1
|
Shen W, Wang K, Han Y, Wang H, Duan Z. Effects of florfenicol on body weight, intestinal inflammatory response, intestinal fluid metabolism and microorganisms in broilers. J Vet Sci 2025; 26:e25. [PMID: 40183911 PMCID: PMC11972935 DOI: 10.4142/jvs.24194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/25/2024] [Accepted: 12/22/2024] [Indexed: 04/05/2025] Open
Abstract
IMPORTANCE Although antibiotics can prevent and treat diseases, their overuse can be harmful. Despite this, the effects of orally administered florfenicol on intestinal health in broilers are unclear. OBJECTIVE This study examined oral florfenicol's effects on intestinal function in broilers to guide its clinical use. METHODS One hundred and twenty Arbor Acres broilers (8-d-old) were divided randomly into the control (N) and florfenicol groups (F). The broilers in group F were fed 100 mg/kg body weight florfenicol for seven days. On day 15, the broilers were euthanized and sampled to analyze fluid metabolism-related genes and proteins, jejunal morphological and microbiota. RESULTS The results revealed a decrease in body weight and an increase in diarrhea rate in broilers in group F compared to group N. The villus length and villus length/crypt depth (V/C) of the jejunum were lower in group F than in group N, whereas the crypt depth was higher. The levels of tumor necrosis factor α, Toll-like receptor 4, lipopolysaccharide, nuclear factor kappa-B, interleukin (IL)-6 and IL-10 in group F were higher in group F than in group N, whereas the levels of cyclic adenosine monophosphate and aquaporins (AQP) 4 and AQP5 were lower. Proteobacteria were more abundant in group F than in group N, whereas Firmicutes, Bacteroidetes, and Actinobacteria were less abundant. CONCLUSIONS AND RELEVANCE Oral florfenicol might adversely affect the intestinal mucosa, intestinal mucosal immune system, intestinal microbiota balance, and water metabolism in broilers. This study provides a theoretical basis for the rational use of florfenicol.
Collapse
Affiliation(s)
- Weiqi Shen
- College of Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi 030801, China
| | - Keyao Wang
- College of Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi 030801, China
| | - Yufeng Han
- College of Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi 030801, China
| | - Huimin Wang
- College of Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi 030801, China
| | - Zhibian Duan
- College of Veterinary Medicine, Shanxi Agriculture University, Taigu, Jinzhong, Shanxi 030801, China.
| |
Collapse
|
2
|
Allnoch L, Beythien G, Leitzen E, Becker K, Kaup FJ, Stanelle-Bertram S, Schaumburg B, Mounogou Kouassi N, Beck S, Zickler M, Herder V, Gabriel G, Baumgärtner W. Vascular Inflammation Is Associated with Loss of Aquaporin 1 Expression on Endothelial Cells and Increased Fluid Leakage in SARS-CoV-2 Infected Golden Syrian Hamsters. Viruses 2021; 13:v13040639. [PMID: 33918079 PMCID: PMC8069375 DOI: 10.3390/v13040639] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular changes represent a characteristic feature of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leading to a breakdown of the vascular barrier and subsequent edema formation. The aim of this study was to provide a detailed characterization of the vascular alterations during SARS-CoV-2 infection and to evaluate the impaired vascular integrity. Groups of ten golden Syrian hamsters were infected intranasally with SARS-CoV-2 or phosphate-buffered saline (mock infection). Necropsies were performed at 1, 3, 6, and 14 days post-infection (dpi). Lung samples were investigated using hematoxylin and eosin, alcian blue, immunohistochemistry targeting aquaporin 1, CD3, CD204, CD31, laminin, myeloperoxidase, SARS-CoV-2 nucleoprotein, and transmission electron microscopy. SARS-CoV-2 infected animals showed endothelial hypertrophy, endothelialitis, and vasculitis. Inflammation mainly consisted of macrophages and lower numbers of T-lymphocytes and neutrophils/heterophils infiltrating the vascular walls as well as the perivascular region at 3 and 6 dpi. Affected vessels showed edema formation in association with loss of aquaporin 1 on endothelial cells. In addition, an ultrastructural investigation revealed disruption of the endothelium. Summarized, the presented findings indicate that loss of aquaporin 1 entails the loss of intercellular junctions resulting in paracellular leakage of edema as a key pathogenic mechanism in SARS-CoV-2 triggered pulmonary lesions.
Collapse
Affiliation(s)
- Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Franz-Josef Kaup
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Stephanie Stanelle-Bertram
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Nancy Mounogou Kouassi
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Martin Zickler
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
- Institute for Virology, University for Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
- Correspondence: ; Tel.: +49-511-953-8620
| |
Collapse
|
3
|
Khatua B, Yaron JR, El-Kurdi B, Kostenko S, Papachristou GI, Singh VP. Ringer's Lactate Prevents Early Organ Failure by Providing Extracellular Calcium. J Clin Med 2020; 9:E263. [PMID: 31963691 PMCID: PMC7019478 DOI: 10.3390/jcm9010263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Ringer's lactate may improve early systemic inflammation during critical illnesses like severe acute pancreatitis, which are associated with hypocalcemia. Ringer's lactate is buffered and contains lactate and calcium. We, thus analyzed extracellular calcium or lactate's effects on the mechanisms, intermediary markers, and organ failure in models mimicking human disease with nonesterified fatty acid (NEFA) elevation. METHODS Meta-analyses and experimental studies were performed. Experimentally, extracellular calcium and lactate were compared in their interaction with linoleic acid (LA; a NEFA increased in human severe pancreatitis), and its subsequent effects on mitochondrial depolarization and cytosolic calcium signaling resulting in cell injury. In vivo, the effect of LA was studied on organ failure, along with the effect of calcium or lactate (pH 7.4) on severe acute pancreatitis-associated organ failure. A meta-analysis of human randomized control trials comparing Ringer's lactate to normal saline was done, focusing on necrosis and organ failure. RESULTS Calcium reacted ionically with LA and reduced lipotoxic necrosis. In vivo, LA induced organ failure and hypocalcemia. During severe pancreatitis, calcium supplementation in saline pH 7.4, unlike lactate, prevented hypocalcemia, increased NEFA saponification, reduced circulating NEFA and C-reactive protein , reduced pancreatic necrosis adjacent to fat necrosis, and normalized shock (carotid pulse distension) and blood urea nitrogen elevation on day 1. This, however, did not prevent the later increase in serum NEFA which caused delayed organ failure. Meta-analysis showed Ringer's lactate reduced necrosis, but not organ failure, compared with normal saline. CONCLUSION Hypocalcemia occurs due to excess NEFA binding calcium during a critical illness. Ringer's lactate's early benefits in systemic inflammation are by the calcium it provides reacting ionically with NEFA. This, however, does not prevent later organ failure from sustained NEFA generation. Future studies comparing calcium supplemented saline resuscitation to Ringer's lactate may provide insights to this pathophysiology.
Collapse
Affiliation(s)
- Biswajit Khatua
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Jordan R. Yaron
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Bara El-Kurdi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Sergiy Kostenko
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | - Vijay P. Singh
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
4
|
Meli R, Pirozzi C, Pelagalli A. New Perspectives on the Potential Role of Aquaporins (AQPs) in the Physiology of Inflammation. Front Physiol 2018; 9:101. [PMID: 29503618 PMCID: PMC5820367 DOI: 10.3389/fphys.2018.00101] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Aquaporins (AQPs) are emerging, in the last few decades, as critical proteins regulating water fluid homeostasis in cells involved in inflammation. AQPs represent a family of ubiquitous membrane channels that regulate osmotically water flux in various tissues and sometimes the transport of small solutes, including glycerol. Extensive data indicate that AQPs, working as water channel proteins, regulate not only cell migration, but also common events essential for inflammatory response. The involvement of AQPs in several inflammatory processes, as demonstrated by their dysregulation both in human and animal diseases, identifies their new role in protection and response to different noxious stimuli, including bacterial infection. This contribution could represent a new key to clarify the dilemma of host-pathogen communications, and opens up new scenarios regarding the investigation of the modulation of specific AQPs, as target for new pharmacological therapies. This review provides updated information on the underlying mechanisms of AQPs in the regulation of inflammatory responses in mammals and discusses the broad spectrum of options that can be tailored for different diseases and their pharmacological treatment.
Collapse
Affiliation(s)
- Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Naples, Italy
| |
Collapse
|
5
|
Noel P, Patel K, Durgampudi C, Trivedi RN, de Oliveira C, Crowell MD, Pannala R, Lee K, Brand R, Chennat J, Slivka A, Papachristou GI, Khalid A, Whitcomb DC, DeLany JP, Cline RA, Acharya C, Jaligama D, Murad FM, Yadav D, Navina S, Singh VP. Peripancreatic fat necrosis worsens acute pancreatitis independent of pancreatic necrosis via unsaturated fatty acids increased in human pancreatic necrosis collections. Gut 2016; 65:100-11. [PMID: 25500204 PMCID: PMC4869971 DOI: 10.1136/gutjnl-2014-308043] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Peripancreatic fat necrosis occurs frequently in necrotising pancreatitis. Distinguishing markers from mediators of severe acute pancreatitis (SAP) is important since targeting mediators may improve outcomes. We evaluated potential agents in human pancreatic necrotic collections (NCs), pseudocysts (PCs) and pancreatic cystic neoplasms and used pancreatic acini, peripheral blood mononuclear cells (PBMC) and an acute pancreatitis (AP) model to determine SAP mediators. METHODS We measured acinar and PBMC injury induced by agents increased in NCs and PCs. Outcomes of caerulein pancreatitis were studied in lean rats coadministered interleukin (IL)-1β and keratinocyte chemoattractant/growth-regulated oncogene, triolein alone or with the lipase inhibitor orlistat. RESULTS NCs had higher fatty acids, IL-8 and IL-1β versus other fluids. Lipolysis of unsaturated triglyceride and resulting unsaturated fatty acids (UFA) oleic and linoleic acids induced necro-apoptosis at less than half the concentration in NCs but other agents did not do so at more than two times these concentrations. Cytokine coadministration resulted in higher pancreatic and lung inflammation than caerulein alone, but only triolein coadministration caused peripancreatic fat stranding, higher cytokines, UFAs, multisystem organ failure (MSOF) and mortality in 97% animals, which were prevented by orlistat. CONCLUSIONS UFAs, IL-1β and IL-8 are elevated in NCs. However, UFAs generated via peripancreatic fat lipolysis causes worse inflammation and MSOF, converting mild AP to SAP.
Collapse
Affiliation(s)
- Pawan Noel
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Krutika Patel
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Chandra Durgampudi
- Departments of Medicine, University of Pittsburgh Medical Center, Pasavant, Pennsylvania, USA
| | - Ram N Trivedi
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | | | - Rahul Pannala
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Kenneth Lee
- Departments of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Randall Brand
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer Chennat
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam Slivka
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Asif Khalid
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David C Whitcomb
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James P DeLany
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel A Cline
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chathur Acharya
- Departments of Medicine, University of Pittsburgh Medical Center, Pasavant, Pennsylvania, USA
| | - Deepthi Jaligama
- Departments of Medicine, University of Pittsburgh Medical Center, Pasavant, Pennsylvania, USA
| | - Faris M Murad
- Departments of Medicine, Washington University, Saint Louis, Missouri, USA
| | - Dhiraj Yadav
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Navina
- Departments of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vijay P Singh
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
6
|
Acharya C, Navina S, Singh VP. Role of pancreatic fat in the outcomes of pancreatitis. Pancreatology 2014; 14:403-8. [PMID: 25278311 PMCID: PMC4185152 DOI: 10.1016/j.pan.2014.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 12/11/2022]
Abstract
The role of obesity in relation to various disease processes is being increasingly studied, with reports over the last several years increasingly mentioning its association with worse outcomes in acute disease. Obesity has also gained recognition as a risk factor for severe acute pancreatitis (SAP).The mortality in SAP may be as high as 30% and is usually attributable to multi system organ failure (MSOF) earlier in the disease, and complications of necrotizing pancreatitis later [9-11]. To date there is no specific treatment for acute pancreatitis (AP) and the management is largely expectant and supportive. Obesity in general has also been associated with poor outcomes in sepsis and other pathological states including trauma and burns. With the role of unsaturated fatty acids (UFA) as propagators in SAP having recently come to light and with the recognition of acute lipotoxicity, there is now an opportunity to explore different strategies to reduce the mortality and morbidity in SAP and potentially other disease states associated with such a pathophysiology. In this review we will discuss the role of fat and implications of the consequent acute lipotoxicity on the outcomes of acute pancreatitis in lean and obese states and during acute on chronic pancreatitis.
Collapse
Affiliation(s)
- Chathur Acharya
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
7
|
Sakuramoto H, Shimojo N, Jesmin S, Unoki T, Kamiyama J, Oki M, Miya K, Kawano S, Mizutani T. Repeated open endotracheal suctioning causes gradual desaturation but does not exacerbate lung injury compared to closed endotracheal suctioning in a rabbit model of ARDS. BMC Anesthesiol 2013; 13:47. [PMID: 24308643 PMCID: PMC3878988 DOI: 10.1186/1471-2253-13-47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/25/2013] [Indexed: 12/01/2022] Open
Abstract
Background Although endotracheal suctioning induces alveolar derecruitment during mechanical ventilation, it is not clear whether repeated endotracheal suctioning exacerbates lung injuries. The present study aimed to determine whether repeated open endotracheal suctioning (OS) exacerbates lung injury compared to closed endotracheal suctioning (CS) during mechanical ventilation in an animal model of acute respiratory distress syndrome (ARDS). Methods Briefly, thirty six Japanese white rabbits were initially ventilated in pressure-controlled mode with a constant tidal volume (6 mL/kg). Then, lung injury was induced by repeated saline lavage. The rabbits were divided into four groups, namely: a) OS; b) CS; c) control with ARDS only; d) and healthy control (HC) without ARDS. Animals in all the groups were then ventilated with positive end expiratory pressure (PEEP) at 10 cm H2O. CS was performed using 6 French-closed suctioning catheters connected to endotracheal tube under the following conditions: a) a suctioning time and pressure of 10 sec and 140 mm Hg, respectively; and b) a suction depth of 2 cm (length of adapter) plus tracheal tube. OS was performed using the same conditions described for CS, except the ventilator was disconnected from the animals. Each endotracheal suctioning was performed at an interval of 30 min. Results PaO2/FIO2 (P/F) ratio for CS, control and HC groups remained at >400 for 6 hours, whereas that of the OS group progressively declined to 300 (p < 0.05), with each suctioning. However, no difference was observed either in lung injury score (histology) or in the expression pattern of inflammatory cytokines (tumor necrosis factor-α and interleukin-6) after 6 hours between the OS and CS groups in the circulatory as well as the pulmonary tissues. Conclusions Progressive arterial desaturation under conditions of repeated endotracheal suctioning is greater in OS than in CS time-dependently. However, OS does not exacerbate lung injury during mechanical ventilation when observed over a longer time span (6 hours) of repeated endotracheal suctioning, based on morphological and molecular analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taro Mizutani
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|