1
|
Yamakawa G, Brady R, Sun M, McDonald S, Shultz S, Mychasiuk R. The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2020; 9:100058. [PMID: 33364525 PMCID: PMC7752723 DOI: 10.1016/j.nbscr.2020.100058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex and costly worldwide phenomenon that can lead to many negative health outcomes including disrupted circadian function. There is a bidirectional relationship between the immune system and the circadian system, with mammalian coordination of physiological activities being controlled by the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN receives light information from the external environment and in turn synchronizes rhythms throughout the brain and body. The SCN is capable of endogenous self-sustained oscillatory activity through an intricate clock gene negative feedback loop. Following TBI, the response of the immune system can become prolonged and pathophysiological. This detrimental response not only occurs in the brain, but also within the periphery, where a leaky blood brain barrier can permit further infiltration of immune and inflammatory factors. The prolonged and pathological immune response that follows TBI can have deleterious effects on clock gene cycling and circadian function not only in the SCN, but also in other rhythmic areas throughout the body. This could bring about a state of circadian desynchrony where different rhythmic structures are no longer working together to promote optimal physiological function. There are many parallels between the negative symptomology associated with circadian desynchrony and TBI. This review discusses the significant contributions of an immune-disrupted circadian system on the negative symptomology following TBI. The implications of TBI symptomology as a disorder of circadian desynchrony are discussed.
Collapse
Affiliation(s)
- G.R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - R.D. Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - M. Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - S.J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - S.R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - R. Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Gatto R, Chauhan M, Chauhan N. Anti-edema effects of rhEpo in experimental traumatic brain injury. Restor Neurol Neurosci 2016; 33:927-41. [PMID: 26484701 DOI: 10.3233/rnn-150577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) is one of the leading causes of disability and death which begins with the formation of edema as the persistent primary causative factor in TBI. Although medical management of cerebral edema by hypothermia, ventriculostomy, mannitol or hypertonic saline have been effective in treating edema, many of these therapies end up with some neurologic deficits, necessitating novel treatment options for treating post-TBI edema. This study investigated edema reducing effects of recombinant human Erythropoietin (rhEPO) in reducing acute brain edema in the CCI mouse model of TBI. METHODS Anti-edema effects of rhEpo in reducing acute brain edema after injury in the CCI mouse model of TBI were assessed by T2 weighted magnetic resonance imaging (T2wMRI) as the accurate detector of brain edema in correlation with Western blot analysis of cerebral aquaporin 4 (AQP4) index as the critical marker of edema. RESULTS Results show that rhEpo treatment significantly reduced brain edema with concomitant reduction in AQP4 immunoexpression in the CCI mouse model of TBI. CONCLUSION Current results emphasize clinical utility of rhEpo in treating post-TBI edema.
Collapse
Affiliation(s)
- Rodolfo Gatto
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Neelima Chauhan
- Neuroscience Research, R&D, Jesse Brown VA Medical Center, Chicago, IL, USA.,Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci 2014; 15:10296-333. [PMID: 24918289 PMCID: PMC4100153 DOI: 10.3390/ijms150610296] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mawadda Alnaeeli
- Department of Biological Sciences, Ohio University, Zanesville, OH 43701, USA.
| | - Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Heather Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ruifeng Teng
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Curcumin inhibits the increase of labile zinc and the expression of inflammatory cytokines after traumatic spinal cord injury in rats. J Surg Res 2014; 187:646-52. [DOI: 10.1016/j.jss.2013.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/25/2013] [Accepted: 12/30/2013] [Indexed: 11/22/2022]
|
5
|
Abstract
It has been well established that blood and bone share a unique, regulatory relationship with one another, though the specifics of this relationship still remain unanswered. Erythropoietin (Epo) is known primarily for its role as a hematopoietic hormone. However, after the discovery of Epo receptor outside the hematopoietic tissues, Epo has been avidly studied for its possible nonhematopoietic effects. It has been proposed that Epo interacts with bone both directly, by activating bone marrow stromal cells, and indirectly, through signaling pathways on hematopoietic stem cells. Yet, the role of Epo in regulating skeletal maintenance and regeneration remains controversial. Here, we review the current state of knowledge pertaining to the effects of Epo on the skeleton.
Collapse
Affiliation(s)
- S J McGee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48109-1078, USA
| | | | | | | | | |
Collapse
|
6
|
Zhao XD, Zhou YT. Effects of progesterone on intestinal inflammatory response and mucosa structure alterations following SAH in male rats. J Surg Res 2011; 171:e47-53. [PMID: 21924739 DOI: 10.1016/j.jss.2011.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 06/18/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) can induce a persistent inflammatory response, histopathologic changes in the gut. This study investigated whether progesterone administration modulates intestinal proinflammatory cytokine expression and structure alternations following SAH in male rats. MATERIALS AND METHODS A total of 48 male rats were randomly divided into four groups: control group (n = 12), SAH group (n = 12), SAH+vehicle group (n = 12) and SAH+progesterone group (n = 12). We measured intestinal wet/dry weight ratio; the concentrations of IL-1β, TNF-α, and IL-6 by enzyme-linked immunosorbent assay; intestinal mucosal morphologic changes by histopathologic study and electron microscopy. RESULTS Administration of progesterone following SAH could increase the appetite scores of SAH rats and decrease concentrations of proinflammatory cytokines and wet/dry weight ratio in the gut. SAH-induced damage of gut structure was ameliorated after progesterone supplementation. CONCLUSIONS The results of the present study suggest that the therapeutic benefit of post-SAH progesterone supplementation might be due to its inhibitory effects on intestinal proinflammatory cytokine expression and gut structure amelioration.
Collapse
Affiliation(s)
- Xu-dong Zhao
- Department of Neurosurgery, Wuxi Second Hospital Affiliated Nanjing Medical University, Wuxi, Jiangsu Province, China.
| | | |
Collapse
|
7
|
Cherian L, Goodman JC, Robertson C. Improved cerebrovascular function and reduced histological damage with darbepoietin alfa administration after cortical impact injury in rats. J Pharmacol Exp Ther 2011; 337:451-6. [PMID: 21270134 PMCID: PMC3083108 DOI: 10.1124/jpet.110.176602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/25/2011] [Indexed: 01/19/2023] Open
Abstract
Darbepoetin alfa (darbEpo) is an erythropoietic glycoprotein that activates the erythropoietin receptor. The aim of our study was to determine whether darbEpo is neuroprotective in a cortical impact injury (CII) model and to determine the characteristics of dose response and time window. To better understand the vascular mechanism of darbEpo neuroprotection, the reactivity of cerebral blood flow (CBF) to l-arginine administration was also studied. Rats were given saline or darbEpo from 2.5 to 50 μg/kg at 5 min after CII or a dose of 25 μg/kg darbEpo at times ranging from 5 min to 24 h after CII. Histological assessment was determined 2 weeks after a severe CII. Other rats were given either darbEpo (25 μg/kg) or saline daily for 3 days before injury. Five minutes after severe CII, they were given either l-arginine or d-arginine. Hemodynamic variables were monitored for 2 h after injury. In the dose-response study, darbEpo in doses of 25 and 50 μg/kg significantly reduced contusion volume from 39.1 ± 6.7 to 8.1 ± 3.1 and 11.2 ± 6.0 mm(3), respectively. In the time window study, darbEpo reduced contusion volume when given in a dose of 25 μg/kg at 5 min to 6 h after the impact injury. In animals pretreated with darbEpo, the CBF response to l-arginine was significantly greater than in the animals pretreated with saline. These data demonstrate that darbEpo has neuroprotective effects in traumatic brain injury in a dose- and time-dependent manner and that vascular effects of darbEpo may have a role in neuroprotection.
Collapse
Affiliation(s)
- Leela Cherian
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
8
|
Garcia P, Speidel V, Scheuer C, Laschke MW, Holstein JH, Histing T, Pohlemann T, Menger MD. Low dose erythropoietin stimulates bone healing in mice. J Orthop Res 2011; 29:165-72. [PMID: 20740668 DOI: 10.1002/jor.21219] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 06/18/2010] [Indexed: 02/04/2023]
Abstract
Beyond its classical role in regulation of erythropoiesis, erythropoietin (EPO) has been shown to exert protective and regenerative actions in a variety of non-hematopoietic tissues. However, little is known about potential actions in bone regeneration. To analyze fracture healing in mice, a femoral 0.25 mm osteotomy gap was stabilized with a pin-clip technique. Animals were treated with 500 U EPO/kg bw per day or with vehicle only. After 2 and 5 weeks, fracture healing was analyzed biomechanically, radiologically and histologically. Expression of PCNA and NFκB was examined by Western blot analysis. Vascularization was analyzed by immunohistochemical staining of PECAM-1. Circulating endothelial progenitor cells were measured by flow-cytometry. Herein, we demonstrate that EPO-treatment significantly accelerates bone healing in mice. This is indicated by a significantly greater biomechanical stiffness and a higher radiological density of the periosteal callus at 2 and 5 weeks after fracture and stabilization. Histological analysis demonstrated significantly more bone and less cartilage and fibrous tissue in the periosteal callus. Endosteal vascularization was significantly increased in EPO-treated animals when compared to controls. The number of circulating endothelial progenitor cells was significantly greater in EPO-treated animals. The herein shown acceleration of healing by EPO may represent a promising novel treatment strategy for fractures with delayed healing and non-union formation.
Collapse
Affiliation(s)
- P Garcia
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ramadori P, Sheikh N, Ahmad G, Dudas J, Ramadori G. Hepatic changes of erythropoietin gene expression in a rat model of acute-phase response. Liver Int 2010; 30:55-64. [PMID: 19840250 DOI: 10.1111/j.1478-3231.2009.02131.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An acute-phase response is the systemic reaction of an organism to insult (e.g. infection, trauma and burning). It represents the 'first line' of defence of the body to tissue-damaging attacks. In the present work, we used a rat model of an intra-muscular turpentine oil (TO) injection to analyse erythropoietin (EPO) gene expression changes in the liver, one of the main target organs of acute-phase cytokines. EPO began to increase in the serum of TO-treated animals 6 h after injection and reached a maximum at 24 h (125+/-20 pg/ml). The detection of total RNA by polymerase chain reaction analysis showed that the levels of EPO gene expression in the liver were considerably increased between 2 and 12 h by up to 20-fold at the peak after TO administration, followed by a gradual decrease over the next 48 h, although the values remained significantly higher compared with the control group. In the kidney, after a sudden slight increase, the values declined progressively to 3.5-fold decrease at 12 h after the injection. In the liver, a parallel upregulation of the hypoxia-inducible factor-1 (HIF-1) alpha gene was observed (up to 4.7-fold increase), while HIF-2 alpha gene expression remained unaltered. On the other hand, the protein of both genes became detectable after the injection and increased progressively over 24 h, with a subsequent decline. These results suggest that EPO may be added to the increasing group of positive acute-phase proteins and the liver might represent the major source of the hormone under these conditions in the rat.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Division of Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | |
Collapse
|