1
|
Fonseca LM, Krause N, Lebreton F, Berishvili E. Recreating the Endocrine Niche: Advances in Bioengineering the Pancreas. Artif Organs 2025; 49:541-555. [PMID: 39844747 DOI: 10.1111/aor.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Intrahepatic islet transplantation is a promising strategy for β-cell replacement therapy in the treatment of Type 1 Diabetes. However, several obstacles hinder the long-term efficacy of this therapy. A major challenge is the scarcity of donor organs. During the isolation process, islets are disconnected from their extracellular matrix (ECM) and vasculature, leading to significant loss due to anoikis and hypoxia. Additionally, inflammatory and rejection reactions further compromise islet survival and engraftment success. Extensive efforts are being made to improve the efficacy of islet transplantation. These strategies include promoting revascularization and ECM support through bioengineering techniques, exploring alternative sources of insulin-secreting cells, and providing immunomodulation for the graft. Despite these advancements, a significant gap remains in integrating these strategies into a cohesive approach that effectively replicates the native endocrine environment. Specifically, the lack of comprehensive methods to address both the structural and functional aspects of the endocrine niche limits reproducibility and clinical translation. Therefore, bioengineering an endocrine pancreas must aim to recreate the endocrine niche to achieve lifelong efficacy and insulin independence. This review discusses various strategies developed to produce the building blocks for generating a vascularized, immune-protected insulin-secreting construct, emphasizing the importance of the endocrine niche's composition and function.
Collapse
Affiliation(s)
- Laura Mar Fonseca
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Nicerine Krause
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Fanny Lebreton
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Ekaterine Berishvili
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
2
|
Inoguchi K, Anazawa T, Fujimoto N, Tada S, Yamane K, Emoto N, Izuwa A, Su H, Fujimoto H, Murakami T, Nagai K, Hatano E. Impact of Prevascularization on Immunological Environment and Early Engraftment in Subcutaneous Islet Transplantation. Transplantation 2024; 108:1115-1126. [PMID: 38192025 DOI: 10.1097/tp.0000000000004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND The utilization of islet-like cells derived from pluripotent stem cells may resolve the scarcity of islet transplantation donors. The subcutaneous space is a promising transplantation site because of its capacity for graft observation and removal, thereby ensuring safety. To guarantee subcutaneous islet transplantation, physicians should ensure ample blood supply. Numerous methodologies, including prevascularization, have been investigated to augment blood flow, but the optimal approach remains undetermined. METHODS From C57BL/6 mice, 500 syngeneic islets were transplanted into the prevascularized subcutaneous site of recipient mice by implanting agarose rods with basic fibroblast growth factor at 1 and 2 wk. Before transplantation, the blood glucose levels, cell infiltration, and cytokine levels at the transplant site were evaluated. Furthermore, we examined the impact of the extracellular matrix capsule on graft function and the inflammatory response. RESULTS Compared with the 1-wk group, the 2-wk group exhibited improved glycemic control, indicating that longer prevascularization enhanced transplant success. Flow cytometry analysis detected immune cells, such as neutrophils and macrophages, in the extracellular matrix capsules, whereas cytometric bead array analysis indicated the release of inflammatory and proinflammatory cytokines. Treatment with antitumor necrosis factor and anti-interleukin-6R antibodies in the 1-wk group improved graft survival, similar to the 2-wk group. CONCLUSIONS In early prevascularization before subcutaneous transplantation, neutrophil and macrophage accumulation prevented early engraftment owing to inflammatory cytokine production.
Collapse
Affiliation(s)
- Kenta Inoguchi
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Anazawa
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nanae Fujimoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for Life and Medical Sciences, Department of Regeneration Science and Engineering, Kyoto University, Kyoto, Japan
| | - Seiichiro Tada
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kei Yamane
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Emoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aya Izuwa
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hang Su
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency for Health, Safety and Environment, Kyoto University, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuyuki Nagai
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Yang J, Yan Y, Yin X, Liu X, Reshetov IV, Karalkin PA, Li Q, Huang RL. Bioengineering and vascularization strategies for islet organoids: advancing toward diabetes therapy. Metabolism 2024; 152:155786. [PMID: 38211697 DOI: 10.1016/j.metabol.2024.155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Diabetes presents a pressing healthcare crisis, necessitating innovative solutions. Organoid technologies have rapidly advanced, leading to the emergence of bioengineering islet organoids as an unlimited source of insulin-producing cells for treating insulin-dependent diabetes. This advancement surpasses the need for cadaveric islet transplantation. However, clinical translation of this approach faces two major limitations: immature endocrine function and the absence of a perfusable vasculature compared to primary human islets. In this review, we summarize the latest developments in bioengineering functional islet organoids in vitro and promoting vascularization of organoid grafts before and after transplantation. We highlight the crucial roles of the vasculature in ensuring long-term survival, maturation, and functionality of islet organoids. Additionally, we discuss key considerations that must be addressed before clinical translation of islet organoid-based therapy, including functional immaturity, undesired heterogeneity, and potential tumorigenic risks.
Collapse
Affiliation(s)
- Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China; Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, China
| | - Xiangqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Igor V Reshetov
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Pavel A Karalkin
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| |
Collapse
|
4
|
Saito R, Inagaki A, Nakamura Y, Imura T, Kanai N, Mitsugashira H, Endo Kumata Y, Katano T, Suzuki S, Tokodai K, Kamei T, Unno M, Watanabe K, Tabata Y, Goto M. A Gelatin Hydrogel Nonwoven Fabric Enhances Subcutaneous Islet Engraftment in Rats. Cells 2023; 13:51. [PMID: 38201255 PMCID: PMC10777905 DOI: 10.3390/cells13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Although subcutaneous islet transplantation has many advantages, the subcutaneous space is poor in vessels and transplant efficiency is still low in animal models, except in mice. Subcutaneous islet transplantation using a two-step approach has been proposed, in which a favorable cavity is first prepared using various materials, followed by islet transplantation into the preformed cavity. We previously reported the efficacy of pretreatment using gelatin hydrogel nonwoven fabric (GHNF), and the length of the pretreatment period influenced the results in a mouse model. We investigated whether the preimplantation of GHNF could improve the subcutaneous islet transplantation outcomes in a rat model. GHNF sheets sandwiching a silicone spacer (GHNF group) and silicone spacers without GHNF sheets (control group) were implanted into the subcutaneous space of recipients three weeks before islet transplantation, and diabetes was induced seven days before islet transplantation. Syngeneic islets were transplanted into the space where the silicone spacer was removed. Blood glucose levels, glucose tolerance, immunohistochemistry, and neovascularization were evaluated. The GHNF group showed significantly better blood glucose changes than the control group (p < 0.01). The cure rate was significantly higher in the GHNF group (p < 0.05). The number of vWF-positive vessels was significantly higher in the GHNF group (p < 0.01), and lectin angiography showed the same tendency (p < 0.05). The expression of laminin and collagen III around the transplanted islets was also higher in the GHNF group (p < 0.01). GHNF pretreatment was effective in a rat model, and the main mechanisms might be neovascularization and compensation of the extracellular matrices.
Collapse
Affiliation(s)
- Ryusuke Saito
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Graduate School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Norifumi Kanai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Hiroaki Mitsugashira
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Yukiko Endo Kumata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Takumi Katano
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Shoki Suzuki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Kazuaki Tokodai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Kimiko Watanabe
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto 606-8507, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Ellis CE, Mojibian M, Ida S, Fung VCW, Skovsø S, McIver E, O'Dwyer S, Webber TD, Braam MJS, Saber N, Sasaki S, Lynn FC, Kieffer TJ, Levings MK. Human A2-CAR T Cells Reject HLA-A2 + Human Islets Transplanted Into Mice Without Inducing Graft-versus-host Disease. Transplantation 2023; 107:e222-e233. [PMID: 37528526 PMCID: PMC10527662 DOI: 10.1097/tp.0000000000004709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease characterized by T-cell-mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include the use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft-versus-host disease (xGVHD). METHODS We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4 + and CD8 + T cells and tested their ability to reject HLA-A2 + islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T-cell engraftment, islet function, and xGVHD were assessed longitudinally. RESULTS The speed and consistency of A2-CAR T-cell-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of coinjected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, coinjection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2 + human islets within 1 wk and without xGVHD for 12 wk. CONCLUSIONS Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of islet-replacement therapies.
Collapse
Affiliation(s)
- Cara E Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver, BC, Canada
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Majid Mojibian
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Shogo Ida
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver, BC, Canada
| | - Vivian C W Fung
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver, BC, Canada
| | - Emma McIver
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Shannon O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver, BC, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver, BC, Canada
| | - Mitchell J S Braam
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver, BC, Canada
| | - Nelly Saber
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver, BC, Canada
| | - Shugo Sasaki
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Francis C Lynn
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Abstract
BACKGROUND The lack of a suitable transplantation site has become a bottleneck restricting the development of islet transplantation. METHODS In this study, for the first time, a prevascularized sinus tract (PST) for islet transplantation was constructed in a mouse model by temporarily embedding a 4× silk thread between the liver surface and the attached decellularized human amniotic membrane. After which, the characteristics of the PST and the function of the islet graft within the PST were evaluated. RESULTS The results showed that PST was lined with granulation tissue, the blood vessel density of the local tissue increased, and proangiogenic proteins were upregulated, which mimics the microenvironment of the islets in the pancreas to a certain extent. Transplantation of ~200 syngeneic islets into the PST routinely reversed the hyperglycemia of the recipient mice and maintained euglycemia for >100 d until the islet grafts were retrieved. The islet grafts within the PST achieved better results to those in the nonprevascularized control groups and comparable results to those under the kidney capsule with respect to glycemic control and glucose tolerance. CONCLUSIONS By attaching a decellularized human amniotic membrane to the surface of mouse liver and temporarily embedding a 4× silk thread, the PST formed on the liver surface has a favorable local microenvironment and is a potential clinical islet transplantation site.
Collapse
|
7
|
Successful Islet Transplantation Into a Subcutaneous Polycaprolactone Scaffold in Mice and Pigs. Transplant Direct 2022; 9:e1417. [PMID: 36591328 PMCID: PMC9788983 DOI: 10.1097/txd.0000000000001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022] Open
Abstract
Islet transplantation is a promising treatment for type 1 diabetes. It has the potential to improve glycemic control, particularly in patients suffering from hypoglycemic unawareness and glycemic instability. As most islet grafts do not function permanently, efforts are needed to create an accessible and replaceable site, for islet grafts or for insulin-producing cells obtained from replenishable sources. To this end, we designed and tested an artificial, polymeric subcutaneous transplantation site that allows repeated transplantation of islets. Methods In this study, we developed and compared scaffolds made of poly(D,L,-lactide-co-ε-caprolactone) (PDLLCL) and polycaprolactone (PCL). Efficacy was first tested in mice' and then, as a proof of principle for application in a large animal model, the scaffolds were tested in pigs, as their skin structure is similar to that of humans. Results In mice, islet transplantation in a PCL scaffold expedited return to normoglycemia in comparison to PDLLCL (7.7 ± 3.7 versus 16.8 ± 6.5 d), but it took longer than the kidney capsule control group. PCL also supported porcine functional islet survival in vitro. Subcutaneous implantation of PDLLCL and PCL scaffolds in pigs revealed that PCL scaffolds were more stable and was associated with less infiltration by immune cells than PDLLCL scaffolds. Prevascularized PCL scaffolds were therefore used to demonstrate the functional survival of allogenic islets under the skin of pigs. Conclusions To conclude, a novel PCL scaffold shows efficacy as a readily accessible and replaceable, subcutaneous transplantation site for islets in mice and demonstrated islet survival after a month in pigs.
Collapse
|
8
|
Decellularized Pancreatic Tail as Matrix for Pancreatic Islet Transplantation into the Greater Omentum in Rats. J Funct Biomater 2022; 13:jfb13040171. [PMID: 36278640 PMCID: PMC9589982 DOI: 10.3390/jfb13040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Infusing pancreatic islets into the portal vein currently represents the preferred approach for islet transplantation, despite considerable loss of islet mass almost immediately after implantation. Therefore, approaches that obviate direct intravascular placement are urgently needed. A promising candidate for extrahepatic placement is the omentum. We aimed to develop an extracellular matrix skeleton from the native pancreas that could provide a microenvironment for islet survival in an omental flap. To that end, we compared different decellularization approaches, including perfusion through the pancreatic duct, gastric artery, portal vein, and a novel method through the splenic vein. Decellularized skeletons were compared for size, residual DNA content, protein composition, histology, electron microscopy, and MR imaging after repopulation with isolated islets. Compared to the other approaches, pancreatic perfusion via the splenic vein provided smaller extracellular matrix skeletons, which facilitated transplantation into the omentum, without compromising other requirements, such as the complete depletion of cellular components and the preservation of pancreatic extracellular proteins. Repeated MR imaging of iron-oxide-labeled pancreatic islets showed that islets maintained their position in vivo for 49 days. Advanced environmental scanning electron microscopy demonstrated that islets remained integrated with the pancreatic skeleton. This novel approach represents a proof-of-concept for long-term transplantation experiments.
Collapse
|
9
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
A Prevascularized Sinus Tract on the Liver Surface for Islet Transplantation. Transplantation 2022. [DOI: 10.1097/10.1097/tp.0000000000004236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Paez-Mayorga J, Lukin I, Emerich D, de Vos P, Orive G, Grattoni A. Emerging strategies for beta cell transplantation to treat diabetes. Trends Pharmacol Sci 2021; 43:221-233. [PMID: 34887129 DOI: 10.1016/j.tips.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
Beta cell replacement has emerged as an attractive therapeutic alternative to traditional exogenous insulin administration for management of type 1 diabetes (T1D). Beta cells deliver insulin dynamically based on individual glycometabolic requirements, providing glycemic control while significantly reducing patient burden. Although transplantation into the portal circulation is clinically available, poor engraftment, low cell survival, and immune rejection have sparked investigation of alternative strategies for beta cell transplantation. In this review, we focus on current micro- and macroencapsulation technologies for beta cell transplantation and evaluate their advantages and challenges. Specifically, we comment on recent methods to ameliorate graft hypoxia including enhanced vascularization, reduction of pericapsular fibrotic overgrowth (PFO), and oxygen supplementation. We also discuss emerging beta cell-sourcing strategies to overcome donor shortage and provide insight into potential approaches to address outstanding challenges in the field.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | | | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|