1
|
Fahmy SH, Jungbluth H, Jepsen S, Winter J. Effects of histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors on proliferative, differentiative, and regenerative functions of Toll-like receptor 2 (TLR-2)-stimulated human dental pulp cells (hDPCs). Clin Oral Investig 2023; 28:53. [PMID: 38157054 DOI: 10.1007/s00784-023-05466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This in vitro study aimed to modify TLR-2-mediated effects on the paracrine, proliferative, and differentiation potentials of human dental pulp-derived cells using histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors. MATERIALS AND METHODS Cell viability was assessed using the XTT assay. Cells were either treated with 10 μg/ml Pam3CSK4 only, or pre-treated with valproic acid (VPA) (3 mM), trichostatin A (TSA) (3 μM), and MG-149 (3 μM) for a total of 4 h and 24 h. Control groups included unstimulated cells and cells incubated with inhibitors solvents only. Transcript levels for NANOG, OCT3-4, FGF-1 and 2, NGF, VEGF, COL-1A1, TLR-2, hβD-2 and 3, BMP-2, DSPP, and ALP were assessed through qPCR. RESULTS After 24 h, TSA pre-treatment significantly upregulated the defensins and maintained the elevated pro-inflammatory cytokines, but significantly reduced healing and differentiation genes. VPA significantly upregulated the pro-inflammatory cytokine levels, while MG-149 significantly downregulated them. Pluripotency genes were not significantly affected by any regimen. CONCLUSIONS At the attempted concentrations, TSA upregulated the defensins gene expression levels, and MG-149 exerted a remarkable anti-inflammatory effect; therefore, they could favorably impact the immunological profile of hDPCs. CLINICAL RELEVANCE Targeting hDPC nuclear function could be a promising option in the scope of the biological management of inflammatory pulp diseases.
Collapse
Affiliation(s)
- Sarah Hossam Fahmy
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany.
| | - Holger Jungbluth
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Ughetto A, Roubille F, Molina A, Battistella P, Gaudard P, Demaria R, Guihaire J, Lacampagne A, Delmas C. Heart graft preservation technics and limits: an update and perspectives. Front Cardiovasc Med 2023; 10:1248606. [PMID: 38028479 PMCID: PMC10657826 DOI: 10.3389/fcvm.2023.1248606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Heart transplantation, the gold standard treatment for end-stage heart failure, is limited by heart graft shortage, justifying expansion of the donor pool. Currently, static cold storage (SCS) of hearts from donations after brainstem death remains the standard practice, but it is usually limited to 240 min. Prolonged cold ischemia and ischemia-reperfusion injury (IRI) have been recognized as major causes of post-transplant graft failure. Continuous ex situ perfusion is a new approach for donor organ management to expand the donor pool and/or increase the utilization rate. Continuous ex situ machine perfusion (MP) can satisfy the metabolic needs of the myocardium, minimizing irreversible ischemic cell damage and cell death. Several hypothermic or normothermic MP methods have been developed and studied, particularly in the preclinical setting, but whether MP is superior to SCS remains controversial. Other approaches seem to be interesting for extending the pool of heart graft donors, such as blocking the paths of apoptosis and necrosis, extracellular vesicle therapy, or donor heart-specific gene therapy. In this systematic review, we summarize the mechanisms involved in IRI during heart transplantation and existing targeting therapies. We also critically evaluate all available data on continuous ex situ perfusion devices for adult donor hearts, highlighting its therapeutic potential and current limitations and shortcomings.
Collapse
Affiliation(s)
- Aurore Ughetto
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Department of Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - François Roubille
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Cardiology Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Adrien Molina
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Pascal Battistella
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Philippe Gaudard
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Department of Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Roland Demaria
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Julien Guihaire
- Cardiac and Vascular Surgery, Marie Lanelongue Hospital, Paris Saclay University, Le Plessis Robinson, France
| | - Alain Lacampagne
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
| | - Clément Delmas
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Intensive Cardiac Care Unit, Cardiology Department, Rangueil University Hospital, Toulouse, France
- REICATRA, Institut Saint Jacques, CHU de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Moran B, Davern M, Reynolds JV, Donlon NE, Lysaght J. The impact of histone deacetylase inhibitors on immune cells and implications for cancer therapy. Cancer Lett 2023; 559:216121. [PMID: 36893893 DOI: 10.1016/j.canlet.2023.216121] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Many cancers possess the ability to suppress the immune response to malignant cells, thus facilitating tumour growth and invasion, and this has fuelled research to reverse these mechanisms and re-activate the immune system with consequent important therapeutic benefit. One such approach is to use histone deacetylase inhibitors (HDACi), a novel class of targeted therapies, which manipulate the immune response to cancer through epigenetic modification. Four HDACi have recently been approved for clinical use in malignancies including multiple myeloma and T-cell lymphoma. Most research in this context has focussed on HDACi and tumour cells, however, little is known about their impact on the cells of the immune system. Additionally, HDACi have been shown to impact the mechanisms by which other anti-cancer therapies exert their effects by, for example, increasing accessibility to exposed DNA through chromatin relaxation, impairing DNA damage repair pathways and increasing immune checkpoint receptor expression. This review details the effects of HDACi on immune cells, highlights the variability in these effects depending on experimental design, and provides an overview of clinical trials investigating the combination of HDACi with chemotherapy, radiotherapy, immunotherapy and multimodal regimens.
Collapse
Affiliation(s)
- Brendan Moran
- Cancer Immunology and Immunotherapy Group, Trinity St. James's Cancer Institute, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Maria Davern
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Noel E Donlon
- Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity St. James's Cancer Institute, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
4
|
Guo Y, Song S, DU X, Tian L, Zhang M, Zhou H, Chen ZK, Chang S. Romidepsin (FK228) improves the survival of allogeneic skin grafts through downregulating the production of donor-specific antibody via suppressing the IRE1α-XBP1 pathway. J Zhejiang Univ Sci B 2022; 23:392-406. [PMID: 35557040 DOI: 10.1631/jzus.b2100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibody-mediated rejection (AMR) is one of the major causes of graft loss after transplantation. Recently, the regulation of B cell differentiation and the prevention of donor-specific antibody (DSA) production have gained increased attention in transplant research. Herein, we established a secondary allogeneic in vivo skin transplant model to study the effects of romidepsin (FK228) on DSA. The survival of grafted skins was monitored daily. The serum levels of DSA and the number of relevant immunocytes in the recipient spleens were evaluated by flow cytometry. Then, we isolated and purified B cells from B6 mouse spleens in vitro by magnetic bead sorting. The B cells were cultured with interleukin-4 (IL-4) and anti-clusters of differentiation 40 (CD40) antibody with or without FK228 treatment. The immunoglobulin G1 (IgG1) and IgM levels in the supernatant were evaluated by enzyme-linked immunosorbent assay (ELISA). Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blotting were conducted to determine the corresponding levels of messenger RNA (mRNA) and protein expression in cultured cells and the recipient spleens. The results showed that FK228 significantly improved the survival of allogeneic skin grafts. Moreover, FK228 inhibited DSA production in the serum along with the suppression of histone deacetylase 1 (HADC1) and HDAC2 and the upregulation of the acetylation of histones H2A and H3. It also inhibited the differentiation of B cells to plasma cells, decreased the transcription of positive regulatory domain-containing 1 (Prdm1) and X-box-binding protein 1 (Xbp1), and decreased the expression of phosphorylated inositol-requiring enzyme 1 α (p-IRE1α), XBP1, and B lymphocyte-induced maturation protein-1 (Blimp-1). In conclusion, FK228 could decrease the production of antibodies by B cells via inhibition of the IRE1α-XBP1 signaling pathway. Thus, FK228 is considered as a promising therapeutic agent for the clinical treatment of AMR.
Collapse
Affiliation(s)
- Yuliang Guo
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Siyu Song
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaoxiao DU
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Li Tian
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Man Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hongmin Zhou
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhonghua Klaus Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
5
|
Pedro Ferreira J, Pitt B, Zannad F. Histone deacetylase inhibitors for cardiovascular conditions and healthy longevity. THE LANCET. HEALTHY LONGEVITY 2021; 2:e371-e379. [DOI: 10.1016/s2666-7568(21)00061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
|
6
|
Lin JR, Huang SH, Wu CH, Chen YW, Hong ZJ, Cheng CP, Sytwu HK, Lin GJ. Valproic Acid Suppresses Autoimmune Recurrence and Allograft Rejection in Islet Transplantation through Induction of the Differentiation of Regulatory T Cells and Can Be Used in Cell Therapy for Type 1 Diabetes. Pharmaceuticals (Basel) 2021; 14:ph14050475. [PMID: 34067829 PMCID: PMC8157191 DOI: 10.3390/ph14050475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) results from the destruction of insulin-producing β cells in the islet of the pancreas by lymphocytes. Non-obese diabetic (NOD) mouse is an animal model frequently used for this disease. It has been considered that T1D is a T cell-mediated autoimmune disease. Both CD4+ and CD8+ T cells are highly responsible for the destruction of β cells within the pancreatic islets of Langerhans. Previous studies have revealed that regulatory T (Treg) cells play a critical role in the homeostasis of the immune system as well as immune tolerance to autoantigens, thereby preventing autoimmunity. Valproic acid (VPA), a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Previous reports have demonstrated that VPA treatment decreases the incidence and severity of collagen-induced arthritis and experimental autoimmune neuritis by increasing the population of Treg cells in these mouse disease models. Given the effect of VPA in the induction of Treg cells’ population, we evaluated the therapeutic potential and the protective mechanism of VPA treatment in the suppression of graft autoimmune rejection and immune recurrence in syngeneic or allogenic islet transplantation mouse models. In our study, we found that the treatment of VPA increased the expression of forkhead box P3 (FOXP3), which is a critical transcription factor that controls Treg cells’ development and function. Our data revealed that 400 mg/kg VPA treatment in recipients effectively prolonged the survival of syngeneic and allogenic islet grafts. The percentage of Treg cells in splenocytes increased in VPA-treated recipients. We also proved that adoptive transfer of VPA-induced Tregs to the transplanted recipients effectively prolonged the survival of islet grafts. The results of this study provide evidence of the therapeutic potential and the underlying mechanism of VPA treatment in syngeneic islet transplantation for T1D. It also provides experimental evidence for cell therapy by adoptive transferring of in vitro VPA-induced Tregs for the suppression of autoimmune recurrence.
Collapse
Affiliation(s)
- Jeng-Rong Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
- Department of General Surgery, En Chu Kong Hospital, New Taipei 23741, Taiwan;
| | - Chih-Hsiung Wu
- Department of General Surgery, En Chu Kong Hospital, New Taipei 23741, Taiwan;
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Zhi-Jie Hong
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chia-Pi Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gu-Jiun Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
- Correspondence: ; Tel.: +886-287-923-100 (ext. 18709)
| |
Collapse
|
7
|
Abstract
The leading causes of death in military conflicts continue to be hemorrhagic shock (HS) and traumatic brain injury (TBI). Most of the mortality is a result of patients not surviving long enough to obtain surgical care. As a result, there is a significant unmet need for a therapy that stimulates a "prosurvival phenotype" that counteracts the cellular pathophysiology of HS and TBI to prolong survival. Valproic acid (VPA), a well-established antiepileptic therapy for more than 50 years, has shown potential as one such prosurvival therapy. This review details how VPA's role as a nonselective histone deacetylase inhibitor induces cellular changes that promote survival and decrease cellular pathways that lead to cell death. The review comprehensively covers more than two decades worth of studies ranging from preclinical (mice, swine) to recent human clinical trials of the use of VPA in HS and TBI. Furthermore, it details the different mechanisms in which VPA alters gene expression, induces cytoprotective changes, attenuates platelet dysfunction, provides neuroprotection, and enhances survival in HS and TBI. Valproic acid shows real promise as a therapy that can induce the prosurvival phenotype in those injured during military conflict.
Collapse
|
8
|
Iveland TS, Hagen L, Sharma A, Sousa MML, Sarno A, Wollen KL, Liabakk NB, Slupphaug G. HDACi mediate UNG2 depletion, dysregulated genomic uracil and altered expression of oncoproteins and tumor suppressors in B- and T-cell lines. J Transl Med 2020; 18:159. [PMID: 32264925 PMCID: PMC7137348 DOI: 10.1186/s12967-020-02318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC inhibitors (HDACi) belong to a new group of chemotherapeutics that are increasingly used in the treatment of lymphocyte-derived malignancies, but their mechanisms of action remain poorly understood. Here we aimed to identify novel protein targets of HDACi in B- and T-lymphoma cell lines and to verify selected candidates across several mammalian cell lines. METHODS Jurkat T- and SUDHL5 B-lymphocytes were treated with the HDACi SAHA (vorinostat) prior to SILAC-based quantitative proteome analysis. Selected differentially expressed proteins were verified by targeted mass spectrometry, RT-PCR and western analysis in multiple mammalian cell lines. Genomic uracil was quantified by LC-MS/MS, cell cycle distribution analyzed by flow cytometry and class switch recombination monitored by FACS in murine CH12F3 cells. RESULTS SAHA treatment resulted in differential expression of 125 and 89 proteins in Jurkat and SUDHL5, respectively, of which 19 were commonly affected. Among these were several oncoproteins and tumor suppressors previously not reported to be affected by HDACi. Several key enzymes determining the cellular dUTP/dTTP ratio were downregulated and in both cell lines we found robust depletion of UNG2, the major glycosylase in genomic uracil sanitation. UNG2 depletion was accompanied by hyperacetylation and mediated by increased proteasomal degradation independent of cell cycle stage. UNG2 degradation appeared to be ubiquitous and was observed across several mammalian cell lines of different origin and with several HDACis. Loss of UNG2 was accompanied by 30-40% increase in genomic uracil in freely cycling HEK cells and reduced immunoglobulin class-switch recombination in murine CH12F3 cells. CONCLUSION We describe several oncoproteins and tumor suppressors previously not reported to be affected by HDACi in previous transcriptome analyses, underscoring the importance of proteome analysis to identify cellular effectors of HDACi treatment. The apparently ubiquitous depletion of UNG2 and PCLAF establishes DNA base excision repair and translesion synthesis as novel pathways affected by HDACi treatment. Dysregulated genomic uracil homeostasis may aid interpretation of HDACi effects in cancer cells and further advance studies on this class of inhibitors in the treatment of APOBEC-expressing tumors, autoimmune disease and HIV-1.
Collapse
Affiliation(s)
- Tobias S Iveland
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Kristian Lied Wollen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway. .,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway. .,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway.
| |
Collapse
|
9
|
Exploring the Drug Repurposing Versatility of Valproic Acid as a Multifunctional Regulator of Innate and Adaptive Immune Cells. J Immunol Res 2019; 2019:9678098. [PMID: 31001564 PMCID: PMC6437734 DOI: 10.1155/2019/9678098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.
Collapse
|
10
|
Pharmacokinetic Considerations with the Use of Antiepileptic Drugs in Patients with HIV and Organ Transplants. Curr Neurol Neurosci Rep 2018; 18:89. [PMID: 30302572 DOI: 10.1007/s11910-018-0897-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Antiepileptic drugs are frequently administered to patients with HIV infection or in recipients of organ transplants. The potentially serious drug-drug interactions between the "classic" antiepileptic drugs, antiretrovirals, and immunosuppressants have been extensively studied. Evidence-based information on the second and third generation of antiepileptic drugs is almost non-existent. The purpose of this review is to analyze the pharmacokinetic profile of these newer agents to assess their potential for drug interactions with antiretrovirals and immunosuppressants. RECENT FINDINGS As a group, the newer generations of antiepileptic drugs have shown a more favorable drug interaction potential compared to the "classic" ones. A group of moderate enzyme-inducing drugs includes eslicarbazepine acetate, oxcarbazepine, rufinamide, and topiramate. These drugs are not as potent inducers as the "classic" drugs but may potentially decrease the serum concentrations of some antiretrovirals and immunosuppressants. Antiepileptic drugs with no or minimal enzyme-inducing properties include brivaracetam, gabapentin, lacosamide, lamotrigine, levetiracetam, perampanel, pregabalin, and vigabatrin. The newer generations of antiepileptic drugs have expanded the therapeutic options in patients with HIV infection or organ transplants.
Collapse
|
11
|
Zhang Q, Dai Y, Cai Z, Mou L. HDAC Inhibitors: Novel Immunosuppressants for Allo- and Xeno- Transplantation. ChemistrySelect 2018. [DOI: 10.1002/slct.201702295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Yifan Dai
- Department Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing, Jiangsu 210029 China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| |
Collapse
|
12
|
Sabia C, Picascia A, Grimaldi V, Amarelli C, Maiello C, Napoli C. The epigenetic promise to improve prognosis of heart failure and heart transplantation. Transplant Rev (Orlando) 2017; 31:249-256. [PMID: 28882368 DOI: 10.1016/j.trre.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/03/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022]
Abstract
Heart transplantation is still the only possible life-saving treatment for end-stage heart failure, the critical epilogue of several cardiac diseases. Epigenetic mechanisms are being intensively investigated because they could contribute to establishing innovative diagnostic and predictive biomarkers, as well as ground-breaking therapies both for heart failure and heart transplantation rejection. DNA methylation and histone modifications can modulate the innate and adaptive immune response by acting on the expression of immune-related genes that, in turn, are crucial determinants of transplantation outcome. Epigenetic drugs acting on methylation and histone-modification pathways may modulate Treg activity by acting as immunosuppressive agents. Moreover, the identification of non-invasive and reliable epigenetic biomarkers for the prediction of allograft rejection and for monitoring immunosuppressive therapies represents an attractive perspective in the management of transplanted patients. MiRNAs seem to fit particularly well to this purpose because they are differently expressed in patients at high and low risk of rejection and are detectable in biological fluids besides biopsies. Although increasing evidence supports the involvement of epigenetic tags in heart failure and transplantation, further short and long-term clinical studies are needed to translate the possible available findings into clinical setting.
Collapse
Affiliation(s)
- Chiara Sabia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy.
| | - Antonietta Picascia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy
| | - Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy; Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Università degli Studi della Campania "L. Vanvitelli", Italy; SDN Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, Via Gianturco 113, 80143 Naples, Italy
| |
Collapse
|