1
|
Amin KR, Fildes JE. The contribution of the donor vascularised hand and face allograft in transplant rejection: An immunological perspective. Transpl Immunol 2024; 84:102035. [PMID: 38518826 DOI: 10.1016/j.trim.2024.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Overcoming immunological rejection remains a barrier to the safe adoption of Vascularised Composite Allotransplantation (VCA). To mitigate this risk, clinical protocols have been derived from solid organ transplantation, targeting recipient immunomodulation, yet VCA is unique. Face and hand composite allografts are composed of multiple different tissues, each with their own immunological properties. Experimental work suggests that allografts carry variable numbers and populations of donor leukocytes in an organ specific manner. Ordinarily, these passenger leukocytes are transferred from the donor graft into the recipient circulation after transplantation. Whether alloantigen presentation manifests as acute allograft rejection or transplant tolerance is unknown. This review aims to characterise the immunological properties of the constituent parts of the donor face and hand, the potential fate of donor leukocytes and to consider theoretical graft specific interventions to mitigate early rejection.
Collapse
Affiliation(s)
- Kavit R Amin
- Department of Plastic Surgery, Manchester University NHS Foundation Trust, Manchester, UK; Division of Cell Matrix, Biology and Regenerative Medicine, University of Manchester, Manchester, UK; The Pebble Institute, Manchester, UK.
| | - James E Fildes
- The Pebble Institute, Manchester, UK; The Healthcare Technologies Institute, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Ashraf MI, Mengwasser J, Reutzel-Selke A, Polenz D, Führer K, Lippert S, Tang P, Michaelis E, Catar R, Pratschke J, Witzel C, Sauer IM, Tullius SG, Kern B. Depletion of donor dendritic cells ameliorates immunogenicity of both skin and hind limb transplants. Front Immunol 2024; 15:1395945. [PMID: 38799435 PMCID: PMC11116604 DOI: 10.3389/fimmu.2024.1395945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APCs), particularly dendritic cells (DCs), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DCs (cDCs) and APCs on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation. By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. Notably, the skin component exhibited heightened immunogenicity when compared to the entire VCA, evidenced by increased frequencies of pan (CD11b-CD11c+), mature (CD11b-CD11c+MHCII+) and active (CD11b-CD11c+CD40+) DCs and cDC2 subset (CD11b+CD11c+ MHCII+) in the lymphoid tissues and the blood of skin transplant recipients. While donor depletion of cDC and APC reduced frequencies, maturation and activation of DCs in all analyzed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APCs and cDCs mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.
Collapse
Affiliation(s)
- Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Joerg Mengwasser
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Dietrich Polenz
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kirsten Führer
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Steffen Lippert
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Edward Michaelis
- Department of Pathology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Christian Witzel
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Igor M. Sauer
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Einstein Berlin Institute of Health Visiting Fellow, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara Kern
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin Institute of Health (BIH) Biomedical Innovation Academy, Berlin Institute of Health (BIH) Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
3
|
Colombo M, Marongiu L, Mingozzi F, Marzi R, Cigni C, Facchini FA, Rotem R, Valache M, Stucchi G, Rocca G, Gornati L, Rizzuto MA, Salvioni L, Zanoni I, Gori A, Prosperi D, Granucci F. Specific immunosuppressive role of nanodrugs targeting calcineurin in innate myeloid cells. iScience 2022; 25:105042. [PMID: 36124235 PMCID: PMC9482116 DOI: 10.1016/j.isci.2022.105042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/04/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Calcineurin (CN) inhibitors currently used to avoid transplant rejection block the activation of adaptive immune responses but also prevent the development of tolerance toward the graft, by directly inhibiting T cells. CN, through the transcription factors of the NFAT family, plays an important role also in the differentiation dendritic cells (DCs), the main cells responsible for the activation of T lymphocytes. Therefore, we hypothesized that the inhibition of CN only in DCs and not in T cells could be sufficient to prevent T cell responses, while allowing for the development of tolerance. Here, we show that inhibition of CN/NFAT pathway in innate myeloid cells, using a new nanoconjugate capable of selectively targeting phagocytes in vivo, protects against graft rejection and induces a longer graft acceptance compared to common CN inhibitors. We propose a new generation of nanoparticles-based selective immune suppressive agents for a better control of transplant acceptance. Calcineurin/NFATc2 pathway is required to enable DC migration to draining lymph nodes Calcineurin/NFATc2 pathway in DCs is required for type I immune responses activation Superparamagnetic iron oxide NPs can be used to efficiently target phagocytes in vivo Specific delivery of calcineurin inhibitor by NPs to phagocytes induce graft acceptance
Collapse
Affiliation(s)
- Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesca Mingozzi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Roberta Marzi
- Humabs BioMed, Bellinzona, Canton Ticino, Switzerland
| | - Clara Cigni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Fabio Alessandro Facchini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Rany Rotem
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Mihai Valache
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giulia Stucchi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Rocca
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Maria Antonietta Rizzuto
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Lucia Salvioni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School and Division of Immunology, Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche, National Research Council of Italy (SCITEC-CNR), Via Mario Bianco, 9, 20131 Milan, Italy
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- Corresponding author
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- Corresponding author
| |
Collapse
|
4
|
Pramono A, Bustamam N, Amalia M, Sahlan M. Immense addition of royal jelly apis mellifera (ceiba pentandra) insufficient to increase fibroblast preputium proliferation. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/508/1/012145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Watson AR, Dai H, Diaz-Perez JA, Killeen ME, Mathers AR, Thomson AW. mTORC2 deficiency in cutaneous dendritic cells potentiates CD8 + effector T cell responses and accelerates skin graft rejection. Am J Transplant 2019; 19:646-661. [PMID: 30129283 PMCID: PMC6384165 DOI: 10.1111/ajt.15083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/27/2018] [Accepted: 08/14/2018] [Indexed: 01/25/2023]
Abstract
Mechanistic target of rapamycin (mTOR) complex (mTORC)1 and mTORC2 regulate the differentiation and function of immune cells. While inhibition of mTORC1 antagonizes dendritic cell (DC) differentiation and suppresses graft rejection, the role of mTORC2 in DCs in determining host responses to transplanted tissue remains undefined. Using a mouse model in which mTORC2 was deleted specifically in CD11c+ DCs (TORC2DC-/- ), we show that the transplant of minor histocompatibility Ag (HY)-mismatched skin grafts from TORC2DC-/- donors into wild-type recipients results in accelerated rejection characterized by enhanced CD8+ T cell responses in the graft and regional lymphoid tissue [Correction added on January 9, 2019, after first online publication: in the previous sentence, major was changed to minor]. Similar enhancement of CD8+ effector T cell responses was observed in MHC-mismatched recipients of TORC2DC-/- grafts. Augmented CD8+ T cell responses were also observed in a delayed-type hypersensitivity model in which mTORC2 was absent in cutaneous DCs. These elevated responses could be ascribed to an increased T cell stimulatory phenotype of TORC2DC-/- and not to enhanced lymph node homing of the cells. In contrast, rejection of ovalbumin transgenic skin grafts in TORC2DC-/- recipients was unaffected. These findings suggest that mTORC2 in skin DCs restrains effector CD8+ T cell responses and have implications for understanding of the influence of mTOR inhibitors that target mTORC2 in transplant.
Collapse
Affiliation(s)
- Alicia R. Watson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Julio A. Diaz-Perez
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Meaghan E. Killeen
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alicia R. Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Correspondence: Angus W. Thomson, PhD, DSc, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1540, Pittsburgh, PA 15261, , (412) 624-6392
| |
Collapse
|
6
|
Graves SS, Mathes DW, Storb R. Induction of Tolerance Towards Solid Organ Allografts Using Hematopoietic Cell Transplantation in Large Animal Models. ACTA ACUST UNITED AC 2019; 3. [PMID: 32944710 DOI: 10.21926/obm.transplant.1903080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background The application of hematopoietic cell transplantation for induction of immune tolerance has been limited by toxicities associated with conditioning regimens and to graft-versus-host disease (GVHD). Decades of animal studies have culminated into sufficient control of these two problems, making immune tolerance a viable alternative to life-long application of immunosuppressive drugs to prevent allograft rejection. Methods Studies in mice have paved the way for the application of HCT with limited toxicity in large animal models. Resultant studies in the pig, dog, and ultimately the nonhuman primate have led to appropriate methods for achieving nonmyeloablative irradiation protocols, dose, and timing of post-grafting immunosuppressive drugs, monoclonal antibody therapy, and biologicals for costimulatory molecule blockade. The genetics field has been extensively evaluated in appreciation of the ultimate need to obtain organs from MHC-mismatched unrelated donors. Results Nonmyeloablative conditioning regimens have been shown to be successful in inducing immune tolerance across all three animal models. Postgrafting immunosuppression is also important in assuring sustained donor hematopoiesis for tolerance. Donor chimerism need not be permanent to establish stable engraftment of donor organs, thereby essentially eliminating the risk of GVHD. Using nonmyeloablative HCT with monoclonal antibody immunosuppression, the kidney has been successfully transplanted in MHC-mismatched nonhuman primates. Conclusions Nonmyeloablative HCT for the establishment of temporary mixed chimerism has led to the establishment of stable tolerance against solid organ allografts in large animal models. The kidney, considered a tolerogenic organ, has been successfully transplanted in the clinic. Other organs such as heart, lung, and vascularized composite allografts (face and hands), remain distant possibilities. Further study in large animal models will be required to improve tolerance against these organs before success can be attained in the clinic.
Collapse
Affiliation(s)
- Scott S Graves
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, D1-100, Seattle, WA, U.S.A
| | - David W Mathes
- Department of Plastic Surgery, University of Colorado, Aurora, CO.,Plastic Surgery Service VA, Eastern Care System, Denver, CO
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, D1-100, Seattle, WA, U.S.A.,University of Washington School of Medicine, Seattle, WA, U.S.A
| |
Collapse
|
7
|
de Almeida PE, Ransohoff JD, Nahid A, Wu JC. Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 2013; 112:549-61. [PMID: 23371903 DOI: 10.1161/circresaha.111.249243] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, before clinical applications, much translational research is necessary to ensure that their therapeutic progenies are functional and nontumorigenic, that they are stable and do not dedifferentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic, and epigenetic make-up and of their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. Recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in induced pluripotent stem cell derivatives is critical to allow clinicians to predict graft fate after transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunologic barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunologic barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Patricia E de Almeida
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | | | | | | |
Collapse
|
8
|
Choi SE, Noh JR, Seo J, Yang KJ, Kook MC, Lee CH. Gene expression profiling of allogeneic islet grafts in an experimental mouse model before rejection or tolerance phenotypes arise. Transplant Proc 2013; 45:597-604. [PMID: 23498796 DOI: 10.1016/j.transproceed.2012.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/21/2012] [Accepted: 09/11/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND It has been reported that an HY antigen-mismatched islet transplantation can induce peripheral tolerance. However, the factors that initiate the peripheral tolerance are not clear. This study was designed to examine which genes were most important for the induction of peripheral tolerance. METHODS Islets from female Balb/c and male C57BL/6 mice were transplanted underneath the left perirenal capsule of female C57BL/6 recipient mice rendered diabetic by intraperitoneal injection of streptozotocin. Before rejection or tolerance phenotypes arose, we harvested islet grafts for cDNA microarray analysis. RESULTS Minor antigen-mismatched islets transplanted into recipient mice showed no rejection or tolerance phenotypes until 12 days posttransplantation. When we confirmed, decreased functional islet grafts and increased inflammatory cell infiltration. Gene expression profiles revealed differences in expression among groups. Major histocompatibility complex-mismatched islets induced upregulation of 209 genes and downregulation of 10 genes compared with the HY antigen-mismatched islet (2-fold; P < .05). Of these, 3 genes exhibited significant changes in expression levels in Balb/c donor islet grafts compared with C57BL/6 donor islet grafts: Gad1, Gdf10, and Scg2 (P < .01). CONCLUSIONS The present study suggested that 3 genes showed a significant relationship to protection against graft rejection. The identification of these genes may help to understand signaling pathways, involved in the communication between transplanted islet grafts and recipients in vivo.
Collapse
Affiliation(s)
- S-E Choi
- Integrative Bioscience and Biotechnology, POSTECH, Hyojadong, Nam-Gu, Pohang, Republic of Korea
| | | | | | | | | | | |
Collapse
|
9
|
Vitova A, Kuffová L, Klaska IP, Holan V, Cornall RJ, Forrester JV. The high-risk corneal regraft model: a justification for tissue matching in humans. Transpl Int 2013; 26:453-61. [PMID: 23398177 DOI: 10.1111/tri.12055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/18/2012] [Accepted: 12/14/2012] [Indexed: 12/17/2022]
Abstract
Models of high-risk corneal graft rejection involve neovascularization induced via innate immune responses, e.g., suture-mediated trauma. We describe a model of high-risk corneal graft rejection using corneal graft donor-recipient pairing based on a single-antigen disparity. Donor corneas from transgenic mice on B10.BR (H-2k ) background, in which hen-egg lysozyme (HEL) as a membrane-bound antigen (mHEL) was expressed under the major histocompatibility complex (MHC) class I promoter (KLK-mHEL, H-2k), were transplanted into wild type B10.BR recipient mice. Unmanipulated wild type recipient mice rejected KLK-mHEL grafts (39%) slowly over 50-60 days. Graft rejection incidence was maximized (100%) and tempo accelerated (27 days) by priming with HEL-pulsed syngeneic dendritic cells and less so by increasing T-cell precursor frequency. Rejection also reached maximum levels (100%) and tempo (3-8 days) when mice which had rejected a first graft ('rejectors') were regrafted, and was associated with induction of HEL-specific memory T cells. In contrast, 'acceptors' rejected a second graft at rates and tempo similar to naïve mice. These data reveal the importance of (i) donor MHC antigens as alloantigens for indirect recognition, (ii) alloantigen-specific memory in high-risk graft rejection involving regrafts, and (iii) suggest a role for tissue matching in human corneal graft to avoid sensitization to donor MHC antigens.
Collapse
Affiliation(s)
- Andrea Vitova
- Section of Immunology and Infection, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
10
|
Coe D, Addey C, White M, Harwood N, Dyson J, Chai JG. Distinct in vivo CD8 and CD4 T cell responses against normal and malignant tissues. Cancer Immunol Immunother 2013; 62:101-12. [PMID: 22806093 PMCID: PMC11028943 DOI: 10.1007/s00262-012-1316-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
Abstract
Normal tissue and tumour grafts expressing the same alloantigens often elicit distinct immune responses whereby only normal tissue is rejected. To investigate the mechanisms that underlie these distinct outcomes, we compared the responses of adoptively transferred HY-specific conventional (CD8 and CD4) or regulatory T (Treg) cells in mice bearing HY-expressing tumour, syngeneic male skin graft or both. For local T cell priming, T cell re-circulation, graft localization and retention, skin grafts were more efficient than tumours. Skin grafts were also capable of differentiating CD4 T cells into functional Th1 cells. Donor T cell responses were inversely correlated with tumour progression. When skin graft and tumour transplants were performed sequentially, contemporary graft and tumour burden enhanced CD8 but reduced CD4 T cell responses causing accelerated skin-graft rejection without influencing tumour growth. Although both skin grafts and tumours were able to expand HY-specific Treg cells in draining lymph node (dLN), the proportion of tumour-infiltrating Treg cells was significantly higher than that within skin grafts, correlating with accelerated tumour growth. Moreover, there was a higher level of HY antigen presentation by host APC in tumour-dLN than in graft-dLN. Finally, tumour tissues expressed a significant higher level of IDO, TGFβ, IL10 and Arginase I than skin grafts, indicating that malignant but not normal tissue represents a stronger immunosuppressive environment. These comparisons provide important insight into the in vivo mechanisms that conspire to compromise tumour-specific adaptive immunity and identify new targets for cancer immunotherapy.
Collapse
Affiliation(s)
- David Coe
- Section of Immunobiology, Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Caroline Addey
- Section of Immunobiology, Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Matthew White
- Section of Immunobiology, Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Nida Harwood
- Section of Immunobiology, Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Julian Dyson
- Section of Immunobiology, Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Jian-Guo Chai
- Section of Immunobiology, Department of Medicine, Imperial College London, London, W12 0NN UK
| |
Collapse
|
11
|
Sagoo P, Lombardi G, Lechler RI. Relevance of regulatory T cell promotion of donor-specific tolerance in solid organ transplantation. Front Immunol 2012; 3:184. [PMID: 22811678 PMCID: PMC3395995 DOI: 10.3389/fimmu.2012.00184] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/14/2012] [Indexed: 01/29/2023] Open
Abstract
Current clinical strategies to control the alloimmune response after transplantation do not fully prevent induction of the immunological processes which lead to acute and chronic immune-mediated graft rejection, and as such the survival of a solid organ allograft is limited. Experimental research on naturally occurring CD4+CD25highFoxP3+ Regulatory T cells (Tregs) has indicated their potential to establish stable long-term graft acceptance, with the promise of providing a more effective therapy for transplant recipients. Current approaches for clinical use are based on the infusion of freshly isolated or ex vivo polyclonally expanded Tregs into graft recipients with an aim to redress the in vivo balance of T effector cells to Tregs. However mounting evidence suggests that regulation of donor-specific immunity may be central to achieving immunological tolerance. Therefore, the next stages in optimizing translation of Tregs to organ transplantation will be through the refinement and development of donor alloantigen-specific Treg therapy. The altering kinetics and intensity of alloantigen presentation pathways and alloimmune priming following transplantation may indeed influence the specificity of the Treg required and the timing or frequency at which it needs to be administered. Here we review and discuss the relevance of antigen-specific regulation of alloreactivity by Tregs in experimental and clinical studies of tolerance and explore the concept of delivering an optimal Treg for the induction and maintenance phases of achieving transplantation tolerance.
Collapse
Affiliation(s)
- Pervinder Sagoo
- Department Transplantation, Immunoregulation and Mucosal Biology, MRC Centre for Transplantation, King's College London London, UK
| | | | | |
Collapse
|
12
|
Pabón M, Navarro C, Martin R, Rodríguez M, Martin I, Gaitán L, Gómez A, Lozano E. Minor Histocompatibility Antigens as Risk Factor for Poor Prognosis in Kidney Transplantation. Transplant Proc 2011; 43:3319-23. [DOI: 10.1016/j.transproceed.2011.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|