1
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
2
|
Betz VM, Kochanek S, Rammelt S, Müller PE, Betz OB, Messmer C. Recent advances in gene-enhanced bone tissue engineering. J Gene Med 2018; 20:e3018. [PMID: 29601661 DOI: 10.1002/jgm.3018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022] Open
Abstract
The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene-enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost-effective manner, allowing translation from bench to bedside. Several promising methods based on the intra-operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene-enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene-enhanced bone tissue engineering will become a clinical reality within the next few years.
Collapse
Affiliation(s)
- Volker M Betz
- Department of Gene Therapy, University of Ulm, Ulm, Germany.,Center for Rehabilitation, RKU - University and Rehabilitation Hospitals Ulm, Ulm, Germany
| | | | - Stefan Rammelt
- University Center of Orthopedics and Traumatology and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - Peter E Müller
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver B Betz
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carolin Messmer
- Center for Rehabilitation, RKU - University and Rehabilitation Hospitals Ulm, Ulm, Germany
| |
Collapse
|
3
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
4
|
Pan ZM, Zhang Y, Cheng XG, Gao GC, Wang XR, Cao K. Treatment of Femoral Head Necrosis With Bone Marrow Mesenchymal Stem Cells Expressing Inducible Hepatocyte Growth Factor. Am J Ther 2016; 23:e1602-e1611. [PMID: 26164021 DOI: 10.1097/mjt.0000000000000276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our study assessed the effect of bone marrow mesenchymal stem cells (BMSCs) expressing inducible hepatocyte growth factor (HGF) on the recovery of femoral head necrosis (FHN). BMSCs were isolated by density gradient centrifugation. A recombinant AdTRE-HGF was constructed as the response plasmid and Adeno-X Tet-on as the regulator vector. The regulator and the response vectors were coinfected into BMSCs and induced at 0, 200, 500, 1000, and 1200 ng/mL doxycycline (Dox). After 3 days, the concentration of HGF was determined using enzyme-linked immunosorbent assay. Forty rabbits were selected to establish the FHN model and divided into 4 experimental groups. After the rabbits were killed by ketamine overdose, the restoration of FHN was assessed. The distribution of HGF-positive cells was observed by immunohistochemical method. Enzyme-linked immunosorbent assay results showed that 1000 ng/mL Dox induced the highest HGF expression level, even higher than the 1200 ng/mL Dox induction. The highest osteonecrosis incidence and empty lacunae percentage were found in group A compared with all the other groups (all P < 0.05). Furthermore, dramatically lower osteonecrosis incidence and empty lacunae percentage were found in group C compared with those of groups B and D (all P < 0.05). A significantly higher level of HGF protein was detected in group C compared with the other groups (all P < 0.05). Our study successfully developed the AdTRE-HGF, a recombinant adenovirus carrying HGF gene, for high expression of HGF in BMSCs. Importantly, introduction of BMSCs expressing HGF successfully produced the desired therapeutic effect in reversing FHN, in a Dox-dependent manner.
Collapse
Affiliation(s)
- Zhi-Min Pan
- 1Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; 2Department of Orthopaedic Surgery, Ganyu County People's Hospital of Jiangsu Province, Ganyu, China; and 3Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | | | | | | | | | | |
Collapse
|
5
|
Houdek MT, Wyles CC, Sierra RJ. Osteonecrosis of the femoral head: treatment with ancillary growth factors. Curr Rev Musculoskelet Med 2015; 8:233-9. [PMID: 25985987 PMCID: PMC4596200 DOI: 10.1007/s12178-015-9281-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteonecrosis (ON) of the femoral head, also known as avascular necrosis (AVN) of the femoral head, is a progressive disease that predominantly affects younger patients. During early stage of ON, decompression of the femoral head has been commonly used to improve pain. The decompression has been augmented with nonvascularized or vascularized bone grafts, mesenchymal stems cells, and growth factors. The use of adjuvant growth factors to supplement the core decompression has mainly been limited to animal models in an attempt to regenerate the necrotic lesion of ON. Factors utilized include bone morphogenetic proteins, vascular endothelial growth factors, hepatocyte growth factors, fibroblast growth factors, granulocyte colony-stimulating factors, and stem cells factors. In animal models, the use of these factors has been shown to increase bone formation and angiogenesis. Although promising, the use of these growth factors and cell-based therapies clinically remains limited.
Collapse
Affiliation(s)
- Matthew T. Houdek
- />Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Cody C. Wyles
- />Mayo Clinic Medical School, 200 First St. SW, Rochester, MN 55909 USA
| | - Rafael J. Sierra
- />Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| |
Collapse
|
6
|
Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 2013; 31:1695-706. [DOI: 10.1016/j.biotechadv.2013.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/24/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022]
|
7
|
Wu Y, Wang L, Dai C, Ma G, Zhang Y, Zhang X, Wu Z. Neuroprotection by platelet-activating factor acetylhydrolase in a mouse model of transient cerebral ischemia. Neurosci Lett 2013; 558:26-30. [PMID: 24189491 DOI: 10.1016/j.neulet.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 11/30/2022]
Abstract
Neuronal damage after transient cerebral ischemia is exacerbated by signaling pathways involving activated platelet-activating factor (PAF) and ameliorated by PAF-acetylhydrolase (PAF-AH); but whether cerebral neurons can be rescued by human recombinant PAF-AH (rPAF-AH) remains unknown. Adult male mice underwent a 60 min middle cerebral artery occlusion (MCAO) and reperfusion for 24h. Then, the mice received intravenous tail injections with different drugs. Neurological behavioral function was evaluated by Bederson's test, and cerebral infarction volume was assessed with tetrazolium chloride (TTC) staining. mRNA and protein expression levels of matrix metalloproteinase-2 (MMP-2, collagenase-1), MMP-9 (gelatinase-B), and vascular endothelial growth factor (VEGF) were determined by quantitative real-time PCR (RT-PCR) and western blot analysis, respectively. Compared with the vehicle group, rPAF-AH significantly improved sensorimotor function (42%, P=0.0001). The volume of non-infarcted brain tissue was increased by the rPAF-AH treatment (16.3±4.6% vs. 46.0±10.3%, respectively). rPAF-AH significantly reduced mRNA and protein levels of MMP-2 and MMP-9, but increased the mRNA (P<0.001) and protein levels (P<0.01) of VEGF. These results demonstrate that rPAF-AH provides neuroprotection against ischemic injury. Neuroprotection might be induced not only by decrease in MMP-2 and MMP-9 expression, but also by increased VEGF expression.
Collapse
Affiliation(s)
- Yijuan Wu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, Guangdong, China; Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Chengbo Dai
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Guixian Ma
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Xiong Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China.
| | - Zhuohua Wu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Abstract
Gene delivery to bone is useful both as an experimental tool and as a potential therapeutic strategy. Among its advantages over protein delivery are the potential for directed, sustained and regulated expression of authentically processed, nascent proteins. Although no clinical trials have been initiated, there is a substantial pre-clinical literature documenting the successful transfer of genes to bone, and their intraosseous expression. Recombinant vectors derived from adenovirus, retrovirus and lentivirus, as well as non-viral vectors, have been used for this purpose. Both ex vivo and in vivo strategies, including gene-activated matrices, have been explored. Ex vivo delivery has often employed mesenchymal stem cells (MSCs), partly because of their ability to differentiate into osteoblasts. MSCs also have the potential to home to bone after systemic administration, which could serve as a useful way to deliver transgenes in a disseminated fashion for the treatment of diseases affecting the whole skeleton, such as osteoporosis or osteogenesis imperfecta. Local delivery of osteogenic transgenes, particularly those encoding bone morphogenetic proteins, has shown great promise in a number of applications where it is necessary to regenerate bone. These include healing large segmental defects in long bones and the cranium, as well as spinal fusion and treating avascular necrosis.
Collapse
Affiliation(s)
- C H Evans
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|