1
|
Wang H, He P, Wang Z, Tian C, Liu C, Li X, Yan T, Qin Y, Ling S, Ling H, Wu G, Li Y, Wang J, Jin S. Single-cell RNA-seq analysis identifies the atlas of lymph fluid and reveals a sepsis-related T cell subset. Cell Rep 2025; 44:115469. [PMID: 40178976 DOI: 10.1016/j.celrep.2025.115469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/08/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
The lymphoid cycle serves as a sentinel of the immune response, yet the cell subtypes and immune properties within lymph fluid remain unclear. This study describes a comprehensive characterization of immune cells in rat lymph fluid using single-cell RNA sequencing, identifying a unique subset of CD4+ T cells (CD4_Icos) that suppresses inflammation in early sepsis. Trajectory analysis reveals that CD4+Icos+ T cells can differentiate into regulatory T cells (Tregs). Transferring CD4+Icos+ T cells alleviates CLP-induced organ injury, while CD4+ Icos-knockout (KO) mice show reduced Treg numbers, increased inflammation, and higher mortality. Further experiments identify Npas2 as an Icos-specific transcription factor regulating Icos expression and promoting the differentiation of CD4+Icos+ T cells. Clinical data show a negative correlation between ICOS expression in CD4+ T cells and clinical outcomes in septic patients. These findings highlight the protective role of CD4+ T cells in modulating immune responses and mitigating sepsis progression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panwei He
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenxia Wang
- Department of Emergency Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Chao Tian
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Chuanlong Liu
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyu Li
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Yan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Qin
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hanzhi Ling
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gan Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Li
- Department of Emergency Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Pandey S. Advances in metabolomics in critically ill patients with sepsis and septic shock. Clin Exp Emerg Med 2025; 12:4-15. [PMID: 39026452 PMCID: PMC12010799 DOI: 10.15441/ceem.24.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is associated with high morbidity and mortality rates in hospitalized patients. This condition has a complex pathophysiology and can swiftly progress to the severe form of septic shock, which can lead to organ dysfunction, organ failure, and death. Metabolomics has transformed the clinical and research topography of sepsis, with application to prognosis, diagnosis, and risk assessment. Metabolomics involves detecting and analyzing levels of metabolites in blood (plasma, serum, and/or erythrocytes) and urine; when applied in sepsis, this technology can improve our understanding of the pathogenesis of the disease and aid in better disease management by identifying early biomarkers. For this review article, "metabolomics," "sepsis," and "septic shock" were keywords used to search records in various databases including PubMed and Scopus from their inception until December 2023. This review article summarizes information regarding metabolic profiling performed in sepsis and septic shock and illustrates how metabolomics is advancing the diagnosis and prognosis of patients with sepsis.
Collapse
Affiliation(s)
- Swarnima Pandey
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
3
|
Hong J, Nachkebia S, Tun SM, Petzer A, Windsor JA, Hickey AJ, Phillips AR. Altered Metabolic Profile of Triglyceride-Rich Lipoproteins in Gut-Lymph of Rodent Models of Sepsis and Gut Ischemia-Reperfusion Injury. Dig Dis Sci 2018; 63:3317-3328. [PMID: 30182310 DOI: 10.1007/s10620-018-5270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/29/2018] [Indexed: 12/09/2022]
Abstract
BACKGROUND Triglyceride-rich lipoproteins are important in dietary lipid absorption and subsequent energy distribution in the body. Their importance in the gut-lymph may have been overlooked in sepsis, the most common cause of critical illness, and in gut ischemia-reperfusion injury, a common feature of many critical illnesses. AIMS We aimed to undertake an exploratory study of triglyceride-rich lipoprotein fractions in gut-lymph using untargeted metabolic profiling to identify altered metabolites in sepsis or gut ischemia-reperfusion. METHODS The gut-lymph was collected from rodent sham, sepsis, and gut ischemia-reperfusion models. The triglyceride-rich lipoprotein-enriched fractions isolated from the gut-lymph were subjected to a dual metabolomics analysis approach: non-polar metabolite analysis by ultra-high performance liquid chromatography-mass spectrometry and polar metabolite analysis by gas chromatography-mass spectrometry. RESULTS The metabolite analysis of gut-lymph triglyceride-rich lipoprotein fractions revealed a significant increase (FDR-adjusted P value < 0.05) in myo-inositol in the sepsis group and monoacylglycerols [(18:1) and (18:2)] in gut ischemia-reperfusion. There were no significantly increased specific metabolites in the lipoprotein-enriched fractions of both sepsis and gut ischemia-reperfusion. In contrast, there was a widespread decrease in multiple lipid species in sepsis (35 out of 190; adjusted P < 0.05), but not in the gut ischemia-reperfusion. CONCLUSIONS Increased levels of myo-inositol and monoacylglycerols, and decreased multiple lipid species in the gut-lymph triglyceride-rich lipoprotein fraction could be candidates for new biomarkers and/or involved in the progression of sepsis and gut ischemia-reperfusion pathobiology.
Collapse
Affiliation(s)
- Jiwon Hong
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand.
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| | - Shorena Nachkebia
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Soe Min Tun
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Amorita Petzer
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - John A Windsor
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anthony J Hickey
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Anthony R Phillips
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection. Sci Rep 2017; 7:2786. [PMID: 28584281 PMCID: PMC5459799 DOI: 10.1038/s41598-017-03100-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome.
Collapse
|
5
|
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- David Antcliffe
- Department of Surgery & Cancer, Charing Cross Hospital / Imperial College London, Section of Anaesthetics, Pain Medicine & Intensive Care, London, UK
| | - Anthony C Gordon
- Department of Surgery & Cancer, Charing Cross Hospital / Imperial College London, Section of Anaesthetics, Pain Medicine & Intensive Care, London, UK.
| |
Collapse
|