1
|
Safarikia S, Cirelli R, Spagnoletti G, Martinelli D, Bravetti G, Francalanci P, D'Alessandro A, Di Felice G, Maistri M, Baldissone E, Fratti AM, Simeoli R, Sacchetti E, Cairoli S, Rizzo C, Pariante R, Vacca M, Cappoli A, Albano C, Pietrobattista A, Spada M, Vici CD. Normothermic Machine Perfusion of Explanted Human Metabolic Livers: A Proof of Concept for Studying Inborn Errors of Metabolism. J Inherit Metab Dis 2025; 48:e70010. [PMID: 40026238 PMCID: PMC11874047 DOI: 10.1002/jimd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The human liver plays a central metabolic role; however, its physiology may become imbalanced in inborn errors of metabolism (IEM), a broad category of monogenic disorders. Liver transplantation has been increasingly used to improve patient metabolic control, especially in diseases related to amino acid metabolism, such as urea cycle disorders and organic acidurias, to provide enzyme replacement. Ex vivo liver normothermic machine perfusion (NMP) techniques have recently been developed to increase the number of transplantable grafts and improve transplantation outcomes. This study used seven NMP of explanted livers from patients with IEM undergoing transplantation as models to investigate disease-related liver metabolism and function. The perfused livers demonstrated positive viability indicators and disease-specific targeted metabolomics providing the proof-of-principle that our ex vivo model expresses the biochemical disease characteristics and responds to therapeutical intervention in a unique "physiological" milieu, offering an ideal tool to study novel treatments, in a setting closely mirroring human disease.
Collapse
Affiliation(s)
- Samira Safarikia
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Riccardo Cirelli
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Gionata Spagnoletti
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Diego Martinelli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Giulia Bravetti
- Cardiac Surgery Unit, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Paola Francalanci
- Division of Pathology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | | | - Giovina Di Felice
- Clinical Analysis Laboratory, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Marta Maistri
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Elena Baldissone
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Alberto M. Fratti
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Raffaele Simeoli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Elisa Sacchetti
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Sara Cairoli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Cristiano Rizzo
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Rosanna Pariante
- Division of Anesthesiology and Intensive Care, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Michele Vacca
- Division of Transfusion Medicine, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Andrea Cappoli
- Division of Nephrology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Christian Albano
- B Cell Research Unit, Immunology Research Area, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Andrea Pietrobattista
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Unit of Hepatology and Transplant Clinic, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Marco Spada
- Research Unit of Clinical Hepatogastroenterology and Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Carlo Dionisi Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's HospitalIRCCSRomeItaly
| |
Collapse
|
2
|
Luo J, Bian C, Liu M, Fang Y, Jin L, Yu R, Huang H. Research on gene editing and immunosuppressants in kidney xenotransplantation. Transpl Immunol 2025; 89:102184. [PMID: 39900229 DOI: 10.1016/j.trim.2025.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Gene-edited pig organ transplantation can solve the serious shortage of human donor organs. Currently, xenotransplantation is rapidly developing and has made significant breakthroughs. The use of GTKO (Gal knockout) pigs is an important step forward. The subsequent knockout of three genes combined with the transfer of immune-related genes effectively prolonged the survival time of non-human primate (NHP) transplantation in xenotransplantation. Due to the success of allogeneic kidney transplantation on NHP, this gene editing protocol was recently applied to clinical patients. Two patients underwent allogeneic kidney transplantation and survived for 51 days and 47 days. Exceeding the hyperacute rejection period proves that appropriate gene editing strategies and the combination of immunosuppressive agents contribute to the success of xenotransplantation. To further enhance the feasibility of pig kidney xenograft, this article mainly explores the effects of the NHP xenograft gene editing scheme and immunosuppressants on prolonging transplant survival time.
Collapse
Affiliation(s)
- JiaJiao Luo
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - CongWen Bian
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Liu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Fang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Jin
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Yu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - HanFei Huang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Zhang MX, Zhao Q, He XS. Research progress of ischemia-free liver transplantation. Hepatobiliary Pancreat Dis Int 2025; 24:18-22. [PMID: 39489635 DOI: 10.1016/j.hbpd.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Ischemia-reperfusion injury (IRI) is an inherent issue in organ transplantation. Because of the allograft shortage, more and more extended criteria donor (ECD) organs are used, unfortunately these grafts are more susceptible to IRI. Although machine perfusion technology has brought hope to alleviate IRI, this technology is still unable to eradicate IRI-related organ damage. Ischemia-free liver transplantation (IFLT) can completely avoid IRI, thereby improve graft function and recipient outcome, and allow to expand organ pool. This review summarized the latest progresses in IFLT, and speculated the future development of this concept.
Collapse
Affiliation(s)
- Ming-Xi Zhang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510000, China
| | - Qiang Zhao
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510000, China
| | - Xiao-Shun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510000, China.
| |
Collapse
|
4
|
Hofmann J, Kofler A, Schartner M, Buch ML, Hermann M, Zelger B, Öfner D, Oberhuber R, Hautz T, Schneeberger S, Meszaros AT. Assessment of Mitochondrial Respiration During Hypothermic Storage of Liver Biopsies Following Normothermic Machine Perfusion. Transpl Int 2024; 37:12787. [PMID: 38845758 PMCID: PMC11153658 DOI: 10.3389/ti.2024.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
Organ quality can be assessed prior to transplantation, during normothermic machine perfusion (NMP) of the liver. Evaluation of mitochondrial function by high-resolution respirometry (HRR) may serve as a viability assessment concept in this setting. Freshly collected tissue is considered as optimal sample for HRR, but due to technical and personnel requirements, more flexible and schedulable measurements are needed. However, the impact of cold storage following NMP before processing biopsy samples for mitochondrial analysis remains unknown. We aimed at establishing an appropriate storage protocol of liver biopsies for HRR. Wedge biopsies of 5 human livers during NMP were obtained and assessed by HRR. Analysis was performed after 0, 4, 8, and 12 h of hypothermic storage (HTS) in HTK organ preservation solution at 4°C. With HTS up to 4 h, mitochondrial performance did not decrease in HTS samples compared with 0 h (OXPHOS, 44.62 [34.75-60.15] pmol·s-1·mg wet mass-1 vs. 43.73 [40.69-57.71], median [IQR], p > 0.999). However, at HTS beyond 4 h, mitochondrial respiration decreased. We conclude that HTS can be safely applied for extending the biopsy measurement window for up to 4 h to determine organ quality, but also that human liver respiration degrades beyond 4 h HTS following NMP.
Collapse
Affiliation(s)
- Julia Hofmann
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kofler
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Melanie Schartner
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Madita L. Buch
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Öfner
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Andras T. Meszaros
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Dondossola D, Lonati C, Battistin M, Vivona L, Zanella A, Maggioni M, Valentina V, Zizmare L, Trautwein C, Schlegel A, Gatti S. Twelve-hour normothermic liver perfusion in a rat model: characterization of the changes in the ex-situ bio-molecular phenotype and metabolism. Sci Rep 2024; 14:6040. [PMID: 38472309 DOI: 10.1038/s41598-024-56433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
The partial understanding of the biological events that occur during normothermic machine perfusion (NMP) and particularly during prolonged perfusion might hinder its deployment in clinical transplantation. The aim of our study was to implement a rat model of prolonged NMP to characterize the bio-molecular phenotype and metabolism of the perfused organs. Livers (n = 5/group) were procured and underwent 4 h (NMP4h) or 12 h (NMP12h) NMP, respectively, using a perfusion fluid supplemented with an acellular oxygen carrier. Organs that were not exposed to any procedure served as controls (Native). All perfused organs met clinically derived viability criteria at the end of NMP. Factors related to stress-response and survival were increased after prolonged perfusion. No signs of oxidative damage were detected in both NMP groups. Evaluation of metabolite profiles showed preserved mitochondrial function, activation of Cori cycle, induction of lipolysis, acetogenesis and ketogenesis in livers exposed to 12 h-NMP. Increased concentrations of metabolites involved in glycogen synthesis, glucuronidation, bile acid conjugation, and antioxidant response were likewise observed. In conclusion, our NMP12h model was able to sustain liver viability and function, thereby deeply changing cell homeostasis to maintain a newly developed equilibrium. Our findings provide valuable information for the implementation of optimized protocols for prolonged NMP.
Collapse
Affiliation(s)
- Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy.
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Luigi Vivona
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vaira Valentina
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Andrea Schlegel
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| |
Collapse
|