1
|
Wang Z. Role of transforming growth factor-β in airway remodelling in bronchiolitis obliterans. Growth Factors 2023; 41:192-209. [PMID: 37487145 DOI: 10.1080/08977194.2023.2239356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Airway remodelling is the main pathological mechanism of bronchiolitis obliterans (BO). Several studies have found that transforming growth factor-β (TGF-β) expression is increased in BO during airway remodelling, where it plays an important role in various biological processes by binding to its receptor complex to activate multiple signalling proteins and pathways. This review examines the role of TGF-β in airway remodelling in BO and its potential as a therapeutic target, highlighting the mechanisms of TGF-β activation and signalling, cellular targets of TGF-β actions, and research progress in TGF-β signalling and TGF-β-mediated processes.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Varenyiova Z, Rojas-Hernandez LS, Spano J, Capek V, Rosenberg-Hasson Y, Holmes T, Milla C. Azithromycin promotes proliferation, and inhibits inflammation in nasal epithelial cells in primary ciliary dyskinesia. Sci Rep 2023; 13:14453. [PMID: 37660113 PMCID: PMC10475097 DOI: 10.1038/s41598-023-41577-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder associated with recurrent and chronic respiratory infections due to functional defects of motile cilia. In this study, we aimed to elucidate inflammatory and proliferative responses in PCD respiratory epithelium and evaluate the effect of Azithromycin (AZT) on these responses. Airway basal cells (BCs) were isolated from nasal samples of Wild-type (WT) epitope of healthy donors and PCD donors with bi-allelic mutations in DNAH5, DNAH11 and CCDC39. Cells were expanded in vitro and stimulated with either Lipopolysaccharide (LPS) or vehicle control. Post stimulation, cells were treated with either Azithromycin (AZT) or vehicle control. Cell proliferation was imaged in real-time. Separately, BCs from the same donors were expanded and grown at an air-liquid interface (ALI) to generate a multi-ciliated epithelium (MCE). Once fully mature, cells were stimulated with LPS, AZT, LPS + AZT or vehicle control. Inflammatory profiling was performed on collected media by cytokine Luminex assay. At baseline, there was a significantly higher mean production of pro-inflammatory cytokines by CCDC39 BCs and MCEs when compared to WT, DNAH11 and DNAH5 cells. AZT inhibited production of cytokines induced by LPS in PCD cells. Differences in cell proliferation were noted in PCD and this was also corrected with AZT treatment.
Collapse
Affiliation(s)
- Zofia Varenyiova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | | | - Jacquelyn Spano
- Center for Excellence in Pulmonary Biology, Stanford University, Palo Alto, CA, USA
| | - Vaclav Capek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Tyson Holmes
- Human Immune Monitoring Center, Stanford University, Stanford, CA, USA
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
3
|
Cristeto Porras M, Mora Cuesta VM, Iturbe Fernández D, Tello Mena S, Alonso Lecue P, Sánchez Moreno L, Miñambres García E, Naranjo Gozalo S, Izquierdo Cuervo S, Cifrián Martínez JM. Early onset of azithromycin to prevent CLAD in lung transplantation: Promising results of a retrospective single centre experience. Clin Transplant 2023; 37:e14832. [PMID: 36217992 DOI: 10.1111/ctr.14832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/06/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Azithromycin (AZI) may be an effective immune modulator in lung transplant (LT) recipients, and can decrease chronic lung allograft dysfunction (CLAD) rates, the leading cause of mortality after the 1st year post-LT. The aim of the study is to assess the effect of AZI initiation and its timing on the incidence and severity of CLAD in LT recipients. METHODS Single-center retrospective study, including LT recipients from 01/01/2011 to 30/06/2020. Four groups were established: those who started AZI at the 3rd week post-LT (group A), those who received AZI later than the 3rd week post-LT and had preserved FEV1 (B), those who did not receive AZI (C) and those who started AZI due to a decline in FEV1 (D). The dosage of AZI prescribed was 250 mg three times per week. CLAD was defined and graduated according to the 2019 ISHLT criteria. RESULTS We included 358 LT recipients: 139 (38.83%) were in group A, 94 (26.25%) in group B, 91 (25.42%) in group C, and 34 (9.50%) in group D. Group A experienced the lowest CLAD incidence and severity at 1 (p = .01), 3 (p < .001), and 5 years post-LT, followed by Group B. Groups C and D experienced a higher incidence and severity of CLAD (p = .015). Initiation of AZI prior to FEV1 decline (Groups A and B) proved to be protective against CLAD after adjusting for differences between the treatment groups. CONCLUSIONS Early initiation of AZI in LT recipients could have a role in decreasing the incidence and severity of CLAD. In addition, as long as FEV1 is preserved, initiating AZI at any time could also be useful to prevent the incidence of CLAD and reduce its severity.
Collapse
Affiliation(s)
| | | | | | - Sandra Tello Mena
- Respiratory Department, Marqués de Valdecilla University Hospital, Santander, Spain
| | | | | | - Eduardo Miñambres García
- Transplant Coordination and Intensive Care Unit, Marqués de Valdecilla University Hospital, Santander, Spain
| | - Sara Naranjo Gozalo
- Thoracic Surgery, Marqués de Valdecilla University Hospital, Santander, Spain
| | | | | |
Collapse
|
4
|
Hao X, Peng C, Lian W, Liu H, Fu G. Effect of azithromycin on bronchiolitis obliterans syndrome in posttransplant recipients: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29160. [PMID: 35839027 PMCID: PMC11132355 DOI: 10.1097/md.0000000000029160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) is a devastating complication that occurs after transplantation. Although azithromycin is currently used for the treatment of BOS, the evidence is sparse and controversial. The aim of this meta-analysis is to evaluate the effects of azithromycin on forced expiratory volume in 1 second (FEV1) and patient's survival. METHODS PubMed, Embase, Cochrane library, Web of Science databases, and the ClinicalTrials.gov registry were systematically searched from inception until December 2020 for relevant original research articles. Random-effects models were used to calculate pooled-effect estimates. RESULTS Searches identified 15 eligible studies involving 694 participants. For FEV1 (L), there was a significant increase after short-term (≤12 weeks; P = .00) and mid-term (12-24 weeks; P = .01) administration of azithromycin. For FEV1 (%) compared to baseline, there was a significant increase after short-term (≤12 weeks) administration of azithromycin (P = .02), while there were no statistically significant differences in the medium and long term. When pooled FEV1% was predicted, it exhibited a similar trend to FEV1 (%) compared to baseline. In addition, we discovered that azithromycin reduced the risk of death (hazard ratio = 0.26; 95% confidence interval = 0.17 to 0.40; P = .00) in patients with BOS post-lung transplantation. CONCLUSIONS Azithromycin therapy is both effective and safe for lung function improvement in patients with posttransplant BOS after the short- and medium-term administration. Additionally, it has been demonstrated a significant survival benefit among patients with BOS post-lung transplant. Higher quality randomized controlled trials and more extensive prospective cohort studies are needed to confirm the effect of azithromycin on patients with posttransplant BOS.
Collapse
Affiliation(s)
- Xiaohui Hao
- Department of Pharmacy, Medical Supplies Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Cheng Peng
- Department of Pharmacy, Medical Supplies Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Wenwen Lian
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Han Liu
- Department of Pharmacy, Medical Supplies Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Guiying Fu
- Department of Pharmacy, Medical Supplies Center of the Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Hallett AM, Feng Y, Jones MR, Bush EL, Merlo CA, Segev DL, McAdams-DeMarco M. Ambient Air Pollution and Adverse Waitlist Events Among Lung Transplant Candidates. Transplantation 2022; 106:1071-1077. [PMID: 34049363 PMCID: PMC8613310 DOI: 10.1097/tp.0000000000003837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Air pollution is associated with cardiopulmonary disease and death in the general population. Fine particulate matter (PM2.5) is particularly harmful due to its ability to penetrate into areas of gas exchange within the lungs. Persons with advanced lung disease are believed to be particularly susceptible to PM2.5 exposure, but only a few studies have examined the effect of exposure on this population. Here we investigate the association between PM2.5 exposure and adverse waitlist events among lung transplant (LT) candidates. METHODS US registry data were used to identify LT candidates listed between January 1, 2010 and December 31, 2016. Annual PM2.5 concentration at year of listing was estimated for each candidate's ZIP Code using National Aeronautics and Space Administration's (NASA) Socioeconomic Data and Applications Center Global Annual PM2.5 Grids. We estimated crude and adjusted hazard ratios for adverse waitlist events, defined as death or removal, using Cox proportional hazards regression. RESULTS Of the 15 075 included candidates, median age at listing was 60, 43.8% were female individuals, and 81.7% were non-Hispanic White. Median ZIP Code PM2.5 concentration was 9.06 µg/m3. When compared with those living in ZIP Codes with lower PM2.5 exposure (PM2.5 <10.53 µg/m3), candidates in ZIP Codes in the highest quartile of PM2.5 exposure (≥10.53 µg/m3) had 1.14-fold (95% confidence interval, 1.04-1.25) risk of adverse waitlist events. The result remained significant after adjusting for demographics, education, insurance, smoking, lung allocation score, body mass index, and blood type (hazard ratio, 1.17; 95% confidence interval, 1.07-1.29). CONCLUSIONS Elevated ambient PM2.5 concentration was associated with adverse waitlist events among LT candidates. These findings highlight the impact of air pollution on clinical outcomes in this critically ill population.
Collapse
Affiliation(s)
- Andrew M. Hallett
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yijing Feng
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Miranda R. Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Errol L. Bush
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christian A. Merlo
- Department of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dorry L. Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Mara McAdams-DeMarco
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
6
|
Long-term, low-dose macrolide antibiotic treatment in pediatric chronic airway diseases. Pediatr Res 2022; 91:1036-1042. [PMID: 34120139 PMCID: PMC9122820 DOI: 10.1038/s41390-021-01613-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Macrolide antibiotics are one of the most commonly used broad-spectrum antibiotics. They have an inhibitory effect on a variety of respiratory pathogens; besides, they have non-anti-infective effects, including anti-inflammatory, regulating airway secretion, immune regulation, and other effects. A growing number of studies have shown that the non-anti-infective effects of macrolides have important and potential value in the treatment of pediatric chronic airway diseases; the therapy was described as "long-term, low-dose usage"; unfortunately, there is no guideline or consensus that applies to children. To better carry out the mechanism and clinical research of non-anti-infective effect and promote its rational use in children, the authors summarize the evidence of the usage of long-term, low-dose macrolide antibiotic therapy (LLMAT) in the treatment of chronic airway diseases in children and the progress in recent years. IMPACT: This review summarizes the evidence (mostly in recent 5 years) of the usage of long-term, low-dose macrolide antibiotic therapy in the treatment of chronic airway diseases. The recent studies and guidelines support and enrich the point that long-term, low-dose macrolide antibiotic therapy has potential benefit for children with severe asthma, CF, non-CF bronchiectasis, and BO, which provides clinical references and is of clinical interest. Long-term, low-dose macrolide antibiotic therapy has good safety, and no serious events have been reported; however, potential cardiac side effects and macrolide resistance should be clinically noted.
Collapse
|
7
|
Iasella CJ, Hoji A, Popescu I, Wei J, Snyder ME, Zhang Y, Xu W, Iouchmanov V, Koshy R, Brown M, Fung M, Langelier C, Lendermon EA, Dugger D, Shah R, Lee J, Johnson B, Golden J, Leard LE, Kleinhenz ME, Kilaru S, Hays SR, Singer JP, Sanchez PG, Morrell MR, Pilewski JM, Greenland JR, Chen K, McDyer JF. Type-1 immunity and endogenous immune regulators predominate in the airway transcriptome during chronic lung allograft dysfunction. Am J Transplant 2021; 21:2145-2160. [PMID: 33078555 PMCID: PMC8607839 DOI: 10.1111/ajt.16360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major complication limiting long-term survival among lung transplant recipients (LTRs). Limited understanding of CLAD immunopathogenesis and a paucity of biomarkers remain substantial barriers for earlier detection and therapeutic interventions for CLAD. We hypothesized the airway transcriptome would reflect key immunologic changes in disease. We compared airway brush-derived transcriptomic signatures in CLAD (n = 24) versus non-CLAD (n = 21) LTRs. A targeted assessment of the proteome using concomitant bronchoalveolar lavage (BAL) fluid for 24 cytokines/chemokines and alloimmune T cell responses was performed to validate the airway transcriptome. We observed an airway transcriptomic signature of differential genes expressed (DGEs) in CLAD marked by Type-1 immunity and striking upregulation of two endogenous immune regulators: indoleamine 2, 3 dioxygenase 1 (IDO-1) and tumor necrosis factor receptor superfamily 6B (TNFRSF6B). Advanced CLAD staging was associated with a more intense airway transcriptome signature. In a validation cohort using the identified signature, we found an area under the curve (AUC) of 0.77 for CLAD LTRs. Targeted proteomic analyses revealed a predominant Type-1 profile with detection of IFN-γ, TNF-α, and IL-1β as dominant CLAD cytokines, correlating with the airway transcriptome. The airway transcriptome provides novel insights into CLAD immunopathogenesis and biomarkers that may impact diagnosis of CLAD.
Collapse
Affiliation(s)
- Carlo J. Iasella
- Department of Pharmacy and Therapeutics, University of
Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Aki Hoji
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Jianxin Wei
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Wei Xu
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Vera Iouchmanov
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Ritchie Koshy
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Mark Brown
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Monica Fung
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Charles Langelier
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Elizabeth A. Lendermon
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Daniel Dugger
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Rupal Shah
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Joyce Lee
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Bruce Johnson
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Jeffrey Golden
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Lorriana E. Leard
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Mary Ellen Kleinhenz
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Silpa Kilaru
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Steven R. Hays
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Jonathan P. Singer
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Pablo G. Sanchez
- Department of Cardiothoracic Surgery, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R. Morrell
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - John R. Greenland
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Kong Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - John F. McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| |
Collapse
|
8
|
Joelsson JP, Kricker JA, Arason AJ, Sigurdsson S, Valdimarsdottir B, Gardarsson FR, Page CP, Lehmann F, Gudjonsson T, Ingthorsson S. Azithromycin ameliorates sulfur dioxide-induced airway epithelial damage and inflammatory responses. Respir Res 2020; 21:233. [PMID: 32912304 PMCID: PMC7488110 DOI: 10.1186/s12931-020-01489-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Background The airway epithelium (AE) forms the first line of defence against harmful particles and pathogens. Barrier failure of the airway epithelium contributes to exacerbations of a range of lung diseases that are commonly treated with Azithromycin (AZM). In addition to its anti-bacterial function, AZM has immunomodulatory effects which are proposed to contribute to its clinical effectiveness. In vitro studies have shown the AE barrier-enhancing effects of AZM. The aim of this study was to analyze whether AE damage caused by inhalation of sulfur dioxide (SO2) in a murine model could be reduced by pre-treatment with AZM. Methods The leakiness of the AE barrier was evaluated after SO2 exposure by measuring levels of human serum albumin (HSA) in bronchoalveolar lavage fluid (BALF). Protein composition in BALF was also assessed and lung tissues were evaluated across treatments using histology and gene expression analysis. Results AZM pre-treatment (2 mg/kg p.o. 5 times/week for 2 weeks) resulted in reduced glutathione-S-transferases in BALF of SO2 injured mice compared to control (without AZM treatment). AZM treated mice had increased intracellular vacuolization including lamellar bodies and a reduction in epithelial shedding after injury in addition to a dampened SO2-induced inflammatory response. Conclusions Using a mouse model of AE barrier dysfunction we provide evidence for the protective effects of AZM in vivo, possibly through stabilizing the intracellular microenvironment and reducing inflammatory responses. Our data provide insight into the mechanisms contributing to the efficacy of AZM in the treatment of airway diseases.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | - Jennifer A Kricker
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | - Ari J Arason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,EpiEndo Pharmaceuticals, Reykjavík, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavík, Iceland
| | | | - Bryndis Valdimarsdottir
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | | | - Clive P Page
- EpiEndo Pharmaceuticals, Reykjavík, Iceland.,Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,EpiEndo Pharmaceuticals, Reykjavík, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavík, Iceland
| | - Saevar Ingthorsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland. .,EpiEndo Pharmaceuticals, Reykjavík, Iceland. .,Faculty of Nursing, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|