1
|
Abstract
The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies. Innovative experimental methods were also reviewed for quantitative microcirculatory assessment as it pertains to changes during hemorrhagic shock. The text and figures include representative quantitative microvascular data obtained in various organs and tissues such as skin, muscle, lung, liver, brain, heart, kidney, pancreas, intestines, and mesentery from various species including mice, rats, hamsters, sheep, swine, bats, and humans. Based on reviewed findings, a new integrative conceptual model is presented that includes about 100 systemic and local factors linked to microvessels in hemorrhagic shock. The combination of systemic measures with the understanding of these processes at the microvascular level is fundamental to further develop targeted and personalized interventions that will reduce tissue injury, organ dysfunction, and ultimately mortality due to hemorrhagic shock. Published 2018. Compr Physiol 8:61-101, 2018.
Collapse
Affiliation(s)
- Ivo Torres Filho
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
2
|
van Ham M, Teich R, Philipsen L, Niemz J, Amsberg N, Wissing J, Nimtz M, Gröbe L, Kliche S, Thiel N, Klawonn F, Hubo M, Jonuleit H, Reichardt P, Müller AJ, Huehn J, Jänsch L. TCR signalling network organization at the immunological synapses of murine regulatory T cells. Eur J Immunol 2017; 47:2043-2058. [DOI: 10.1002/eji.201747041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/28/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Marco van Ham
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - René Teich
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology; Otto-von-Guericke University; Magdeburg Germany
| | - Jana Niemz
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Nicole Amsberg
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Josef Wissing
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Manfred Nimtz
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Lothar Gröbe
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology; Otto-von-Guericke University; Magdeburg Germany
| | - Nadine Thiel
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Frank Klawonn
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
- Department of Computer Science; Ostfalia University of Applied Sciences; Wolfenbuettel Germany
| | - Mario Hubo
- Department of Dermatology; Johannes Gutenberg-University Mainz; Mainz Germany
| | - Helmut Jonuleit
- Department of Dermatology; Johannes Gutenberg-University Mainz; Mainz Germany
| | - Peter Reichardt
- Institute of Molecular and Clinical Immunology; Otto-von-Guericke University; Magdeburg Germany
| | - Andreas J. Müller
- Institute of Molecular and Clinical Immunology; Otto-von-Guericke University; Magdeburg Germany
- Intravital Microscopy of Infection and Immunity; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Jochen Huehn
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Lothar Jänsch
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| |
Collapse
|
3
|
Rocha-e-Silva M. Cardiovascular Effects of Shock and Trauma in Experimental Models. A Review. Braz J Cardiovasc Surg 2016; 31:45-51. [PMID: 27074274 PMCID: PMC5062691 DOI: 10.5935/1678-9741.20150065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Experimental models of human pathology are useful guides to new approaches
towards improving clinical and surgical treatments. A systematic search through
PubMed using the syntax (shock) AND (trauma) AND (animal model) AND
(cardiovascular) AND ("2010/01/01"[PDat]:
"2015/12/31"[PDat]) found 88 articles, which were reduced by
manual inspection to 43 entries. These were divided into themes and each theme
is subsequently narrated and discussed conjointly. Taken together, these
articles indicate that valuable information has been developed over the past 5
years concerning endothelial stability, mesenteric lymph, vascular reactivity,
traumatic injuries, burn and sepsis. A surviving interest in hypertonic saline
resuscitation still exists.
Collapse
|
4
|
Xiao X, Zhang J, Wang Y, Zhou J, Zhu Y, Jiang D, Liu L, Li T. Effects of terlipressin on patients with sepsis via improving tissue blood flow. J Surg Res 2016; 200:274-82. [DOI: 10.1016/j.jss.2015.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/24/2015] [Accepted: 07/08/2015] [Indexed: 12/14/2022]
|
5
|
Liu S, Li T, Yang G, Hu Y, Xiao X, Xu J, Zhang J, Liu L. Protein markers related to vascular responsiveness after hemorrhagic shock in rats. J Surg Res 2015; 196:149-58. [PMID: 25801977 DOI: 10.1016/j.jss.2015.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Vascular hyporesponsiveness is an important pathophysiological feature of some critical conditions such as hemorrhagic shock. Many proteins and molecules are involved in the regulation of the pathologic process, however the mechanism has still remained unclear. Our study was intended to look for the related protein markers involved in the regulation of vascular reactivity after hemorrhagic shock. METHODS Differential in-gel electrophoresis and tandem mass spectrometry were applied to quantify the differences of protein expression in the superior mesenteric arteries from hemorrhagic shock and normal rats. RESULTS A total of 2317 differentially expressed protein spots in the superior mesenteric arteries of rats before and after hemorrhagic shock were found, and 146 protein spots were selected for tandem mass spectrometry identification. Thirty-seven differentially expressed proteins were obtained, including 3 uncharacterized proteins and 34 known proteins. Among them, heat shock protein beta-1 and calmodulin were the known proteins involved in the occurrence of vascular hyporesponsiveness. Bioinformatics analysis results showed that 18 proteins were related to vasoconstriction, 11 proteins may be involved in other vascular functions such as regulation of angiogenesis and endothelial cell proliferation. CONCLUSIONS The changes of vascular responsiveness after hemorrhagic shock in rats may be associated with the upregulation or downregulation of previously mentioned protein expressions. These findings may provide the basis for understanding and further study of the mechanism and treatment targets of vascular hyporeactivity after shock.
Collapse
Affiliation(s)
- Shangqing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China; Experimental Teaching Centre of Human Anatomy, School of Basic Medical Sciences, North Sichuan Medical College, Nangchong, Sichuan, P. R. China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Guangming Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yi Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Xudong Xiao
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jin Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of the Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China.
| |
Collapse
|
6
|
Li T, Yang GM, Zhu Y, Wu Y, Chen XY, Lan D, Tian KL, Liu LM. Diabetes and hyperlipidemia induce dysfunction of VSMCs: contribution of the metabolic inflammation/miRNA pathway. Am J Physiol Endocrinol Metab 2015; 308:E257-69. [PMID: 25425000 DOI: 10.1152/ajpendo.00348.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vascular endothelial cell injury is considered to be the major factor inducing vascular complications in metabolic diseases and plays an important role in other organ damage. With diabetic and hyperlipidemic rats and cultured VSMCs, the present study was aimed at investigating whether the early damage of VSMCs during metabolic diseases plays a critical role in vascular dysfunction and the underlying mechanisms and would be a promising treatment target. With diabetic and hyperlipidemic rats and cultured VSMCs, the changes and relationships of vascular relaxation and contractile function to the vital organ damage and the underlying mechanisms were investigated; meanwhile, the protective and preventive effects of lowering blood lipid and glucose and inhibition of diabetes and hyperlipidemia-induced vascular hyperreactivity were observed. Diabetic and hyperlipidemic rats presented hyperreactivity in vascular contractile response in the early stages. Hyperglycemia and hyperlipidemia directly affected the contractile function of VSMCs. Early application of fasudil, a specific antagonist of Rho kinase, significantly alleviated diabetes and hyperlipidemia-induced organ damage by inhibiting vascular hyperreactivity. Diabetes and hyperlipidemia-induced inflammatory response could upregulate the expression of connexins and Rho kinase by selective downregulation of the expression of miR-10a, miR-139b, miR-206, and miR-222. These findings suggest that hyperglucose and lipid may directly impair VSMCs and induce vascular hyperreactivity in the early stages. Metabolic inflammation-induced changes in the miRNA-connexin/Rho kinase regulatory pathway are the main mechanism for vascular hyperreactivity and organ damage. Measures inhibiting vascular hyperreactivity are promising for the prevention of organ damage induced by metabolic diseases.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use
- Animals
- Cells, Cultured
- Connexins/genetics
- Connexins/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/prevention & control
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/prevention & control
- Drug Therapy, Combination
- Female
- Hyperlipidemias/drug therapy
- Hyperlipidemias/metabolism
- Hyperlipidemias/pathology
- Hyperlipidemias/physiopathology
- Hypoglycemic Agents/therapeutic use
- Hypolipidemic Agents/therapeutic use
- Male
- Metformin/therapeutic use
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Protein Kinase Inhibitors/therapeutic use
- Rats, Sprague-Dawley
- Renal Artery/drug effects
- Renal Artery/metabolism
- Renal Artery/pathology
- Renal Artery/physiopathology
- Simvastatin/therapeutic use
- Vasculitis/complications
- Vasculitis/etiology
- Vasculitis/prevention & control
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Guang-ming Yang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiang-yun Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Dan Lan
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kun-lun Tian
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang-ming Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Wang G, Chen Z, Zhang F, Jing H, Xu W, Ning S, Li Z, Liu K, Yao J, Tian X. Blockade of PKCβ protects against remote organ injury induced by intestinal ischemia and reperfusion via a p66shc-mediated mitochondrial apoptotic pathway. Apoptosis 2014; 19:1342-1353. [PMID: 24930012 DOI: 10.1007/s10495-014-1008-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intestinal ischemia-reperfusion (I/R) is a serious clinical dilemma with high morbidity and mortality. Remote organ damage, especially acute lung injury and liver injury are common complications that contribute to the high mortality rate. We previously demonstrated that activation of PKCβII is specifically involved in the primary injury of intestinal I/R. Considering the tissue-specific features of PKC activation, we hypothesized that some kind of PKC isoform may play important roles in the progression of secondary injury in the remote organ. Mice were studied in in vivo model of intestinal I/R. The activation of PKC isoforms were screened in the lung and liver. Interestingly, we found that PKCβII was also activated exclusively in the lung and liver after intestinal I/R. PKCβII suppression by a specific inhibitor, LY333531, significantly attenuated I/R-induced histologic damage, inflammatory cell infiltration, oxidative stress, and apoptosis in these organs, and also alleviated systemic inflammation. In addition, LY333531 markedly restrained p66shc activation, mitochondrial translocation, and binding to cytochrome-c. These resulted in the decrease of cytochrome-c release and caspase-3 cleavage, and an increase in glutathione and glutathione peroxidase. These data indicated that activated PKC isoform in the remote organ, specifically PKCβII, is the same as that in the intestine after intestinal I/R. PKCβII suppression protects against remote organ injury, which may be partially attributed to the p66shc-cytochrome-c axis. Combined with our previous study, the development of a specific inhibitor for prophylaxis against intestinal I/R is promising, to prevent multiple organ injury.
Collapse
Affiliation(s)
- Guangzhi Wang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang J, Yang GM, Zhu Y, Peng XY, Liu LM, Li T. Bradykinin induces vascular contraction after hemorrhagic shock in rats. J Surg Res 2014; 193:334-43. [PMID: 25048290 DOI: 10.1016/j.jss.2014.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bradykinin (BK) has many biological effects in inflammation, allergy, and septic shock. Studies have shown that low doses of BK can induce vascular relaxation and high doses can induce vascular contraction in many pathophysiological conditions, but the role and mechanisms that high doses of BK have on vascular contraction in hemorrhagic shock are not clear. METHODS With hemorrhagic-shock rats and hypoxia-treated superior mesenteric artery (SMA), we investigated the role and mechanisms of high doses of BK-induced vascular contraction in hemorrhagic shock. RESULTS High doses of BK (500-50,000 ng/kg in vivo or 10(-10) to 10(-5) mol/L in vitro) dose dependently induced vascular contraction of SMA and increased the vascular calcium sensitivity in normal and hemorrhagic-shock rats. Less than 10(-10) mol/L of BK induced vascular dilation BK-induced increase of vascular contractile response and calcium sensitivity was reduced by denudation of the endothelium, 18α-glycyrrhetic acid (an inhibitor of myoendothelial gap junction) and connexin 43 antisense oligodeoxynucleotide. Further studies found that high concentrations of BK-induced vascular contraction in hemorrhagic shock was closely related to the activation of Rho A-Rho kinase pathway and Protein Kinase C (PKC) α and ε. CONCLUSIONS High doses of BK can induce vascular contraction in hemorrhagic shock condition, which is endothelium and myoendothelial gap junction dependent. Cx43-mediated activation of Rho A-Rho kinase and Protein Kinase C (PKC) pathway plays a very important role in this process. This finding provided a new angle of view to the biological role of BK in other pathophysiological conditions such as hemorrhagic shock or hypoxia.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Guang-ming Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Xiao-yong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Liang-ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China.
| |
Collapse
|
9
|
Li T, Xiao X, Zhang J, Zhu Y, Hu Y, Zang J, Lu K, Yang T, Ge H, Peng X, Lan D, Liu L. Age and sex differences in vascular responsiveness in healthy and trauma patients: contribution of estrogen receptor-mediated Rho kinase and PKC pathways. Am J Physiol Heart Circ Physiol 2014; 306:H1105-15. [PMID: 24531808 DOI: 10.1152/ajpheart.00645.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several medical conditions exhibit age- and sex-based differences. Whether or not traumatic shock exhibits such differences with regard to vascular responsiveness is not clear. In a cohort of 177 healthy subjects and 842 trauma patients (21–82 years) as well as different ages (4, 8, 10, 14, 18, and 24 wk; 1 and 1.5 years) and sexes of Sprague-Dawley normal and traumatic shock rats, the age- and sex-based differences of vascular responsiveness and the underlying mechanisms were investigated. Middle-aged and young women as well as female rats of reproductive age had higher vascular responsiveness in the normal condition and a lower decrease in vascular responsiveness after traumatic shock than older men and male rats of identical age. Exogenous supplementation of 17β-estrdiol increased vascular reactivity in both male and femal rats of 8–24 wk and preserved vascular responsiveness in rats following traumatic shock. No effect was observed in rats 1 to 1.5 years. These protective effects of estrogen were closely related to G protein-coupled receptor (GPR)30, estrogen receptor-mediated Rho kinase, and PKC pathway activation. Vascular responsiveness exhibits age- and sex-based differences in healthy subjects and trauma patients. Estrogen and its receptor (GPR30) mediated activation of Rho kinase and PKC using genomic and nongenomic mechanisms to elicit protective effects in vascular responsiveness. This finding is important for the personalized treatment for several age- and sex-related diseases involving estrogen.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xudong Xiao
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yi Hu
- Department of Anesthesiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jiatao Zang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Kaizhi Lu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Tiande Yang
- Department of Anesthesiology, South Western Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hengjiang Ge
- Department of Anesthesiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Dan Lan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Liu L, Yang G, Zhu Y, Xu J, Zang J, Zhang J, Peng X, Lan D, Li T. Role of non-MLC20 phosphorylation pathway in the regulation of vascular reactivity during shock. J Surg Res 2014; 187:571-80. [DOI: 10.1016/j.jss.2013.10.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
|
11
|
Xia M, Zhu Y. Fibronectin enhances spinal cord astrocyte proliferation by elevating P2Y1 receptor expression. J Neurosci Res 2014; 92:1078-90. [PMID: 24687862 DOI: 10.1002/jnr.23384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 02/16/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Maosheng Xia
- Department of Orthopaedics; The First Hospital of China Medical University; Shengyang People's Republic of China
| | - Yue Zhu
- Department of Orthopaedics; The First Hospital of China Medical University; Shengyang People's Republic of China
| |
Collapse
|
12
|
Effects of interleukin-1β on vascular reactivity after lipopolysaccharide-induced endotoxic shock in rabbits and its relationship with PKC and Rho kinase. J Cardiovasc Pharmacol 2013; 62:84-9. [PMID: 23846803 DOI: 10.1097/fjc.0b013e3182927ea4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calcium desensitization plays a critical role in the occurrence of vascular hyporeactivity after shock. Interleukin (IL)-1β participates in the regulation of vascular reactivity via both nitric oxide (NO)-dependent and NO-independent mechanisms. However, the specific NO-independent pathway remains to be established. The issue of whether IL-1β modulates vascular reactivity via regulation of calcium sensitivity in the NO-independent mechanism is unclear. In the current study, effects of IL-1β on vascular calcium sensitivity and its relationship with PKC and Rho kinase were investigated in vivo and in vitro using a rabbit model of lipopolysaccharide (LPS)-induced endotoxic shock and superior mesenteric arteries (SMAs), respectively. The calcium sensitivity profile of SMAs displayed a biphasic change after LPS-induced endotoxic shock (significant increase at 0.5 hour and 1 hour after LPS administration and marked decrease after 2 hours) and was negatively related to changes in serum IL-1β. The IL-1 receptor antagonist, IL-1ra (4 μg/mL), partly reversed LPS-induced calcium desensitization. In vitro incubation with IL-1β (50-200 ng/mL) reduced the calcium sensitivity of SMAs and suppressed the activities of Rho kinase and PKC and the phosphorylation of 20-kDa myosin light chain. These effects of IL-1β were shown to be regulated by the PKC agonist, phorbol 12-myristate 13-acetate, and Rho kinase agonist and antagonist, angiotensin II, and Y-27632, respectively. Our results collectively suggest that IL-1β participates in vascular hyporeactivity after endotoxic shock via regulation of vascular calcium sensitivity. Moreover, this regulatory effect of IL-1β seems closely related to downregulation of the activities of PKC and Rho kinase.
Collapse
|
13
|
Zhao ZG, Wei YL, Niu CY, Zhang YP, Zhang LM, Jiang LN. Role of protein kinase G on the post-shock mesenteric lymph blockage ameliorating vascular calcium sensitivity. Acta Cir Bras 2013; 28:537-42. [DOI: 10.1590/s0102-86502013000700010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022] Open
|
14
|
Hemorrhagic preconditioning improves vascular reactivity after hemorrhagic shock by activation of PKCα and PKCε via the adenosine A1 receptor in rats. J Trauma Acute Care Surg 2013; 74:1266-74. [DOI: 10.1097/ta.0b013e31828dba35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Xu J, Lan D, Yang G, Li T, Liu L. Hemorrhagic preconditioning improves vascular reactivity after hemorrhagic shock by activation of PKC[alpha] and PKC[epsilon] via the adenosine A1 receptor in rats. J Trauma Acute Care Surg 2013. [DOI: 10.1097/01586154-201305000-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Abstract
We investigated the beneficial effect of pinacidil pretreatment on vascular reactivity, calcium sensitivity, and animal survival after hemorrhagic shock, its relationship to protein kinase Cα (PKCα), protein kinase Cε (PKCε), and adenosine. Using hemorrhagic shock rats, the protective effects of different extents of pinacidil pretreatment on vascular reactivity and in which the roles of PKCα, PKCε, and adenosine were observed. Pinacidil pretreatment significantly improved shock-induced decrease of vascular reactivity of superior mesenteric artery, which was antagonized by the PKCα antagonist Gö-6976 (5 × 10 mole/L) and PKCε pseudosubstrate inhibitory peptide (1 × 10 mole/L). Pinacidil pretreatment induced the translocation of PKCα and PKCε from the cytoplasm to the membrane. This translocation of PKCα and PKCε was eliminated by adenosine A1 receptor antagonist DPCPX (1 × 10 mole/L). As compared with simple fluid resuscitation, combination with pinacidil pretreatment significantly improved the vascular reactivity and survival rate of hemorrhagic-shocked rats. These results suggested that pinacidil pretreatment could induce good protective effects on vascular reactivity and calcium sensitivity after hemorrhagic shock mainly through the activation of PKCα and PKCε via adenosine A1 receptor, and this protective effect made an important contribution to the overall outcome of shock therapy.
Collapse
|