1
|
Luo J, Bian C, Liu M, Fang Y, Jin L, Yu R, Huang H. Research on gene editing and immunosuppressants in kidney xenotransplantation. Transpl Immunol 2025; 89:102184. [PMID: 39900229 DOI: 10.1016/j.trim.2025.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Gene-edited pig organ transplantation can solve the serious shortage of human donor organs. Currently, xenotransplantation is rapidly developing and has made significant breakthroughs. The use of GTKO (Gal knockout) pigs is an important step forward. The subsequent knockout of three genes combined with the transfer of immune-related genes effectively prolonged the survival time of non-human primate (NHP) transplantation in xenotransplantation. Due to the success of allogeneic kidney transplantation on NHP, this gene editing protocol was recently applied to clinical patients. Two patients underwent allogeneic kidney transplantation and survived for 51 days and 47 days. Exceeding the hyperacute rejection period proves that appropriate gene editing strategies and the combination of immunosuppressive agents contribute to the success of xenotransplantation. To further enhance the feasibility of pig kidney xenograft, this article mainly explores the effects of the NHP xenograft gene editing scheme and immunosuppressants on prolonging transplant survival time.
Collapse
Affiliation(s)
- JiaJiao Luo
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - CongWen Bian
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Liu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Fang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Jin
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Yu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - HanFei Huang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Meng Q, Wu W, Zhang W, Yuan J, Yang L, Zhang X, Tao K. IL-18BP Improves Early Graft Function and Survival in Lewis-Brown Norway Rat Orthotopic Liver Transplantation Model. Biomolecules 2022; 12:biom12121801. [PMID: 36551229 PMCID: PMC9775331 DOI: 10.3390/biom12121801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Interleukin-18 (IL-18) can effectively activate natural killer (NK) cells and induce large concentrations of interferon-γ (IFN-γ). In healthy humans, IL-18 binding protein (IL-18BP) can inhibit the binding of IL-18 to IL-18R and counteract the biological action of IL-18 due to its high concentration and high affinity, thus preventing the production of IFN-γ and inhibiting NK-cell activation. Through previous studies and the phenomena observed by our group in pig-non-human primates (NHPs) liver transplantation experiments, we proposed that the imbalance in IL-18/IL-18BP expression upon transplantation encourages the activation, proliferation, and cytotoxic effects of NK cells, ultimately causing acute vascular rejection of the graft. In this research, we used Lewis-Brown Norway rat orthotopic liver transplantation (OLTx) as a model of acute vascular rejection. AAV8-Il18bp viral vectors as gene delivery vehicles were constructed for gene therapy to overexpress IL-18BP and alleviate NK-cell rejection of the graft after transplantation. The results showed that livers overexpressing IL-18BP had reduced damage and could function longer after transplantation, effectively improving the survival time of the recipients.
Collapse
Affiliation(s)
- Qiang Meng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Weikang Wu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710032, China
| | - Juzheng Yuan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (X.Z.); (K.T.)
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (X.Z.); (K.T.)
| |
Collapse
|
3
|
Denner J, Längin M, Reichart B, Krüger L, Fiebig U, Mokelke M, Radan J, Mayr T, Milusev A, Luther F, Sorvillo N, Rieben R, Brenner P, Walz C, Wolf E, Roshani B, Stahl-Hennig C, Abicht JM. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival. Sci Rep 2020; 10:17531. [PMID: 33067513 PMCID: PMC7568528 DOI: 10.1038/s41598-020-73150-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Xenotransplantation using pig organs has achieved survival times up to 195 days in pig orthotopic heart transplantation into baboons. Here we demonstrate that in addition to an improved immunosuppressive regimen, non-ischaemic preservation with continuous perfusion and control of post-transplantation growth of the transplant, prevention of transmission of the porcine cytomegalovirus (PCMV) plays an important role in achieving long survival times. For the first time we demonstrate that PCMV transmission in orthotopic pig heart xenotransplantation was associated with a reduced survival time of the transplant and increased levels of IL-6 and TNFα were found in the transplanted baboon. Furthermore, high levels of tPA-PAI-1 complexes were found, suggesting a complete loss of the pro-fibrinolytic properties of the endothelial cells. These data show that PCMV has an important impact on transplant survival and call for elimination of PCMV from donor pigs.
Collapse
Affiliation(s)
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bruno Reichart
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Maren Mokelke
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Radan
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tanja Mayr
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anastasia Milusev
- Department of Biomedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Fabian Luther
- Department of Biomedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Nicoletta Sorvillo
- Department of Biomedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department of Biomedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, Maximilians-Universität München, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Berit Roshani
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | | | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
4
|
The Role of NK Cells in Pig-to-Human Xenotransplantation. J Immunol Res 2017; 2017:4627384. [PMID: 29410970 PMCID: PMC5749293 DOI: 10.1155/2017/4627384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
Recruitment of human NK cells to porcine tissues has been demonstrated in pig organs perfused ex vivo with human blood in the early 1990s. Subsequently, the molecular mechanisms leading to adhesion and cytotoxicity in human NK cell-porcine endothelial cell (pEC) interactions have been elucidated in vitro to identify targets for therapeutic interventions. Specific molecular strategies to overcome human anti-pig NK cell responses include (1) blocking of the molecular events leading to recruitment (chemotaxis, adhesion, and transmigration), (2) expression of human MHC class I molecules on pECs that inhibit NK cells, and (3) elimination or blocking of pig ligands for activating human NK receptors. The potential of cell-based strategies including tolerogenic dendritic cells (DC) and regulatory T cells (Treg) and the latest progress using transgenic pigs genetically modified to reduce xenogeneic NK cell responses are discussed. Finally, we present the status of phenotypic and functional characterization of nonhuman primate (NHP) NK cells, essential for studying their role in xenograft rejection using preclinical pig-to-NHP models, and summarize key advances and important perspectives for future research.
Collapse
|
5
|
Puga Yung G, Bongoni AK, Pradier A, Madelon N, Papaserafeim M, Sfriso R, Ayares DL, Wolf E, Klymiuk N, Bähr A, Constantinescu MA, Voegelin E, Kiermeir D, Jenni H, Rieben R, Seebach JD. Release of pig leukocytes and reduced human NK cell recruitment during ex vivo perfusion of HLA-E/human CD46 double-transgenic pig limbs with human blood. Xenotransplantation 2017; 25. [PMID: 29057510 DOI: 10.1111/xen.12357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/15/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND In pig-to-human xenotransplantation, interactions between human natural killer (NK) cells and porcine endothelial cells (pEC) are characterized by recruitment and cytotoxicity. Protection from xenogeneic NK cytotoxicity can be achieved in vitro by the expression of the non-classical human leukocyte antigen-E (HLA-E) on pEC. Thus, the aim of this study was to analyze NK cell responses to vascularized xenografts using an ex vivo perfusion system of pig limbs with human blood. METHODS Six pig forelimbs per group, respectively, stemming from either wild-type (wt) or HLA-E/hCD46 double-transgenic (tg) animals, were perfused ex vivo with heparinized human blood for 12 hours. Blood samples were collected at defined time intervals, cell numbers counted, and peripheral blood mononuclear cells analyzed for phenotype by flow cytometry. Muscle biopsies were analyzed for NK cell infiltration. In vitro NK cytotoxicity assays were performed using pEC derived from wt and tg animals as target cells. RESULTS Ex vivo, a strong reduction in circulating human CD45 leukocytes was observed after 60 minutes of xenoperfusion in both wt and tg limb groups. NK cell numbers dropped significantly. Within the first 10 minutes, the decrease in NK cells was more significant in the wt limb perfusions as compared to tg limbs. Immunohistology of biopsies taken after 12 hours showed less NK cell tissue infiltration in the tg limbs. In vitro, NK cytotoxicity against hCD46 single tg pEC and wt pEC was similar, while lysis of double tg HLA-E/hCD46 pEC was significantly reduced. Finally, circulating cells of pig origin were observed during the ex vivo xenoperfusions. These cells expressed phenotypes mainly of monocytes, B and T lymphocytes, NK cells, as well as some activated endothelial cells. CONCLUSIONS Ex vivo perfusion of pig forelimbs using whole human blood represents a powerful tool to study humoral and early cell-mediated rejection mechanisms of vascularized pig-to-human xenotransplantation, although there are several limitations of the model. Here, we show that (i) transgenic expression of HLA-E/hCD46 in pig limbs provides partial protection from human NK cell-mediated xeno responses and (ii) the emergence of a pig cell population during xenoperfusions with implications for the immunogenicity of xenografts.
Collapse
Affiliation(s)
- Gisella Puga Yung
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Anjan K Bongoni
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Amandine Pradier
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Natacha Madelon
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Maria Papaserafeim
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Riccardo Sfriso
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University, Munich, Germany
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University, Munich, Germany
| | | | - Esther Voegelin
- Clinic of Plastic and Hand Surgery, University Hospital, Bern, Switzerland
| | - David Kiermeir
- Clinic of Plastic and Hand Surgery, University Hospital, Bern, Switzerland
| | - Hansjörg Jenni
- Clinic of Cardiovascular Surgery, University Hospital, Bern, Switzerland
| | - Robert Rieben
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Jörg D Seebach
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
6
|
Sfriso R, Bongoni A, Banz Y, Klymiuk N, Wolf E, Rieben R. Assessment of the Anticoagulant and Anti-inflammatory Properties of Endothelial Cells Using 3D Cell Culture and Non-anticoagulated Whole Blood. J Vis Exp 2017. [PMID: 28930996 DOI: 10.3791/56227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In vivo, endothelial cells are crucial for the natural anticoagulation of circulating blood. Consequently, endothelial cell activation leads to blood coagulation. This phenomenon is observed in many clinical situations, like organ transplantation in the presence of pre-formed anti-donor antibodies, including xenotransplantation, as well as in ischemia/reperfusion injury. In order to reduce animal experimentation according to the 3R standards (reduction, replacement and refinement), in vitro models to study the effect of endothelial cell activation on blood coagulation would be highly desirable. However, common flatbed systems of endothelial cell culture provide a surface-to-volume ratio of 1 - 5 cm2 of endothelium per mL of blood, which is not sufficient for natural, endothelial-mediated anticoagulation. Culturing endothelial cells on microcarrier beads may increase the surface-to-volume ratio to 40 - 160 cm2/mL. This increased ratio is sufficient to ensure the "natural" anticoagulation of whole blood, so that the use of anticoagulants can be avoided. Here an in vitro microcarrier-based system is described to study the effects of genetic modification of porcine endothelial cells on coagulation of whole, non-anticoagulated human blood. In the described assay, primary porcine aortic endothelial cells, either wild type (WT) or transgenic for human CD46 and thrombomodulin, were grown on microcarrier beads and then exposed to freshly drawn non-anticoagulated human blood. This model allows for the measurement and quantification of cytokine release as well as activation markers of complement and coagulation in the blood plasma. In addition, imaging of activated endothelial cell and deposition of immunoglobulins, complement- and coagulation proteins on the endothelialized beads were performed by confocal microscopy. This assay can also be used to test drugs which are supposed to prevent endothelial cell activation and, thus, coagulation. On top of its potential to reduce the number of animals used for such investigations, the described assay is easy to perform and consistently reproducible.
Collapse
Affiliation(s)
- Riccardo Sfriso
- Department of Clinical Research, University of Bern; Graduate School for Cellular and Biomedical Sciences, University of Bern
| | - Anjan Bongoni
- Immunology Research Centre, St. Vincent's Hospital Melbourne
| | - Yara Banz
- Institute of Pathology, University of Bern
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University
| | - Robert Rieben
- Department of Clinical Research, University of Bern;
| |
Collapse
|
7
|
Abdelhafez MM, Shaw J, Sutter D, Schnider J, Banz Y, Jenni H, Voegelin E, Constantinescu MA, Rieben R. Effect of C1-INH on ischemia/reperfusion injury in a porcine limb ex vivo perfusion model. Mol Immunol 2017. [PMID: 28641140 DOI: 10.1016/j.molimm.2017.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Revascularization of an amputated limb within 4-6h is essential to avoid extensive ischemia/reperfusion (I/R) injury leading to vascular leakage, edema and tissue necrosis. I/R injury is a pathological inflammatory condition that occurs during reperfusion of an organ or tissue after prolonged ischemia. It is characterized by a complex crosstalk between endothelial cell activation and the activation of plasma cascades. Vasculoprotective pharmacological intervention to prevent I/R injury might be an option to prolong the time window between limb amputation and successful replantation. We used C1-easterase inhibitor (C1-INH) in this study because of its known inhibitory effects on the activation of the complement, coagulation and kinin cascades. Forelimbs of 8 large white pigs were amputated, subjected to ischemia, and then reperfused with autologous whole blood. All limbs were exposed to 9h of cold ischemia at 4°C. After 2h of cold ischemia the limbs were either perfused with of C1-INH (1U/ml in hydroxyethyl starch, n=8) or hydroxyethyl starch alone (n=7). After completion of the 9-h ischemia period, all limbs were ex vivo perfused with heparinized autologous whole blood for 12h using a pediatric heart lung machine to simulate in vivo revascularization. Our results show that I/R injury in the control group led to a significant elevation of tissue deposition of IgG and IgM, complement C3b/c, C5b-9 and MBL. Also, activation of the kinin system was significantly increased, namely bradykinin in plasma, and expression of bradykinin receptors 1 and 2 in tissue. In addition, markers for endothelial integrity like expression of CD31, VE-cadherin and heparan sulfate proteoglycans were decreased in reperfused tissue. Limb I/R injury also led to activation of the coagulation cascade with a significant elevation of fibrin and thrombin deposition and increased fibrinogen-like protein-2 expression. C1-INH treated limbs showed much less activation of plasma cascades and better protection of endothelial integrity compared to the reperfused control limbs. In conclusion, the use of the cytoprotective drug C1-INH significantly reduced I/R injury by protecting the vascular endothelium as well as the muscle tissue from deposition of immunoglobulins, complement and fibrin.
Collapse
Affiliation(s)
- Mai M Abdelhafez
- Department of Clinical Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Jane Shaw
- Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Damian Sutter
- Clinic of Plastic and Hand Surgery, University Hospital, Bern, Switzerland.
| | - Jonas Schnider
- Clinic of Plastic and Hand Surgery, University Hospital, Bern, Switzerland.
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland.
| | - Hansjörg Jenni
- Clinic of Cardiovascular Surgery, University Hospital, Bern, Switzerland.
| | - Esther Voegelin
- Clinic of Plastic and Hand Surgery, University Hospital, Bern, Switzerland.
| | | | - Robert Rieben
- Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Efficient production of multi-modified pigs for xenotransplantation by 'combineering', gene stacking and gene editing. Sci Rep 2016; 6:29081. [PMID: 27353424 PMCID: PMC4926246 DOI: 10.1038/srep29081] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’, and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous GGTA1 and CMAH knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before GGTA1 knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age.
Collapse
|