) behavioral deficits. Overall, a mild behavioral phenotype was observed. Significant deficits were observed with the MWM, indicating that our injury model disrupts spatial learning and memory. An interesting aspect of these data is a directional/visual component to the spatial learning and memory deficits dependent on the zone in which the trial began. With the injury being unilateral, there may be an imbalance in visual acuity that contributes to the observed deficits. Analysis of weight gain data demonstrated that rmTBI reduces weight during the period while injuries are occurring. This may represent another measure that can be tracked to determine injury severity and recovery. RNA-seq analysis demonstrated that gene expression at the chronic endpoint could distinguish between the experimental groups even with a mild behavioral phenotype. Future studies would include a more severe injury paradigm to promote longer-lasting behavior changes.
Collapse
Affiliation(s)
- Martha A. Graham
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, Georgia, United States of America
| | - Patria T. Juzang
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, Georgia, United States of America
| | - Todd E. White
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, Georgia, United States of America
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Noh H, Yoon SG, Choi K, Kyung KH, Kim MS. Efficacy of Serum Antithrombin III Test in Patients With Severe Traumatic Brain Injury. Korean J Neurotrauma 2023; 19:234-241. [PMID: 37431370 PMCID: PMC10329882 DOI: 10.13004/kjnt.2023.19.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 07/12/2023] Open
Abstract
Objective Immune reactions following traumatic brain injury (TBI) cause many complications, including intravascular dissemination. Antithrombin III (AT-III) plays an important role in suppressing abnormal clot formation and ensuring hemostasis. Therefore, we investigated the efficacy of serum AT-III in patients with severe TBI. Methods This retrospective study included 224 patients with severe TBI who visited a single regional trauma center between 2018 and 2020. AT-III levels were measured immediately after the TBI diagnosis. AT-III deficiency was defined as an AT-III serum level <70%. Patient characteristics, injury severity, and procedures were also investigated. Patient outcomes included Glasgow Outcome Scale scores at discharge and mortality. Results AT-III levels were significantly lower in the AT-III deficient group (n=89; 48.27% ± 1.91%) than in the AT-III sufficient group (n = 135, 78.90% ± 1.52%) (p < 0.001). Mortality occurred in 72 of the 224 patients (33.04%), indicating that there were significantly more patients in the AT-III-deficient group (45/89, 50.6%) than in the AT-III-sufficient group (27/135, 20%). Significant risk factors for mortality included the Glasgow Coma Scale score (P = 0.003), pupil dilatation (P = 0.031), disseminated intravascular coagulopathy (P = 0.012), serum AT-III level (P = 0.033), and procedures including barbiturate coma therapy (P = 0.010). Serum AT-III levels were significantly correlated with Glasgow Outcome Scale scores at discharge (correlation coefficient = 0.455, p < 0.001). Conclusion Patients with AT-III deficiency after severe TBI may require more intensive care during treatment, because AT-III levels reflect injury severity and correlate with mortality.
Collapse
Affiliation(s)
- HeeSeung Noh
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sun Geon Yoon
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Kyunghak Choi
- Department of Trauma Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Kyu-Hyouck Kyung
- Department of Trauma Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Min Soo Kim
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
6
|
Knežević D, Ćurko-Cofek B, Batinac T, Laškarin G, Rakić M, Šoštarič M, Zdravković M, Šustić A, Sotošek V, Batičić L. Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A Narrative Review and Clinical Implications. J Cardiovasc Dev Dis 2023; 10:jcdd10050213. [PMID: 37233179 DOI: 10.3390/jcdd10050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiac surgery is one of the highest-risk procedures, usually involving cardiopulmonary bypass and commonly inducing endothelial injury that contributes to the development of perioperative and postoperative organ dysfunction. Substantial scientific efforts are being made to unravel the complex interaction of biomolecules involved in endothelial dysfunction to find new therapeutic targets and biomarkers and to develop therapeutic strategies to protect and restore the endothelium. This review highlights the current state-of-the-art knowledge on the structure and function of the endothelial glycocalyx and mechanisms of endothelial glycocalyx shedding in cardiac surgery. Particular emphasis is placed on potential strategies to protect and restore the endothelial glycocalyx in cardiac surgery. In addition, we have summarized and elaborated the latest evidence on conventional and potential biomarkers of endothelial dysfunction to provide a comprehensive synthesis of crucial mechanisms of endothelial dysfunction in patients undergoing cardiac surgery, and to highlight their clinical implications.
Collapse
Affiliation(s)
- Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Marijana Rakić
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Maja Šoštarič
- Clinical Department of Anesthesiology and Perioperative Intensive Therapy, Division of Cardiac Anesthesiology and Intensive Therapy, University Clinical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Alan Šustić
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
7
|
Lopez AJ, ElSaadani M, Culkin MC, Jacovides CL, Georges AP, Song H, Kaplan LJ, Kumar MA, Smith DH, Pascual JL. Persistent Blunting of Penumbral Leukocyte Mobilization by Beta Blockade Administered for Two Weeks After Traumatic Brain Injury. J Surg Res 2022; 280:196-203. [PMID: 35994981 DOI: 10.1016/j.jss.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Beta-blockers (BB) after traumatic brain injury (TBI) accelerate cognitive recovery weeks after injury. BBs also inhibit leukocyte (LEU) mobilization to the penumbral blood brain barrier (BBB) 48-h after TBI. It is unclear whether the latter effects persist longer and accompany the persistent cognitive improvement. We hypothesized that 2 wk of BB after TBI reduce penumbral BBB leukocyte-endothelial interactions. METHODS Thirty CD1 mice underwent TBI (controlled cortical impact, CCI: 6 m/s velocity, 1 mm depth, 3 mm diameter) or sham craniotomy followed by i.p. saline (NS) or propranolol (1, 2, 4 mg/kg) every 12 h for 14 d. On day 14, in vivo pial intravital microscopy visualized endothelial-LEU interactions and BBB microvascular leakage. Day 14 Garcia neurological test scores and animal weights were compared to preinjury levels reflecting concurrent clinical recovery. RESULTS LEU rolling was greatest in CCI + NS when compared to sham (P = 0.03). 4 mg/kg propranolol significantly reduced postCCI LEU rolling down to uninjured sham levels (P = 0.03). LEU adhesion and microvascular permeability were not impacted at this time interval. Untreated injured animals (CCI + NS) scored lower Garcia neurological test and greater weight loss recovery at day 14 when compared to preinjury (P < 0.05). Treatment with higher doses of propranolol (2, 4 mg/kg), improved weight loss recovery (P < 0.001). CONCLUSIONS LEU rolling alone, was influenced by BB therapy 14 d after TBI suggesting that certain penumbral neuroinflammatory cellular effects of BB therapy after TBI persist up to 2 wk after injury potentially explaining the pervasive beneficial effects of BBs on learning and memory.
Collapse
Affiliation(s)
- Alfonso J Lopez
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mohamed ElSaadani
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew C Culkin
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christina L Jacovides
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anastasia P Georges
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hailong Song
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lewis J Kaplan
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monisha A Kumar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jose L Pascual
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Takahashi M, Wada T, Nakae R, Fujiki Y, Kanaya T, Takayama Y, Suzuki G, Naoe Y, Yokobori S. Antithrombin activity levels for predicting long-term outcomes in the early phase of isolated traumatic brain injury. Front Immunol 2022; 13:981826. [PMID: 36248813 PMCID: PMC9558212 DOI: 10.3389/fimmu.2022.981826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Coagulopathy management is an important strategy for preventing secondary brain damage in patients with traumatic brain injury (TBI). Antithrombin (AT) is a natural anticoagulant that controls coagulation and inflammation pathways. However, the significance of AT activity levels for outcomes in patients with trauma remains unclear. This study aimed to investigate the relationship between AT activity levels and long-term outcomes in patients with TBI; this was a sub-analysis of a prior study that collected blood samples of trauma patients prospectively in a tertiary care center in Kawaguchi City, Japan. We included patients with isolated TBI (iTBI) aged ≥16 years admitted directly to our hospital within 1 h after injury between April 2018 and March 2021. General coagulofibrinolytic and specific molecular biomarkers, including AT, were measured at 1, 3, 6, 12, and 24 h after injury. We analyzed changes in the AT activity levels during the study period and the impact of the AT activity levels on long-term outcomes, the Glasgow Outcome Scale-Extended (GOSE), 6 months after injury. 49 patients were included in this study; 24 had good neurological outcomes (GOSE 6-8), and 25 had poor neurological outcomes (GOSE 1-5). Low AT activity levels were shown within 1 h after injury in patients in the poor GOSE group; this was associated with poor outcomes. Furthermore, AT activity levels 1 h after injury had a strong predictive value for long-term outcomes (area under the receiver operating characteristic curve of 0.871; 95% CI: 0.747-0.994). Multivariate logistic regression analysis with various biomarkers showed that AT was an independent factor of long-term outcome (adjusted odds ratio: 0.873; 95% CI: 0.765-0.996; p=0.043). Another multivariate analysis with severity scores showed that low AT activity levels were associated with poor outcomes (adjusted odds ratio: 0.909; 95% CI: 0.822-1.010; p=0.063). We demonstrated that the AT activity level soon after injury could be a predictor of long-term neurological prognosis in patients with iTBI.
Collapse
Affiliation(s)
- Masaki Takahashi
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Ryuta Nakae
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Yu Fujiki
- Emergency and Critical Care Center, Kawaguchi Municipal Medical Center, Saitama, Japan
| | - Takahiro Kanaya
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Yasuhiro Takayama
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Go Suzuki
- Emergency and Critical Care Center, Kawaguchi Municipal Medical Center, Saitama, Japan
| | - Yasutaka Naoe
- Emergency and Critical Care Center, Kawaguchi Municipal Medical Center, Saitama, Japan
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Banerjee S, Mwangi JG, Stanley TK, Mitra R, Ebong EE. Regeneration and Assessment of the Endothelial Glycocalyx To Address Cardiovascular Disease. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Selina Banerjee
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - John G. Mwangi
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Theodora K. Stanley
- Department of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Eno E. Ebong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461, United States
| |
Collapse
|
10
|
ElSaadani M, Ahmed SM, Jacovides C, Lopez A, Johnson VE, Kaplan LJ, Smith DH, Pascual JL. Post-traumatic brain injury antithrombin III recovers Morris water maze cognitive performance, improving cued and spatial learning. J Trauma Acute Care Surg 2021; 91:108-113. [PMID: 33605694 PMCID: PMC8528176 DOI: 10.1097/ta.0000000000003112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neuroinflammation and cerebral edema development following severe traumatic brain injury (TBI) affect subsequent cognitive recovery. Independent of its anticoagulant effects, antithrombin III (AT-III) has been shown to block neurovascular inflammation after severe TBI, reduce cerebral endothelial-leukocyte interactions, and decrease blood-brain barrier permeability. We hypothesized that AT-III administration after TBI would improve post-TBI cognitive recovery, specifically enhancing learning, and memory. METHODS Fifteen CD1 male mice were randomized to undergo severe TBI (controlled cortical impact [CCI]: velocity, 6 m/s; depth, 1 mm; diameter, 3 mm) or sham craniotomy and received either intravenous AT-III (250 IU/kg) or vehicle (VEH/saline) 15 minutes and 24 hours post-TBI. Animals underwent Morris water maze testing from 6 to 14 days postinjury consisting of cued learning trials (platform visible), spatial learning trials (platform invisible, spatial cues present), and probe (memory) trials (platform removed, spatial cues present). Intergroup differences were assessed by the Kruskal-Wallis test (p < 0.05). RESULTS Morris water maze testing demonstrated that cumulative cued learning (overall mean time in seconds to reach the platform on days 6-8) was worst in CCI-VEH animals (26.1 ± 2.4 seconds) compared with CCI-AT-III counterparts (20.3 ± 2.1 seconds, p < 0.01). Cumulative noncued spatial learning was also worst in the CCI-VEH group (23.4 ± 1.8 seconds) but improved with AT-III (17.6 ± 1.5 seconds, p < 0.01). In probe trials, AT-III failed to significantly improve memory ability. Animals that underwent sham craniotomy demonstrated preserved learning and memory compared with all CCI counterparts (p < 0.05). CONCLUSION Antithrombin III improves neurocognitive recovery weeks after TBI. This improvement is particularly related to improvement in learning but not memory function. Pharmacologic support of enhanced learning may support new skill acquisition or relearning to improve outcomes after TBI. LEVEL OF EVIDENCE Therapeutic/care management, level II.
Collapse
Affiliation(s)
- Mohamed ElSaadani
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Syed M. Ahmed
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christina Jacovides
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alfonso Lopez
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Victoria E. Johnson
- Department of Neurosurgery, Center for Brain Injury, and Repair at the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lewis J. Kaplan
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Douglas H. Smith
- Department of Neurosurgery, Center for Brain Injury, and Repair at the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jose L. Pascual
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Neurosurgery, Center for Brain Injury, and Repair at the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|