1
|
You J, Chen X, Zhou M, Ma H, Liu Q, Huang C. Hyperbaric oxygen preconditioning for prevention of acute high-altitude diseases: Fact or fiction? Front Physiol 2023; 14:1019103. [PMID: 36760528 PMCID: PMC9905844 DOI: 10.3389/fphys.2023.1019103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Acute high-altitude diseases, including acute mountain sickness (AMS), high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE), have been recognized as potentially lethal diseases for altitude climbers. Various preconditioning stimuli, including hyperbaric oxygen (HBO), have been proposed to prevent acute high-altitude diseases. Herein, we reviewed whether and how HBO preconditioning could affect high-altitude diseases and summarized the results of current trials. Evidence suggests that HBO preconditioning may be a safe and effective preventive method for acute high-altitude diseases. The proposed mechanisms of HBO preconditioning in preventing high-altitude diseases may involve: 1) protection of the blood-brain barrier and prevention of brain edema, 2) inhibition of the inflammatory responses, 3) induction of the hypoxia-inducible factor and its target genes, and 4) increase in antioxidant activity. However, the optimal protocol of HBO preconditioning needs further exploration. Translating the beneficial effects of HBO preconditioning into current practice requires the "conditioning strategies" approach. More large-scale and high-quality randomized controlled studies are needed in the future.
Collapse
Affiliation(s)
- Jiuhong You
- 1Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,2Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,3School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xinxin Chen
- 1Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,2Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,3School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Mei Zhou
- 1Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,2Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,3School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Hui Ma
- 1Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,2Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,3School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiaoling Liu
- 4Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Cheng Huang
- 1Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,2Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Cheng Huang,
| |
Collapse
|
2
|
Saleem A, Mubeen A, Akhtar MF, Zeb A. Polystichum braunii ameliorates airway inflammation by attenuation of inflammatory and oxidative stress biomarkers, and pulmonary edema by elevation of aquaporins in ovalbumin-induced allergic asthmatic mice. Inflammopharmacology 2022; 30:639-653. [PMID: 35257281 DOI: 10.1007/s10787-022-00944-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/09/2022] [Indexed: 11/05/2022]
Abstract
Asthma is a chronic inflammation of pulmonary airways associated with bronchial hyper-responsiveness. The study was aimed to validate the folkloric use of Polystichum braunii (PB) against ovalbumin (OVA)-induced asthmatic and chemical characterization OF both extracts. Allergic asthma was developed by intraperitoneal sensitization with an OVA on days 1 and 14 followed by intranasal challenge. Mice were treated with PB methanolic (PBME) and aqueous extract (PBAE) orally at 600, 300, and 150 mg/kg and using dexamethasone (2 mg/kg) as standard from day 15 to 26. High performance liquid chromatography-diode array detector analysis revealed the presence of various bioactive compounds such as catechin, vanillic acid, and quercetin. The PBME and PBAE profoundly (p < 0.0001-0.05) declined immunoglobulin E level, lungs wet/dry weight ratio, and total and differential leukocyte count in blood and bronchial alveolar lavage fluid of treated mice in contrast to disease control. Histopathological examination showed profoundly decreased inflammatory cell infiltration and goblet cell hyperplasia in treated groups. Both extracts caused significant (p < 0.0001-0.05) diminution of IL-4, IL-5, IL-13, IL-6, IL-1β, TNF-α, and NF-κB and upregulation of aquaporins (1 and 5), which have led to the amelioration of pulmonary inflammation and attenuation of lung edema in treated mice. Both extracts profoundly (p < 0.0001-0.05) restored the activities of SOD, CAT, GSH and reduced the level of MDA dose dependently. Both extracts possessed significant anti-asthmatic action mainly PBME 600 mg/kg might be due to phenols and flavonoids and could be used as a potential therapeutic option in the management of allergic asthma.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Afza Mubeen
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa, 18800, Pakistan
| |
Collapse
|
3
|
Amelioration of Ovalbumin-Induced Allergic Asthma by Juglans regia via Downregulation of Inflammatory Cytokines and Upregulation of Aquaporin-1 and Aquaporin-5 in Mice. J Trop Med 2022; 2022:6530095. [PMID: 35401757 PMCID: PMC8986429 DOI: 10.1155/2022/6530095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Juglans regia (J. regia) has been used traditionally to treat cough and asthma. The present study evaluates the immunomodulatory and anti-inflammatory potential of J. regia against ovalbumin (OVA)-induced allergic asthma. Intraperitoneal sensitization proceeded by intranasal challenge with OVA was used to induce allergic asthma. BALB/c mice were treated with methanol, n-hexane, and ethyl acetate extracts of J. regia and methylprednisolone one week after 2nd sensitization with OVA and continued for 7 days. mRNA expression levels of IL-4, IL-5, IL-13, AQP-1, AQP-5 TNF-α, TGF-β, and NF-kB were determined using reverse transcription polymerase chain reaction. Hematoxylin and eosin, and periodic acidic-Schiff stains were used for histopathological studies of lung tissues. The data presented all three extracts of J. regia significantly ameliorated airway inflammation by reducing expression levels of IL-4, IL-5, and IL-13 and TNF-α in OVA-treated mice. The suppression of goblet cells hyperplasia and inflammatory cells infiltration by J. regia involved low TGF-β and NF-kB levels. Pretreatment with J. regia also increased the AQP-1 and AQP-5 expression levels in mice treated with OVA. This study supported the traditional use of J. regia and proposed that J. regia ameliorated allergic asthma by suppression of proinflammatory cytokines and elevation of AQP-1 and AQP-5 expression levels.
Collapse
|
4
|
Ijaz B, Shabbir A, Shahzad M, Mobashar A, Sharif M, Basheer MI, Tareen RB, Syed NIH. Amelioration of airway inflammation and pulmonary edema by Teucrium stocksianum via attenuation of pro-inflammatory cytokines and up-regulation of AQP1 and AQP5. Respir Physiol Neurobiol 2021; 284:103569. [PMID: 33144273 DOI: 10.1016/j.resp.2020.103569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 01/21/2023]
Abstract
Current study investigates the immunomodulatory effects of T. stocksianum using mouse model of ovalbumin (OVA)-induced allergic asthma. The mice were treated with methanolic extract, n-hexane, and ethyl acetate fractions for consecutive 7 days along with intranasal challenge. The mRNA expression levels of interleukin-4 (IL-4), IL-5, Aquaporin-1 (AQP1) and Aquaporin-5 (AQP5) were evaluated using reverse transcription polymerase chain reaction. The data showed that T. stocksianum significantly reduced airway inflammation as indicated by reduced inflammatory cell infiltration in lungs, and attenuated total and differential leukocyte counts both in blood and BALF. Expression levels of pro-inflammatory IL-4 and IL-5 in lungs were also found significantly reduced. T. stocksianum significantly reduced pulmonary edema as indicated by reduced lung wet/dry ratio and goblet cell hyperplasia. AQP1 and AQP5 expression levels were also found elevated in treatment groups. In conclusion, T. stocksianum possesses anti-asthmatic activity which may be attributed to reduction in IL-4 and IL-5 expression levels, and elevation in AQP1 and AQP5 expression levels.
Collapse
Affiliation(s)
- Basma Ijaz
- Pharmacology section, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Arham Shabbir
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, LCWU, Jail-road, Lahore, Pakistan.
| | - Muhammad Shahzad
- Department of Pharmacology, The University of Health Sciences, Lahore, Pakistan
| | - Aisha Mobashar
- Pharmacology section, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Marriam Sharif
- Pharmacology section, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | | | | | | |
Collapse
|
5
|
Tan J, Gao C, Wang C, Ma L, Hou X, Liu X, Li Z. Expression of Aquaporin-1 and Aquaporin-5 in a Rat Model of High-Altitude Pulmonary Edema and the Effect of Hyperbaric Oxygen Exposure. Dose Response 2020; 18:1559325820970821. [PMID: 33192205 PMCID: PMC7607770 DOI: 10.1177/1559325820970821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022] Open
Abstract
Objective: To investigate the therapeutic roles of hyperbaric oxygen exposure on high-altitude pulmonary edema and to determine whether aquaporin-1 and aquaporin-5 were involved in the pathogenesis of HAPE in rats. Methods: Rats were divided into 5 groups: The control group, the HAPE group (HAPE model), the HBO group (hyperbaric oxygen exposure), the NBO group (normobaric oxygen exposure), and the NA group (normal air exposure). Western blot and real-time PCR were used to analyze the pulmonary expressions of AQP1 and AQP5. The wet-to-dry (W/D) weight ratio and the morphology of the lung were also examined. Results: The lung W/D weight ratio in the HAPE group was increased compared with the control group. The injury score in the HBO group was noticeably lower than that in the control group. The mRNA and proteins expressions of AQP1 and AQP5 were significantly downregulated in the HAPE group. Conclusions: Oxygen exposure alleviated high-altitude hypobaric hypoxia-induced lung injury in rats. Additionally, HBO therapy had significant advantage on interstitial HAPE.
Collapse
Affiliation(s)
- Jiewen Tan
- Department of Rehabilitation Medicine, XinHua College, Sun Yat-Sen University, Guangzhou, China
| | - Chunjin Gao
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Linlin Ma
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaomin Hou
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuehua Liu
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhuo Li
- Department of Rehabilitation Medicine, XinHua College, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Shahid H, Shahzad M, Shabbir A, Saghir G. Immunomodulatory and Anti-Inflammatory Potential of Curcumin for the Treatment of Allergic Asthma: Effects on Expression Levels of Pro-inflammatory Cytokines and Aquaporins. Inflammation 2019; 42:2037-2047. [PMID: 31407145 DOI: 10.1007/s10753-019-01066-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Curcumin is well known for possessing anti-inflammatory properties and for its beneficial effects in the treatment of asthma. Current study investigates the immunomodulatory and anti-inflammatory effects of curcumin using mouse model of ovalbumin-induced allergic asthma. BALB/c mice were immunized with ovalbumin on day 0 and 14 to induce allergic asthma. Animals were treated with two different doses of curcumin (20 mg/kg and 100 mg/kg) and methylprednisolone from day 21 to 28. Mice were also daily challenged intranasally with ovalbumin during treatment period, and all groups were sacrificed at day 28. Histopathological examination showed amelioration of allergic asthma in treated groups as evident by the attenuation of infiltration of inflammatory cells, goblet cell hyperplasia, alveolar thickening, and edema and vascular congestion. Curcumin significantly reduced total and differential leukocyte counts in both bronchoalveolar lavage fluid and blood. Reverse transcription polymerase chain reaction analysis showed significantly suppressed mRNA expression levels of IL-4 and IL-5 (pro-inflammatory cytokines), TNF-α, TGF-β (pro-fibrotic cytokines), eotaxin (chemokine), and heat shock protein 70 (marker of airway obstruction) in treated groups. Attenuation of these pro-inflammatory markers might have led to the suppression of airway inflammation. The expression levels of aquaporin-1 (AQP) and AQP-5 were found significantly elevated in experimental groups which might be responsible for reduction of pulmonary edema. In conclusion, curcumin significantly ameliorated allergic asthma. The anti-asthmatic effect might be attributed to the suppression of pro-inflammatory cytokines, and elevation of aquaporin expression levels, suggesting further studies and clinical trials to establish its candidature in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Hira Shahid
- Department of Pharmacology, University of Health Sciences, khyaban e Jamia Punjab, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, khyaban e Jamia Punjab, Lahore, Pakistan.
| | - Arham Shabbir
- Department of Pharmacy, The University of Lahore-Gujrat campus, Gujrat, Pakistan
| | - Gulpash Saghir
- Department of Pharmacology, University of Health Sciences, khyaban e Jamia Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
HSP-70-Mediated Hyperbaric Oxygen Reduces Brain and Pulmonary Edema and Cognitive Deficits in Rats in a Simulated High-Altitude Exposure. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4608150. [PMID: 30515398 PMCID: PMC6236768 DOI: 10.1155/2018/4608150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/27/2018] [Accepted: 09/16/2018] [Indexed: 11/21/2022]
Abstract
High-mountain sickness is characterized by brain and pulmonary edema and cognitive deficits. The definition can be fulfilled by a rat model of high-altitude exposure (HAE) used in the present study. This study aimed to investigate the protective effect of hyperbaric oxygen therapy (HBO2T) and to determine the underlying mechanisms. Rats were subjected to an HAE (9.7% O2 at 0.47 absolute atmosphere of 6,000 m for 3 days). Immediately after termination of HAE, rats were treated with HBO2T (100% O2 at 2.0 absolute atmosphere for 1 hour per day for 5 consecutive days) or non-HBO2T (21% O2 at 1.0 absolute atmosphere for 1 hour per day for 5 consecutive days). As compared to non-HAE+non-HBO2T controls, the HAE+non-HBO2T rats exhibited brain edema and resulted in cognitive deficits, reduced food and water consumption, body weight loss, increased cerebral inflammation and oxidative stress, and pulmonary edema. HBO2T increased expression of both hippocampus and lung heat shock protein (HSP-70) and also reversed the HAE-induced brain and pulmonary edema, cognitive deficits, reduced food and water consumption, body weight loss, and brain inflammation and oxidative stress. Decreasing the overexpression of HSP-70 in both hippocampus and lung tissues with HSP-70 antibodies significantly attenuated the beneficial effects exerted by HBO2T in HAE rats. Our data provide in vivo evidence that HBO2T works on a remodeling of brain/lung to exert a protective effect against simulated high-mountain sickness via enhancing HSP-70 expression in HAE rats.
Collapse
|
8
|
Sheppard RL, Swift JM, Hall A, Mahon RT. The Influence of CO 2 and Exercise on Hypobaric Hypoxia Induced Pulmonary Edema in Rats. Front Physiol 2018. [PMID: 29541032 PMCID: PMC5835685 DOI: 10.3389/fphys.2018.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: Individuals with a known susceptibility to high altitude pulmonary edema (HAPE) demonstrate a reduced ventilation response and increased pulmonary vasoconstriction when exposed to hypoxia. It is unknown whether reduced sensitivity to hypercapnia is correlated with increased incidence and/or severity of HAPE, and while acute exercise at altitude is known to exacerbate symptoms the effect of exercise training on HAPE susceptibility is unclear. Purpose: To determine if chronic intermittent hypercapnia and exercise increases the incidence of HAPE in rats. Methods: Male Wistar rats were randomized to sedentary (sed-air), CO2 (sed-CO2,) exercise (ex-air), or exercise + CO2 (ex-CO2) groups. CO2 (3.5%) and treadmill exercise (15 m/min, 10% grade) were conducted on a metabolic treadmill, 1 h/day for 4 weeks. Vascular reactivity to CO2 was assessed after the training period by rheoencephalography (REG). Following the training period, animals were exposed to hypobaric hypoxia (HH) equivalent to 25,000 ft for 24 h. Pulmonary injury was assessed by wet/dry weight ratio, lung vascular permeability, bronchoalveolar lavage (BAL), and histology. Results: HH increased lung wet/dry ratio (HH 5.51 ± 0.29 vs. sham 4.80 ± 0.11, P < 0.05), lung permeability (556 ± 84 u/L vs. 192 ± 29 u/L, P < 0.001), and BAL protein (221 ± 33 μg/ml vs. 114 ± 13 μg/ml, P < 0.001), white blood cell (1.16 ± 0.26 vs. 0.66 ± 0.06, P < 0.05), and platelet (16.4 ± 2.3, vs. 6.0 ± 0.5, P < 0.001) counts in comparison to normobaric normoxia. Vascular reactivity was suppressed by exercise (−53% vs. sham, P < 0.05) and exercise+CO2 (−71% vs. sham, P < 0.05). However, neither exercise nor intermittent hypercapnia altered HH-induced changes in lung wet/dry weight, BAL protein and cellular infiltration, or pulmonary histology. Conclusion: Exercise training attenuates vascular reactivity to CO2 in rats but neither exercise training nor chronic intermittent hypercapnia affect HH- induced pulmonary edema.
Collapse
Affiliation(s)
- Ryan L Sheppard
- Department of Submarine Medicine and Survival Systems Groton, Naval Submarine Medical Research Laboratory, Groton, CT, United States.,Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Joshua M Swift
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Aaron Hall
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Richard T Mahon
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
9
|
Rana S, Shahzad M, Shabbir A. Pistacia integerrima ameliorates airway inflammation by attenuation of TNF-α, IL-4, and IL-5 expression levels, and pulmonary edema by elevation of AQP1 and AQP5 expression levels in mouse model of ovalbumin-induced allergic asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:838-845. [PMID: 27288919 DOI: 10.1016/j.phymed.2016.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/11/2016] [Accepted: 04/24/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Natural products are considered as an essential source for the search of new drugs. Pistacia integerrima galls (PI) have been used for the treatment of asthma and cough in traditional system of medicine. AIM/HYPOTHESIS Current study investigates the immunomodulatory and anti-inflammatory activities of P. integerrima in mouse model of ovalbumin-induced allergic asthma. METHODS Mice were intraperitoneally sensitized and subsequently challenged intranasally with ovalbumin to induce allergic asthma. Experimental group mice were treated with methanol extract of P. integerrima extract (200mg/kg b. w.) and Methylprednisolone (MP) (15mg/kg b. w.) for 07 consecutive days, alongside intranasal challenge. Lung tissues were stained with Hematoxyline and Eosin (H & E), and Periodic Acid-Schiff (PAS) stains for histopathological evaluation. Lung wet/dry weight ratio was measured as an index of lung tissue edema. Albumin was injected in the right ear 24h before sacrificing the mice and difference of weight was taken as a degree of delayed type hypersensitivity (DTH). mRNA expression levels of TNF-α, IL-4, IL-5, Aquaporin-1 (AQP1), and AQP5 were evaluated using reverse transcription polymerase chain reaction (RT-PCR) followed by gel electrophoresis. RESULTS The data showed both PI extract and MP significantly alleviated DTH and nearly normalized total leukocyte count and differential leukocyte count in both blood and BALF. We found significantly suppressed goblet cell hyperplasia and inflammatory cell infiltration after treatment with both PI extract and MP. Expression levels of TNF-α, IL-4, and IL-5 were also found significantly reduced after treatment with both PI extract and MP, which might have resulted in the amelioration of airway inflammation. Current study displayed that both PI extract and MP significantly decreased lung wet/dry ratio, suggesting reduction in pulmonary edema. RT-PCR analysis showed significant increase in AQP1 and AQP5 expression levels after treatment with both PI extract and MP, which might have caused the alleviation of pulmonary edema. CONCLUSION Our study displays that P. integerrima possesses significant anti-asthmatic activity which may be attributed to reduction in TNF-α, IL-4, and IL-5 expression levels, and increase in AQP1 and AQP5 expression levels.
Collapse
Affiliation(s)
- Shazana Rana
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan.
| | - Arham Shabbir
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
10
|
Jiang YX, Dai ZL, Zhang XP, Zhao W, Huang Q, Gao LK. Dexmedetomidine alleviates pulmonary edema by upregulating AQP1 and AQP5 expression in rats with acute lung injury induced by lipopolysaccharide. ACTA ACUST UNITED AC 2015; 35:684-688. [PMID: 26489622 DOI: 10.1007/s11596-015-1490-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/29/2015] [Indexed: 01/11/2023]
Abstract
This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five groups: normal saline control (NS) group, receiving intravenous 0.9% normal saline (5 mL/kg); LPS group, receiving intravenous LPS (10 mg/kg); small-dose dexmedetomidine (S) group, treated with a small dose of dexmedetomidine (0.5 μg · kg(-1) · h(-1)); medium-dose dexmedetomidine (M) group, treated with a medium dose of dexmedetomidine (2.5 μg · kg(-1) · h(-1)); high-dose dexmedetomidine (H) group, treated with a high dose of dexmedetomidine (5 μg · kg(-1) · h(-1)). The rats were sacrificed 6 h after intravenous injection of LPS or NS, and the lungs were removed for evaluating histological characteristics and determining the lung wet/dry weight ratio (W/D). The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) in the lung tissues were assessed by enzyme- linked immunosorbent assay (ELISA). The mRNA and protein expression levels of aquaporin-1 (AQP1) and aquaporin-5 (AQP5) were detected by RT-PCR, immunohistochemistry, and Western blotting. The lung tissues from the LPS groups were significantly damaged, which were less pronounced in the H group but not in the small-dose dexmedetomidine group or medium-dose dexmedetomidine group. The W/D and the concentrations of TNF-α and IL-1β in the pulmonary tissues were increased in the LPS group as compared with those in NS group, which were reduced in the H group but not in S group or M group (P<0.01). The expression of AQP1 and AQP5 was lower in the LPS group than in the NS group, and significantly increased in the H group but not in the S group or M group (P<0.01). Our findings suggest that dexmedetomidine may alleviate pulmonary edema by increasing the expression of AQP-1 and AQP-5.
Collapse
Affiliation(s)
- Yuan-Xu Jiang
- Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Zhong-Liang Dai
- Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Xue-Ping Zhang
- Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Nanfang Medical University, Guangzhou, 518000, China
| | - Qiang Huang
- Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Li-Kun Gao
- Department of Pathology, Shenzhen People's Hospital, Shenzhen, 518020, China
| |
Collapse
|
11
|
Wu J, Chen J, Guo H, Peng F. Effects of high-pressure oxygen therapy on brain tissue water content and AQP4 expression in rabbits with cerebral hemorrhage. Cell Biochem Biophys 2015; 70:1579-84. [PMID: 25064222 DOI: 10.1007/s12013-014-0098-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To investigate the effects of different atmosphere absolutes (ATA) of high-pressure oxygen (HPO) on brain tissue water content and Aquaporin-4 (AQP4) expression in rabbits with cerebral hemorrhage. 180 New Zealand white rabbits were selected and randomly divided into normal group (n = 30), control group (n = 30) and cerebral hemorrhage group (n = 120), and cerebral hemorrhage group was divided into group A, B, C and D with 30 rabbits in each group. The groups received 1.0, 1.8, 2.0 and 2.2 ATA of HPO treatments, respectively. Ten rabbits in each group were killed at first, third and fifth day to detect the brain tissue water content and change of AQP4 expression. In cerebral hemorrhage group, brain tissue water content and AQP4 expression after model establishment were first increased, then decreased and reached the maximum on third day (p < 0.05). Brain tissue water content and AQP4 expression in control group and cerebral hemorrhage group were significantly higher than normal group at different time points (p < 0.05). In contrast, brain tissue water content and AQP4 expression in group C were significantly lower than in group A, group B, group D and control group (p < 0.05). In control group, AQP4-positive cells significantly increased after model establishment, which reached maximum on third day, and positive cells in group C were significantly less than in group A, group B and group D. We also found that AQP4 expression were positively correlated with brain tissue water content (r = 0.719, p < 0.05) demonstrated by significantly increased AQP4 expression along with increased brain tissue water content. In conclusion, HPO can decrease AQP4 expression in brain tissue of rabbits with cerebral hemorrhage to suppress the progression of brain edema and promote repairing of injured tissue. 2.0 ATA HPO exerts best effects, which provides an experimental basis for ATA selection of HPO in treating cerebral hemorrhage.
Collapse
Affiliation(s)
- Jing Wu
- Department of Emergency Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China,
| | | | | | | |
Collapse
|
12
|
Wang CT, Lin HJ, Cheng BC, Lin MT, Chang CP. Attenuating systemic inflammatory markers in simulated high-altitude exposure by heat shock protein 70-mediated hypobaric hypoxia preconditioning in rats. J Formos Med Assoc 2013; 114:328-38. [PMID: 25839766 DOI: 10.1016/j.jfma.2012.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/22/2012] [Accepted: 11/23/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/PURPOSE The primary goal of this study was to test whether high-altitude exposure (HAE: 0.9% O(2) at 0.47 ATA for 24 hours) was capable of increasing the systemic inflammatory markers as well as the toxic organ injury indicators in rats, with a secondary goal to test whether preinduction of heat shock protein (HSP) 70 by hypobaric hypoxia preconditioning (HHP: 18.3% O(2) at 0.66 ATA for 5 h/day on 5 days consecutively for 2 weeks) attenuated the proposed increased serum levels of both the systemic inflammatory markers and the toxic organ injury indicators. METHODS Rats were assigned to: (1) non-HHP (21% O(2) at 1.0 ATA)+non-HAE (21% O(2) at 1.0 ATA) group; (2) non-HHP+HAE group; (3) HHP+non-HAE group; (4) HHP+HAE group; and (5) HHP+HSP70 antibodies (Ab)+HAE group. For the HSP70Ab group, a neutralizing HSP70Ab was injected intravenously at 24 hours prior to HAE. All the physiological and biochemical parameters were obtained at the end of HAE or the equivalent time period of non-HAE. Blood samples were obtained for determination of both the systemic inflammatory markers (e.g., serum tumor necrosis factor-α, interleukin-1β, E-selectin, intercellular adhesion molecule-1, and liver myeloperoxidase activity) and the toxic organ injury indicators (e.g., nitric oxide metabolites, 2,3-dihydroxybenzoic acid, and lactate dehydrogenase). RESULTS HHP, in addition to inducing overexpression of tissue HSP70, significantly attenuated the HAE-induced hypotension, bradycardia, hypoxia, acidosis, and increased tissue levels of both the systemic inflammatory markers and the toxic organ injury indicators. The beneficial effects of HHP in inducing tissue overexpression of HSP70 as well as in preventing the HAE-induced increased levels of the systemic inflammatory markers and the toxic organ injury indicators could be significantly reduced by HSP70Ab preconditioning. CONCLUSION These results suggest that HHP may downgrade both the systemic inflammatory markers and the toxic organ injury indicators in HAE by upregulating tissue HSP70.
Collapse
Affiliation(s)
- Chia-Ti Wang
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Bor-Chih Cheng
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan; Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
13
|
Wu WS, Chou MT, Chao CM, Chang CK, Lin MT, Chang CP. Melatonin reduces acute lung inflammation, edema, and hemorrhage in heatstroke rats. Acta Pharmacol Sin 2012; 33:775-82. [PMID: 22609835 DOI: 10.1038/aps.2012.29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM To assess the therapeutic effect of melatonin on heat-induced acute lung inflammation and injury in rats. METHODS Heatstroke was induced by exposing anesthetized rats to heat stress (36 °C, 100 min). Rats were treated with vehicle or melatonin (0.2, 1, 5 mg/kg) by intravenous administration 100 min after the initiatioin of heatstroke and were allowed to recover at room temperature (26 °C). The acute lung injury was quantified by morphological examination and by determination of the volume of pleural exudates, the number of polymorphonuclear (PMN) cells, and the myeloperoxidase (MPO) activity. The concentrations of tumor necrosis factor, interleukin (IL)-1β, IL-6, and IL-10 in bronchoalveolar fluid (BALF) were measured by ELISA. Nitric oxide (NO) level was determined by Griess method. The levels of glutamate and lactate-to-pyruvate ratio were analyzed by CMA600 microdialysis analyzer. The concentrations of hydroxyl radicals were measured by a procedure based on the hydroxylation of sodium salicylates leading to the production of 2,3-dihydroxybenzoic acid (DHBA). RESULTS Melatonin (1 and 5 mg/kg) significantly (i) prolonged the survival time of heartstroke rats (117 and 186 min vs 59 min); (ii) attenuated heatstroke-induced hyperthermia and hypotension; (iii) attenuated acute lung injury, including edema, neutrophil infiltration, and hemorrhage scores; (iv) down-regulated exudate volume, BALF PMN cell number, and MPO activity; (v) decreased the BALF levels of lung inflammation response cytokines like TNF-alpha, interleukin (IL)-1β, and IL-6 but further increased the level of an anti-inflammatory cytokine IL-10; (vi) reduced BALF levels of glutamate, lactate-to-pyruvate ratio, NO, 2,3-DHBA, and lactate dehydrogenase. CONCLUSION Melatonin may improve the outcome of heatstroke in rats by attenuating acute lung inflammation and injury.
Collapse
|
14
|
Sightings edited by John W. Severinghaus. High Alt Med Biol 2012. [DOI: 10.1089/ham.2012.1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Yang HH, Hou CC, Lin MT, Chang CP. Attenuating Heat-Induced Acute Lung Inflammation and Injury by Dextromethorphan in Rats. Am J Respir Cell Mol Biol 2012; 46:407-13. [DOI: 10.1165/rcmb.2011-0226oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Cheng YS, Tang YQ, Dai DZ, Dai Y. AQP4 knockout mice manifest abnormal expressions of calcium handling proteins possibly due to exacerbating pro-inflammatory factors in the heart. Biochem Pharmacol 2012; 83:97-105. [DOI: 10.1016/j.bcp.2011.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/19/2023]
|