1
|
Shirini K, Meier RPH. Systematic Review and Comparative Outcomes Analysis of NHP Liver Allotransplants and Xenotransplants. Xenotransplantation 2025; 32:e70017. [PMID: 39960351 PMCID: PMC11832012 DOI: 10.1111/xen.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025]
Abstract
Patients with fulminant liver failure ineligible for transplantation have a high mortality rate. With recent progress in genetic modifications and clinical achievements, using pig livers as a bridge-to-transplant has regained popularity. Preclinical testing has been done in small cohorts of nonhuman primates (NHP), and maximum survival is limited to 1-month. We conducted a systematic review and comparative outcomes analysis of NHP-liver xenotransplantation and gathered 203 pig-to-NHP and NHP-to-NHP transplants reported in 23 studies. Overall, NHP survival after pig-liver xenotransplantation was limited (1, 3, 4 weeks: 18.0%, 5.6%, 1.1%), compared to NHPs after allotransplantation (1, 3, 4 weeks: 60.6%, 47.4%, 45.4%). A focus on pigs with genetic modifications evidenced some short-term survival benefits (1, 3, 4 weeks: 29.1%, 9.1%, 1.8%). The use of the auxiliary transplant technique was also associated with better short-term results (1, 3, 4 weeks: 40.9%, 9.1%, 4.5%). Causes of graft and animal loss were mostly rejection and liver failure in allotransplants, while bleeding, liver, and respiratory failure predominated in xenotransplants. Notably, the 1-month survival rate for NHP-allotransplants was significantly lower than the national > 98% rate for human liver transplants. This data confirms the short-term improvements brought by genetic modifications and auxiliary implantation in the NHP model, which remains imperfect.
Collapse
Affiliation(s)
- Kasra Shirini
- Division of Transplant SurgeryDepartment of SurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Raphael P. H. Meier
- Division of Transplant SurgeryDepartment of SurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
2
|
Czigany Z, Shirini K, Putri AJ, Longchamp AE, Bhusal S, Kamberi S, Meier RPH. Bridging Therapies-Ex Vivo Liver Xenoperfusion and the Role of Machine Perfusion: An Update. Xenotransplantation 2025; 32:e70011. [PMID: 39825617 DOI: 10.1111/xen.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Advancements in xenotransplantation intersecting with modern machine perfusion technology offer promising solutions to patients with liver failure providing a valuable bridge to transplantation and extending graft viability beyond current limitations. Patients facing acute or acute chronic liver failure, post-hepatectomy liver failure, or fulminant hepatic failure often require urgent liver transplants which are severely limited by organ shortage, emphasizing the importance of effective bridging approaches. Machine perfusion is now increasingly used to test and use genetically engineered porcine livers in translational studies, addressing the limitations and costs of non-human primate models. Current reports about artificial and bioartificial liver support combined with xenografts showcase the potential in ex vivo xenogeneic perfusion. Breakthroughs, such as the perfusion of genetically modified porcine liver with FDA-approved machine perfusion systems connected to human blood circulation, underscore the interest and potential feasibility of a "liver dialysis" bridge to allotransplantation or recovery. This review provides an overview of the past and current research in the field of ex vivo pig liver xenoperfusion.
Collapse
Affiliation(s)
- Zoltan Czigany
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Kasra Shirini
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aghnia J Putri
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Alban E Longchamp
- Division of Transplant Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Subarna Bhusal
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shani Kamberi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Xu C, Fang X, Xu X, Wei X. Genetic engineering drives the breakthrough of pig models in liver disease research. LIVER RESEARCH 2024; 8:131-140. [PMID: 39957748 PMCID: PMC11771255 DOI: 10.1016/j.livres.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025]
Abstract
Compared with the widely used rodents, pigs are anatomically, physiologically, and genetically more similar to humans, making them high-quality models for the study of liver diseases. Here, we review the latest research progress on pigs as a model of human liver disease, including methods for establishing them and their advantages in studying cystic fibrosis liver disease, acute liver failure, liver regeneration, non-alcoholic fatty liver disease, liver tumors, and xenotransplantation. We also emphasize the importance of genetic engineering techniques, mainly the CRISPR/Cas9 system, which has greatly enhanced the utility of porcine models as a tool for substantially advancing liver disease research. Genetic engineering is expected to propel the pig as one of the irreplaceable animal models for future biomedical research.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
He X, Xu S, Tang L, Ling S, Wei X, Xu X. Insights into the history and tendency of liver transplantation for liver cancer: a bibliometric-based visual analysis. Int J Surg 2024; 110:406-418. [PMID: 37800536 PMCID: PMC10793788 DOI: 10.1097/js9.0000000000000806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Research on liver transplantation (LT) for liver cancer has gained increasing attention. This paper has comprehensively described the current status, hotspots and trends in this field. A total of 2991 relevant articles from 1 January 1963 to 28 February 2023 were obtained from the Web of Science Core Collection. VOSviewer and CiteSpace software were utilized as bibliometric tools to analyze and visualize knowledge mapping. Between 1963 and 2023, the number of papers in the area of LT for liver cancer increased continuously. A total of 70 countries/regions, 2303 institutions and 14 840 researchers have published research articles, with the United States and China being the two most productive countries. Our bibliometric-based visual analysis revealed the expansion of LT indications for liver cancer and the prevention/treatment of cancer recurrence as ongoing research hotspots over the past decades. Meanwhile, emerging studies also focus on downstaging/bridging treatments before LT and the long-term survival of LT recipient, in particular the precise application of immunosuppressants.
Collapse
Affiliation(s)
- Xinyu He
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine
| | - Linsong Tang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province
- Zhejiang University School of Medicine
| | - Sunbin Ling
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province
- Zhejiang University School of Medicine
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Lee KW, Park SSW, Kim DS, Choi K, Shim J, Kim J, Kim SJ, Park JB. Auxiliary liver xenotransplantation technique in a transgenic pig-to-non-human primate model: A surgical approach to prolong survival. Xenotransplantation 2023; 30:e12814. [PMID: 37493436 DOI: 10.1111/xen.12814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Xenotransplantation using pigs' liver offers a potentially alternative method to overcome worldwide donor shortage, or more importantly as a bridge to allotransplantation. However, it has been challenged by profound thrombocytopenia and fatal coagulopathy in non-human primate models. Here we suggest that a left auxiliary technique can be a useful method to achieve extended survival of the xenograft. Fifteen consecutive liver xenotransplants were carried out in a pig-to-cynomolgus model. Right auxiliary technique was implemented in two cases, orthotopic in eight cases, and left auxiliary in five cases. None of the right auxiliary recipients survived after surgery due to hemorrhage during complex dissection between the primate's right lobe and inferior vena cava. Orthotopic recipients survived less than 7 days secondary to profound thrombocytopenia and coagulopathy. Two out of five left auxiliary xenotransplants survived more than 3 weeks without uncontrolled thrombocytopenia or anemia, with one of them surviving 34 days, the longest graft survival reported to date. Left auxiliary xenotransplant is a feasible approach in non-human primate experiments, and the feared risk of thrombocytopenia and coagulopathy can be minimized. This may allow for longer evaluation of the xenograft and help better understand histopathological and immunological changes that occur following liver xenotransplantation.
Collapse
Affiliation(s)
- Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sean S W Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Suk Kim
- GenNBio, Pyeongtaek-Si, Gyeonggi-Do, Republic of Korea
| | - Kimyung Choi
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Joohyun Shim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, Ulsan University Medical School, Seoul, Republic of Korea
| | - Sung Joo Kim
- GenNBio, Pyeongtaek-Si, Gyeonggi-Do, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Brandman D. Progress in liver transplantation, but better access is needed. Liver Transpl 2023; 29:347-348. [PMID: 36724442 DOI: 10.1097/lvt.0000000000000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/03/2023]
Affiliation(s)
- Danielle Brandman
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
7
|
Pierson RN, Allan JS, Cooper DK, D’Alessandro DA, Fishman JA, Kawai T, Lewis GD, Madsen JC, Markmann JF, Riella LV. Expert Opinion Special Feature: Patient Selection for Initial Clinical Trials of Pig Organ Transplantation. Transplantation 2022; 106:1720-1723. [PMID: 35761442 PMCID: PMC10124765 DOI: 10.1097/tp.0000000000004197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - James S. Allan
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David K.C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David A. D’Alessandro
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jay A. Fishman
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Tatsuo Kawai
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gregory D. Lewis
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - James F. Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Nunes Dos Santos RM. Insights Into Pig Liver Xenotransplantation. Gastroenterol Hepatol (N Y) 2022; 18:216-218. [PMID: 35505945 PMCID: PMC9053494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
9
|
Cross-Najafi AA, Lopez K, Isidan A, Park Y, Zhang W, Li P, Yilmaz S, Akbulut S, Ekser B. Current Barriers to Clinical Liver Xenotransplantation. Front Immunol 2022; 13:827535. [PMID: 35281047 PMCID: PMC8904558 DOI: 10.3389/fimmu.2022.827535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Preclinical trials of pig-to-nonhuman primate liver xenotransplantation have recently achieved longer survival times. However, life-threatening thrombocytopenia and coagulation dysregulation continue to limit preclinical liver xenograft survival times to less than one month despite various genetic modifications in pigs and intensive pharmacological support. Transfusion of human coagulation factors and complex immunosuppressive regimens have resulted in substantial improvements in recipient survival. The fundamental biological mechanisms of thrombocytopenia and coagulation dysregulation remain incompletely understood. Current studies demonstrate that porcine von Willebrand Factor binds more tightly to human platelet GPIb receptors due to increased O-linked glycosylation, resulting in increased human platelet activation. Porcine liver sinusoidal endothelial cells and Kupffer cells phagocytose human platelets in an asialoglycoprotein receptor 1-dependent and CD40/CD154-dependent manner, respectively. Porcine Kupffer cells phagocytose human platelets via a species-incompatible SIRPα/CD47 axis. Key drivers of coagulation dysregulation include constitutive activation of the extrinsic clotting cascade due to failure of porcine tissue factor pathway inhibitor to repress recipient tissue factor. Additionally, porcine thrombomodulin fails to activate human protein C when bound by human thrombin, leading to a hypercoagulable state. Combined genetic modification of these key genes may mitigate liver xenotransplantation-induced thrombocytopenia and coagulation dysregulation, leading to greater recipient survival in pig-to-nonhuman primate liver xenotransplantation and, potentially, the first pig-to-human clinical trial.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|