1
|
Muller X, Rossignol G, Couillerot J, Breton A, Hervieu V, Lesurtel M, Mohkam K, Mabrut JY. A Single Preservation Solution for Static Cold Storage and Hypothermic Oxygenated Perfusion of Marginal Liver Grafts: A Preclinical Study. Transplantation 2024; 108:175-183. [PMID: 37410580 DOI: 10.1097/tp.0000000000004714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
BACKGROUND Hypothermic oxygenated perfusion (HOPE) improves outcomes of marginal liver grafts. However, to date, no preservation solution exists for both static cold storage (SCS) and HOPE. METHODS After 30 min of asystolic warm ischemia, porcine livers underwent 6 h of SCS followed by 2 h of HOPE. Liver grafts were either preserved with a single preservation solution (IGL2) designed for SCS and HOPE (IGL2-Machine Perfusion Solution [MPS] group, n = 6) or with the gold-standard University of Wisconsin designed for for SCS and Belzer MPS designed for HOPE (MPS group, n = 5). All liver grafts underwent warm reperfusion with whole autologous blood for 2 h, and surrogate markers of hepatic ischemia-reperfusion injury (IRI) were assessed in the hepatocyte, cholangiocyte, vascular, and immunological compartments. RESULTS After 2 h of warm reperfusion, livers in the IGL2-MPS group showed no significant differences in transaminase release (aspartate aminotransferase: 65.58 versus 104.9 UI/L/100 g liver; P = 0.178), lactate clearance, and histological IRI compared with livers in the MPS group. There were no significant differences in biliary acid composition, bile production, and histological biliary IRI. Mitochondrial and endothelial damage was also not significantly different and resulted in similar hepatic inflammasome activation. CONCLUSIONS This preclinical study shows that a novel IGL2 allows for the safe preservation of marginal liver grafts with SCS and HOPE. Hepatic IRI was comparable with the current gold standard of combining 2 different preservation solutions (University of Wisconsin + Belzer MPS). These data pave the way for a phase I first-in-human study and it is a first step toward tailored preservation solutions for machine perfusion of liver grafts.
Collapse
Affiliation(s)
- Xavier Muller
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
- Ecole Doctorale 340, Biologie Moléculaire et Intégrative, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Guillaume Rossignol
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
- Ecole Doctorale 340, Biologie Moléculaire et Intégrative, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Joris Couillerot
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
| | - Antoine Breton
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
| | - Valérie Hervieu
- Department of Pathology, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Villeurbanne, Lyon, France
| | - Mickaël Lesurtel
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
| | - Kayvan Mohkam
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
| | - Jean-Yves Mabrut
- Department of General Surgery and Liver Transplantation, Croix Rousse University Hospital, Hospices Civils de Lyon, University of Lyon I, Lyon, France
- Hepatology Institute of Lyon, INSERM U1052, Lyon, France
| |
Collapse
|
2
|
Bardallo RG, da Silva RT, Carbonell T, Palmeira C, Folch-Puy E, Roselló-Catafau J, Adam R, Panisello-Rosello A. Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. Int J Mol Sci 2022; 23:5742. [PMID: 35628554 PMCID: PMC9143961 DOI: 10.3390/ijms23105742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Rui T. da Silva
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| | - Arnau Panisello-Rosello
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| |
Collapse
|