1
|
Ghaemi M, Kheradmand D. The gut-brain axis in traumatic brain Injury: Literature review. J Clin Neurosci 2025; 136:111258. [PMID: 40250160 DOI: 10.1016/j.jocn.2025.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Traumatic brain injury (TBI) leads to significant alterations in gut microbiota, which play a crucial role in the mechanisms of injury and recovery. Following TBI, the gut-brain axis (GBA, a complex network involving neuronal, hormonal, and immune pathways) becomes disrupted. This disruption results in dysbiosis (imbalance in gut microbiota), neuroinflammation, and cognitive difficulties. This article briefly updates the link between TBI and GBA and the management of patients with TBI in hospital settings. A comprehensive understanding of the involvement of gut microbiota in regulating metabolic and immune functions will drive significant advancements in the treatment and rehabilitation of individuals affected by TBI.
Collapse
Affiliation(s)
- Mahtab Ghaemi
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daniel Kheradmand
- Department of Neurosurgery, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Munley JA, Kelly LS, Park G, Pons EE, Apple CG, Kannan KB, Bible LE, Efron PA, Nagpal R, Mohr AM. Nonselective beta blockade enhances gut microbiome diversity in a rodent model of trauma, hemorrhage, and chronic stress. J Trauma Acute Care Surg 2025; 98:309-318. [PMID: 39813154 DOI: 10.1097/ta.0000000000004461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
BACKGROUND Traumatic injury leads to gut dysbiosis with changes in microbiome diversity and conversion toward a "pathobiome" signature characterized by a selective overabundance of pathogenic bacteria. The use of non-selective beta antagonism in trauma patients has been established as a useful adjunct to reduce systemic inflammation. We sought to investigate whether beta-adrenergic blockade following trauma would prevent the conversion of microbiome to a "pathobiome" phenotype. METHODS Sprague-Dawley rats (n = 6-8/group) were subjected to routine daily handling (naïve), lung contusion with hemorrhagic shock (LCHS), or LCHS with daily chronic stress (LCHS/CS), each with or without administration of intraperitoneal propranolol (BB) (10 mg/kg/day). Fecal microbiome was measured on Days 0, 7, and 14 using high-throughput 16S rRNA sequencing and QIIME2 bioinformatics analyses. Alpha- and beta-diversity and microbiome composition were assessed with significance defined as * p < 0.05. RESULTS Use of propranolol following LCHS or LCHS/CS demonstrated a significant increase in the number of bacterial species (Chao1 index), as well as overall richness and evenness (Shannon index) compared with their untreated counterparts at Day 7. By Day 14, these differences were no longer apparent between BB and untreated groups subjected to LCHS/CS. There was an abundance of commensal bacteria such as Oscillospiraceae and Clostridia in LCHS and LCHS/CS treated with BB after 7 days which persisted at 14 days. CONCLUSION These findings suggest a role for beta-antagonism in altering the diversity of the gut microbiome and the need for further studies to elucidate the cellular and molecular mechanisms underlying this intriguing connection of microbiome with trauma and beta-blockade.
Collapse
Affiliation(s)
- Jennifer A Munley
- From the Department of Surgery and Sepsis and Critical Illness Research Center (J.A.M., L.S.K., E.E.P., C.G.A., K.B.K., L.E.B., P.A.E., A.M.M.), University of Florida College of Medicine, Gainesville; and The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences (G.P., R.N.), Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Munley JA, Kelly LS, Park G, Pons EE, Kannan KB, Bible LE, Efron PA, Nagpal R, Mohr AM. POSTINJURY PNEUMONIA INDUCES A UNIQUE BLOOD MICROBIOME SIGNATURE. Shock 2024; 62:762-771. [PMID: 39178199 DOI: 10.1097/shk.0000000000002428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Background : Previous preclinical studies have demonstrated a pathobiome after traumatic injury; however, the impact of postinjury sepsis on gut epithelial permeability and bacterial translocation remains unknown. We hypothesized that polytrauma with postinjury pneumonia would result in impaired gut permeability leading to specific blood microbiome arrays. Methods : Male and proestrus female Sprague-Dawley rats were subjected to either polytrauma (PT), PT plus 2-hours daily chronic restraint stress (PT/CS), PT with postinjury day 1 inoculation with pseudomonas pneumonia (PT + PNA), PT/CS + PNA, or naive controls. Whole blood microbiome was measured serially using high-throughput 16S rRNA sequencing and QIIME2 bioinformatics analyses. Microbial diversity was assessed using Chao1/Shannon indices and principle coordinate analysis. Intestinal permeability was evaluated by plasma occludin and lipopolysaccharide-binding protein assays. Results : PT/CS + PNA had increased intestinal permeability compared to uninfected counterparts (PT/CS) with significantly elevated occludin ( P < 0.01). Bacteria was not detected in the blood of naïve controls, PT or PT/CS, but was present in both PT + PNA and PT/CS + PNA on days 2 and 7. The PT/CS + PNA blood biome showed dominance of Streptococcus compared to PT + PNA at day 2 ( P < 0.05). Females PT/CS + PNA had a significant abundance of Staphylococcus at day 2 and Streptococcus at day 7 in the blood biome compared to male counterparts ( P < 0.05). Conclusion : Multicompartmental trauma with postinjury pneumonia results in increased intestinal permeability and bacteremia with a unique blood biome, with sexual dimorphisms evident in the blood biome composition. These findings suggest that postinjury sepsis has clinical significance and could influence outcomes after severe trauma and critical illness.
Collapse
Affiliation(s)
- Jennifer A Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida
| | - Erick E Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Kolenkode B Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Letita E Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida
| | - Alicia M Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
4
|
Munley JA, Kelly LS, Park G, Drury SK, Gillies GS, Coldwell PS, Kannan KB, Bible LE, Efron PA, Nagpal R, Mohr AM. Acute emergence of the intestinal pathobiome after postinjury pneumonia. J Trauma Acute Care Surg 2024; 97:65-72. [PMID: 38480488 PMCID: PMC11199099 DOI: 10.1097/ta.0000000000004300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Previous preclinical studies have demonstrated sex-specific alterations in the gut microbiome following traumatic injury or sepsis alone; however, the impact of host sex on dysbiosis in the setting of postinjury sepsis acutely is unknown. We hypothesized that multicompartmental injury with subsequent pneumonia would result in host sex-specific dysbiosis. METHODS Male and proestrus female Sprague-Dawley rats (n = 8/group) were subjected to either multicompartmental trauma (PT) (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), PT plus 2-hour daily restraint stress (PT/RS), PT with postinjury day 1 Pseudomonas aeruginosa pneumonia (PT-PNA), PT/RS with pneumonia (PT/RS-PNA), or naive controls. Fecal microbiome was measured on days 0 and 2 using high-throughput 16S rRNA sequencing and Quantitative Insights Into Microbial Ecology 2 bioinformatics analyses. Microbial α-diversity was assessed using Chao1 (number of different unique species) and Shannon (species richness and evenness) indices. β-diversity was assessed using principal coordinate analysis. Significance was defined as p < 0.05. RESULTS All groups had drastic declines in the Chao1 (α-diversity) index compared with naive controls ( p < 0.05). Groups PT-PNA and PT/RS-PNA resulted in different β-diversity arrays compared with uninfected counterparts (PT, PT/RS) ( p = 0.001). Postinjury sepsis cohorts showed a loss of commensal bacteria along with emergence of pathogenic bacteria, with blooms of Proteus in PT-PNA and Escherichia-Shigella group in PT/RS-PNA compared with other cohorts. At day 2, PT-PNA resulted in β-diversity, which was unique between males and females ( p = 0.004). Microbiome composition in PT-PNA males was dominated by Anaerostipes and Parasuterella , whereas females had increased Barnesiella and Oscillibacter . The PT/RS males had an abundance of Gastranaerophilales and Muribaculaceae . CONCLUSION Multicompartmental trauma complicated by sepsis significantly diminishes diversity and alters microbial composition toward a severely dysbiotic state early after injury, which varies between males and females. These findings highlight the role of sex in postinjury sepsis and the pathobiome, which may influence outcomes after severe trauma and sepsis.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Stacey K. Drury
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Gwendolyn S. Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Preston S. Coldwell
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
5
|
Kelly LS, Munley JA, Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA, Mohr AM. A rat model of multicompartmental traumatic injury and hemorrhagic shock induces bone marrow dysfunction and profound anemia. Animal Model Exp Med 2024; 7:367-376. [PMID: 38860566 PMCID: PMC11228100 DOI: 10.1002/ame2.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe trauma is associated with systemic inflammation and organ dysfunction. Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma. The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury. METHODS Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock (LCHS), multicompartmental polytrauma (PT) (unilateral lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), or naïve controls. Weight, plasma toll-like receptor 4 (TLR4), hemoglobin, spleen to body weight ratio, bone marrow (BM) erythroid progenitor (CFU-GEMM, BFU-E, and CFU-E) growth, plasma granulocyte colony-stimulating factor (G-CSF) and right lung histologic injury were assessed on day 7, with significance defined as p values <0.05 (*). RESULTS Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS (p = 0.0002) along with elevated plasma TLR4 (p < 0.0001), lower hemoglobin (p < 0.0001), and enlarged spleen to body weight ratios (p = 0.004). Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naïve (p < 0.03, p < 0.01). Plasma G-CSF was elevated in PT compared to both naïve and LCHS (p < 0.0001, p = 0.02). LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema. CONCLUSIONS Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia, splenic tissue enlargement, weight loss, and increased inflammatory activity compared to a less severe model. This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury.
Collapse
Affiliation(s)
- Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | | | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
6
|
Park G, Munley JA, Kelly LS, Kannan KB, Mankowski RT, Sharma A, Upchurch G, Casadesus G, Chakrabarty P, Wallet SM, Maile R, Bible LE, Wang B, Moldawer LL, Mohr AM, Efron PA, Nagpal R. Gut mycobiome dysbiosis after sepsis and trauma. Crit Care 2024; 28:18. [PMID: 38212826 PMCID: PMC10785534 DOI: 10.1186/s13054-023-04780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Sepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients experiencing chronic critical illness (CCI), remain unstudied. METHODS We assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI following sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization. RESULTS We show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more susceptible to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients is largely dominated by Candida spp; while, the commensal fungal species are depleted. Additionally, these myco-pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood metabolites. CONCLUSIONS The findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal infections in CCI patients.
Collapse
Affiliation(s)
- Gwoncheol Park
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Jennifer A Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Kolenkode B Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Ashish Sharma
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Gilbert Upchurch
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32611, USA
| | - Robert Maile
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Letitia E Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Lyle L Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Alicia M Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Philip A Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
7
|
Park G, Kadyan S, Hochuli N, Pollak J, Wang B, Salazar G, Chakrabarty P, Efron P, Sheffler J, Nagpal R. A modified Mediterranean-style diet enhances brain function via specific gut-microbiome-brain mechanisms. Gut Microbes 2024; 16:2323752. [PMID: 38444392 PMCID: PMC10936641 DOI: 10.1080/19490976.2024.2323752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating brain disorder with rapidly mounting prevalence worldwide, yet no proven AD cure has been discovered. Using a multi-omics approach in a transgenic AD mouse model, the current study demonstrated the efficacy of a modified Mediterranean-ketogenic diet (MkD) on AD-related neurocognitive pathophysiology and underlying mechanisms related to the gut-microbiome-brain axis. The findings revealed that MkD induces profound shifts in the gut microbiome community and microbial metabolites. Most notably, MkD promoted growth of the Lactobacillus population, resulting in increased bacteria-derived lactate production. We discovered elevated levels of microbiome- and diet-derived metabolites in the serum as well, signaling their influence on the brain. Importantly, these changes in serum metabolites upregulated specific receptors that have neuroprotective effects and induced alternations in neuroinflammatory-associated pathway profiles in hippocampus. Additionally, these metabolites displayed strong favorable co-regulation relationship with gut-brain integrity and inflammatory markers, as well as neurobehavioral outcomes. The findings underscore the ameliorative effects of MkD on AD-related neurological function and the underlying gut-brain communication via modulation of the gut microbiome-metabolome arrays.
Collapse
Affiliation(s)
- Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| | - Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| | - Julie Pollak
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA
| | - Bo Wang
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA
| | - Gloria Salazar
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Diseases, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Philip Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Julia Sheffler
- Center for Translational Behavioral Science, Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
8
|
Munley JA, Kelly LS, Gillies GS, Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA, Mohr AM. Multicompartmental Trauma Induces Persistent Inflammation and Organ Injury. J Surg Res 2024; 293:266-273. [PMID: 37804796 DOI: 10.1016/j.jss.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/22/2023] [Accepted: 08/26/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Previous preclinical models of multicompartmental injury have investigated its effects for durations of less than 72 h and the long-term effects have not been defined. We hypothesized that a model of multicompartmental injury would result in systemic inflammation and multiorgan dysfunction that persists at 1 wk. METHODS Male and proestrus female Sprague-Dawley rats (n = 16/group) underwent polytrauma (PT) (unilateral right lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofractures) and were compared to naive controls. Weight, hemoglobin, plasma neutrophil gelatinase-associated lipocalin, and plasma toll-like receptor 4 were evaluated on days two and seven. Bilateral lungs were sectioned, stained and assessed for injury at day seven. Comparisons were performed in Graphpad with significance defined as ∗P <0.05. RESULTS Rats who underwent PT had significant weight loss and anemia at day 2 (P = 0.001) compared to naïve rats which persisted at day 7 (P = 0.001). PT rats had elevated plasma neutrophil gelatinase-associated lipocalin at day 2 compared to naïve (P <0.0001) which remained elevated at day 7 (P <0.0001). Plasma toll-like receptor 4 was elevated in PT compared to naïve at day 2 (P = 0.03) and day 7 (P = 0.01). Bilateral lungs showed significant injury in PT cohorts at day 7 compared to naïve (P <0.0004). PT males had worse renal function at day seven compared to females (P = 0.02). CONCLUSIONS Multicompartmental trauma induces systemic inflammation and multiorgan dysfunction without recovery by day seven. However, females demonstrate improved renal recovery compared to males. Long-term assessment of preclinical PT models are crucial to better understand and evaluate future therapeutic immunomodulatory and anti-inflammatory treatments.
Collapse
Affiliation(s)
- Jennifer A Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida, College of Medicine, Gainesville, Florida
| | - Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida, College of Medicine, Gainesville, Florida
| | - Gwendolyn S Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida, College of Medicine, Gainesville, Florida
| | - Erick E Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida, College of Medicine, Gainesville, Florida
| | - Kolenkode B Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida, College of Medicine, Gainesville, Florida
| | | | - Letitia E Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida, College of Medicine, Gainesville, Florida
| | - Philip A Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida, College of Medicine, Gainesville, Florida
| | - Alicia M Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida, College of Medicine, Gainesville, Florida.
| |
Collapse
|
9
|
Munley JA, Kelly LS, Park G, Gillies GS, Pons EE, Kannan KB, Bible LE, Efron PA, Nagpal R, Mohr AM. Sex-specific intestinal dysbiosis persists after multicompartmental injury. Surgery 2023; 174:1453-1462. [PMID: 37833155 DOI: 10.1016/j.surg.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Preclinical studies of the gut microbiome after severe traumatic injury have demonstrated severe dysbiosis in males, with sex-specific microbial differences up to 2 days after injury. However, the impact of host sex on injury-driven dysbiosis over time remains unknown. We hypothesized that sex-specific differences in intestinal microbiome diversity and composition after traumatic injury with and without stress would persist after 7 days. METHODS Male and proestrus female Sprague-Dawley rats (n = 8/group) were subjected to either polytrauma (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofractures), polytrauma plus chronic restraint stress, or naïve controls. The fecal microbiome was measured on days 0, 3, and 7 using 16S rRNA sequencing and Quantitative Insights into Microbial Ecology bioinformatics analyses. Microbial alpha-diversity (Chao1 and Shannon indices) and beta-diversity were assessed. Analyses were performed in GraphPad and "R," with significance defined as P < .05. RESULTS Polytrauma and polytrauma plus chronic restraint stress reduced alpha-diversity (Chao1, Shannon) within 3 days postinjury, which persisted up to day 7 in both sexes; polytrauma and polytrauma plus chronic restraint stress females had significantly decreased Chao1 compared to male counterparts at day 7 (P = .02). At day 7, the microbiome composition in polytrauma females had higher proportion of Mucispirillum, whereas polytrauma plus chronic restraint stress males demonstrated elevated abundance of Ruminococcus and Akkermansia. CONCLUSION Multicompartmental trauma induces intestinal dysbiosis that is sex-specific with persistence of decreased diversity and unique "pathobiome" signatures in females after 1 week. These findings underline sex as an important biological variable that may influence variable host-specific responses and outcomes after severe trauma and critical illness. This underscores the need to consider precision medicine strategies to ameliorate these outcomes.
Collapse
Affiliation(s)
- Jennifer A Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL. https://twitter.com/jen_munley
| | - Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL. https://twitter.com/LaurenKelly_MD
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL
| | - Gwendolyn S Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL. https://twitter.com/gee_gills
| | - Erick E Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL
| | - Kolenkode B Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL
| | - Letitia E Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL. https://twitter.com/LBibleMD
| | - Philip A Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL
| | - Alicia M Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
10
|
Gillies GS, Munley JA, Kelly LS, Pons EE, Kannan KB, Bible LE, Efron PA, Mohr AM. Anemia Recovery After Lung Contusion, Hemorrhagic Shock, and Chronic Stress Is Gender-Specific in a Rat Model. Surg Infect (Larchmt) 2023; 24:773-781. [PMID: 37903014 PMCID: PMC10659020 DOI: 10.1089/sur.2023.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Background: Severe trauma and hemorrhagic shock lead to persistent anemia. Although biologic gender is known to modulate inflammatory responses after critical illness, the impact of gender on anemia recovery after injury remains unknown. The aim of this study was to identify gender-specific differences in anemia recovery after critical illness. Materials and Methods: Male and proestrus female Sprague-Dawley rats (n = 8-9 per group) were subjected to lung contusion and hemorrhagic shock (LCHS) or LCHS with daily chronic stress (LCHS/CS) compared with naïve. Hematologic data, bone marrow progenitor growth, and bone marrow and liver gene transcription were analyzed on day seven. Significance was defined as p < 0.05. Results: Males lost substantial weight after LCHS and LCHS/CS compared with naïve males, while female LCHS rats did not compared with naive counterparts. Male LCHS rats had a drastic decrease in hemoglobin from naïve males. Male LCHS/CS rats had reduced colony-forming units-granulocyte, -erythrocyte, -monocyte, -megakaryocyte (CFU-GEMM) and burst-forming unit-erythroid (BFU-E) when compared with female counterparts. Naïve, LCHS, and LCHS/CS males had lower serum iron than their respective female counterparts. Liver transcription of BMP4 and BMP6 was elevated after LCHS and LCHS/CS in males compared with females. The LCHS/CS males had decreased expression of bone marrow pro-erythroid factors compared with LCHS/CS females. Conclusions: After trauma with or without chronic stress, male rats demonstrated increased weight loss, substantial decrease in hemoglobin level, dysregulated iron metabolism, substantial suppression of bone marrow erythroid progenitor growth, and no change in transcription of pro-erythroid factors. These findings confirm that gender is an important variable that impacts anemia recovery and bone marrow dysfunction after traumatic injury and shock in this rat model.
Collapse
Affiliation(s)
- Gwendolyn S. Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
11
|
Munley JA, Kirkpatrick SL, Gillies GS, Bible LE, Efron PA, Nagpal R, Mohr AM. The Intestinal Microbiome after Traumatic Injury. Microorganisms 2023; 11:1990. [PMID: 37630549 PMCID: PMC10459834 DOI: 10.3390/microorganisms11081990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The intestinal microbiome plays a critical role in host immune function and homeostasis. Patients suffering from-as well as models representing-multiple traumatic injuries, isolated organ system trauma, and various severities of traumatic injury have been studied as an area of interest in the dysregulation of immune function and systemic inflammation which occur after trauma. These studies also demonstrate changes in gut microbiome diversity and even microbial composition, with a transition to a pathobiome state. In addition, sex has been identified as a biological variable influencing alterations in the microbiome after trauma. Therapeutics such as fecal transplantation have been utilized to ameliorate not only these microbiome changes but may also play a role in recovery postinjury. This review summarizes the alterations in the gut microbiome that occur postinjury, either in isolated injury or multiple injuries, along with proposed mechanisms for these changes and future directions for the field.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Stacey L. Kirkpatrick
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Gwendolyn S. Gillies
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Letitia E. Bible
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL 32306, USA;
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| |
Collapse
|
12
|
Menni A, Moysidis M, Tzikos G, Stavrou G, Tsetis JK, Shrewsbury AD, Filidou E, Kotzampassi K. Looking for the Ideal Probiotic Healing Regime. Nutrients 2023; 15:3055. [PMID: 37447381 PMCID: PMC10346906 DOI: 10.3390/nu15133055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Wound healing is a multi-factorial response to tissue injury, aiming to restore tissue continuity. Numerous recent experimental and clinical studies clearly indicate that probiotics are applied topically to promote the wound-healing process. However, the precise mechanism by which they contribute to healing is not yet clear. Each strain appears to exert a distinctive, even multi-factorial action on different phases of the healing process. Given that a multi-probiotic formula exerts better results than a single strain, the pharmaceutical industry has embarked on a race for the production of a formulation containing a combination of probiotics capable of playing a role in all the phases of the healing process. Hence, the object of this review is to describe what is known to date of the distinctive mechanisms of each of the most studied probiotic strains in order to further facilitate research toward the development of combinations of strains and doses, covering the whole spectrum of healing. Eleven probiotic species have been analyzed, the only criterion of inclusion being a minimum of two published research articles.
Collapse
Affiliation(s)
- Alexandra Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| | - Moysis Moysidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| | - Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| | - George Stavrou
- Department of Colorectal Surgery, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK;
| | | | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| |
Collapse
|