1
|
Chandak P, Bennett DP, Phillips BL, Uwechue R, Kessaris N, Hunt BJ, Callaghan CJ, Dorling A, Hayes W, Mamode N, Day JCC. Real-time organ perfusion monitoring of human kidney transplants using ex vivo normothermic perfusion and reflectance spectroscopy. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242008. [PMID: 40078915 PMCID: PMC11897824 DOI: 10.1098/rsos.242008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 03/14/2025]
Abstract
Transplantation is the standard treatment for end-stage kidney disease but carries with it a non-trivial risk of post-operative complication. There is a need for a continuous, real-time, not additionally invasive method of monitoring organ perfusion. We present an approach to allograft perfusion monitoring using a human kidney model using ex vivo normothermic perfusion (EVNP) and custom spectroscopic optical reflectance probes. Five discarded human kidneys underwent EVNP, spectroscopic measurement and were subjected to perfusion compromising events (rejection, thrombosis or haemorrhage). Oxygenated and deoxygenated haemoglobin spectra were fitted to the spectra acquired from the kidneys in order to estimate the oxygen saturation. Average oxygen saturations before the perfusion compromising events were estimated to be higher than after (or similar in the control cases). Changes in oxygen saturation estimated from measurements made continuously were synchronized well with changes in renal blood flow index measurements. This proof of concept study proves promising in identifying a technique for continuous monitoring of perfusion and oxygenation of a transplanted kidney in vivo with minimal additional invasiveness.
Collapse
Affiliation(s)
- P. Chandak
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - D. P. Bennett
- Interface Analysis Centre, HH Wills Physics Laboratory, School of Physics, University of Bristol, Bristol, UK
| | - B. L. Phillips
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - R. Uwechue
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - N. Kessaris
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
- Department of Nephrology and Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - B. J. Hunt
- Thrombosis and Vascular Biology Group, Rayne Institute, Guys and St Thomas’ NHS Foundation Trust and King’s Health Partners, St Thomas’ Hospital, London, UK
| | - C. J. Callaghan
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - A. Dorling
- Transplant, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - W. Hayes
- Department of Nephrology and Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - N. Mamode
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - J. C. C. Day
- Interface Analysis Centre, HH Wills Physics Laboratory, School of Physics, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Ogurlu B, Hamelink TL, Van Tricht IM, Leuvenink HGD, De Borst MH, Moers C, Pool MBF. Utilizing pathophysiological concepts of ischemia-reperfusion injury to design renoprotective strategies and therapeutic interventions for normothermic ex vivo kidney perfusion. Am J Transplant 2024; 24:1110-1126. [PMID: 38184242 DOI: 10.1016/j.ajt.2024.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Normothermic machine perfusion (NMP) has emerged as a promising tool for the preservation, viability assessment, and repair of deceased-donor kidneys prior to transplantation. These kidneys inevitably experience a period of ischemia during donation, which leads to ischemia-reperfusion injury when NMP is subsequently commenced. Ischemia-reperfusion injury has a major impact on the renal vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis. With an increased understanding of the underlying pathophysiological mechanisms, renoprotective strategies and therapeutic interventions can be devised to minimize additional injury during normothermic reperfusion, ensure the safe implementation of NMP, and improve kidney quality. This review discusses the pathophysiological alterations in the vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis of deceased-donor kidneys and delineates renoprotective strategies and therapeutic interventions to mitigate renal injury and improve kidney quality during NMP.
Collapse
Affiliation(s)
- Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Isa M Van Tricht
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin H De Borst
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Goleij P, Sanaye PM, Rezaee A, Tabari MAK, Arefnezhad R, Motedayyen H. RNA therapeutics for kidney injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:69-95. [PMID: 38458744 DOI: 10.1016/bs.pmbts.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
RNA therapy involves utilizing RNA-based molecules to control biological pathways, aiming to cure specific diseases. As our understanding of RNA functions and their roles has expanded, the application of RNA therapies has broadened to target various therapeutic points. This approach holds promise for treating a range of diseases, including kidney diseases. Therapeutic RNA can be employed to target specific genes or pathways implicated in the development of kidney conditions, such as inflammation, fibrosis, and oxidative stress. This review highlights the therapeutic potential of RNA-based therapies across different types of kidney diseases, encompassing infection, inflammation, nephrotoxicity, and ischemia/reperfusion injury. Furthermore, studies have pinpointed the specific kidney cells involved in RNA therapy. To address challenges hindering the potential impact of RNA-based drugs on their targets, nanotechnology is integrated, and RNA-loaded vehicles with ligands are explored for more efficient outcomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Griffiths C, Scott WE, Ali S, Fisher AJ. Maximizing organs for donation: the potential for ex situ normothermic machine perfusion. QJM 2023; 116:650-657. [PMID: 31943119 DOI: 10.1093/qjmed/hcz321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, there is a shortfall in the number of suitable organs available for transplant resulting in a high number of patients on the active transplant waiting lists worldwide. To address this shortfall and increase the utilization of donor organs, the acceptance criteria for donor organs is gradually expanding including increased use of organs from donation after circulatory death. Use of such extended criteria donors and exposure of organs to more prolonged periods of warm or cold ischaemia also increases the risk of primary graft dysfunction occurring. Normothermic machine perfusion (NMP) offers a unique opportunity to objectively assess donor organ function outside the donor body and potentially recondition those deemed unsuitable on initial evaluation prior to implantation in the recipient. Furthermore, NMP provides a platform to support the use of established and novel therapeutics delivered directly to the organ, without the need to worry about potential deleterious 'off-target' side effects typically considered when treating the whole patient. This review will explore some of the novel therapeutics currently being added to perfusion platforms during NMP experimentally in an attempt to improve organ function and post-transplant outcomes.
Collapse
Affiliation(s)
- C Griffiths
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - W E Scott
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - S Ali
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - A J Fisher
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
5
|
Ahn I, Kang CS, Han J. Where should siRNAs go: applicable organs for siRNA drugs. Exp Mol Med 2023; 55:1283-1292. [PMID: 37430086 PMCID: PMC10393947 DOI: 10.1038/s12276-023-00998-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/02/2023] [Indexed: 07/12/2023] Open
Abstract
RNA interference mediated by small interfering RNAs (siRNAs) has been exploited for the development of therapeutics. siRNAs can be a powerful therapeutic tool because the working mechanisms of siRNAs are straightforward. siRNAs determine targets based on their sequence and specifically regulate the gene expression of the target gene. However, efficient delivery of siRNAs to the target organ has long been an issue that needs to be solved. Tremendous efforts regarding siRNA delivery have led to significant progress in siRNA drug development, and from 2018 to 2022, a total of five siRNA drugs were approved for the treatment of patients. Although all FDA-approved siRNA drugs target the hepatocytes of the liver, siRNA-based drugs targeting different organs are in clinical trials. In this review, we introduce siRNA drugs in the market and siRNA drug candidates in clinical trials that target cells in multiple organs. The liver, eye, and skin are the preferred organs targeted by siRNAs. Three or more siRNA drug candidates are in phase 2 or 3 clinical trials to suppress gene expression in these preferred organs. On the other hand, the lungs, kidneys, and brain are challenging organs with relatively few clinical trials. We discuss the characteristics of each organ related to the advantages and disadvantages of siRNA drug targeting and strategies to overcome the barriers in delivering siRNAs based on organ-specific siRNA drugs that have progressed to clinical trials.
Collapse
Affiliation(s)
- Insook Ahn
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chanhee S Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea.
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Rao JS, Pruett TL. Immunology of the transplanted cryopreserved kidney. Cryobiology 2023; 110:1-7. [PMID: 36640932 DOI: 10.1016/j.cryobiol.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Transplantation has substituted dysfunctional organs with healthy organs from donors to significantly lower morbidity and mortality associated with end-stage organ disease. Since the advent of transplantation, the promise of functional replacement has attracted an exponential mismatch between organ supply and demand. Theoretical proposals to counter the increasing needs have either been to create a source through genetic engineering of porcine donors for xenotransplantation (with more potent immunosuppression protocols) or recreate one's organ in a pig using interspecies blastocyst complementation for exogenic organ transplantation (without immunosuppression). Another promising avenue has been organ banking through cryopreservation for transplantation. Although ice free preservation and acceptable early function following rewarming is critical for success in transplantation, the immunological response that predominantly defines short- and long-term graft survival has failed to captivate attention to date. It is well sorted that thermal and metabolic stress incurred at 4 °C during recovery and reperfusion of organs for clinical transplantation has varying impact on graft survival. Considering the magnitude of cellular imbalance and injury at sub-zero/ultralow temperatures in addition to the chemical toxicity of cryoprotective agents (CPA), it is essential to assess and address the immunological response associated following transplantation to maximize the success of cryopreservation.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA; Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | - Timothy L Pruett
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
8
|
The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol 2023; 38:327-344. [PMID: 35507149 PMCID: PMC9066145 DOI: 10.1007/s00467-021-05352-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparticles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development for kidney diseases, with particular interest in inherited kidney disorders.
Collapse
|
9
|
Abou Taka M, Dugbartey GJ, Sener A. The Optimization of Renal Graft Preservation Temperature to Mitigate Cold Ischemia-Reperfusion Injury in Kidney Transplantation. Int J Mol Sci 2022; 24:ijms24010567. [PMID: 36614006 PMCID: PMC9820138 DOI: 10.3390/ijms24010567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Renal transplantation is the preferred treatment for patients with end-stage renal disease. The current gold standard of kidney preservation for transplantation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal ischemia-reperfusion injury (IRI), a pathological process that negatively impacts graft survival and function. Recent efforts to mitigate cold renal IRI involve preserving renal grafts at higher or subnormothermic temperatures. These temperatures may be beneficial in reducing the risk of cold renal IRI, while also maintaining active biological processes such as increasing the expression of mitochondrial protective metabolites. In this review, we discuss different preservation temperatures for renal transplantation and pharmacological supplementation of kidney preservation solutions with hydrogen sulfide to determine an optimal preservation temperature to mitigate cold renal IRI and enhance renal graft function and recipient survival.
Collapse
Affiliation(s)
- Maria Abou Taka
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
| | - George J. Dugbartey
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 1181, Ghana
| | - Alp Sener
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Correspondence: ; Tel.: +519-685-8500 (ext. 33352)
| |
Collapse
|
10
|
Normothermic Machine Perfusion in Renal Transplantation. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Purpose of Review
Normothermic machine perfusion (NMP) is a promising new tool in kidney transplantation to improve the outcome of marginal donor kidney transplantation. This review examines the current evidence for NMP in clinical practice and considers how the technology may be used in the future.
Recent Findings and Summary
There is emerging evidence to suggest that NMP has the potential to expand the donor pool of transplantable organs. The safety and feasibility of NMP have been established in a number of clinical studies but more research is needed to optimise the perfusion conditions. NMP shows promise as a viability assessment tool with particular focus on biomarkers and imaging techniques which provide real-time information to facilitate transplantation decision-making. Moreover, the exciting development of new potential therapeutics such as cell and gene-based therapies which are deliverable during NMP may also improve and recondition grafts prior to implantation.
Collapse
|
11
|
Zulpaite R, Miknevicius P, Leber B, Strupas K, Stiegler P, Schemmer P. Ex-vivo Kidney Machine Perfusion: Therapeutic Potential. Front Med (Lausanne) 2021; 8:808719. [PMID: 35004787 PMCID: PMC8741203 DOI: 10.3389/fmed.2021.808719] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023] Open
Abstract
Kidney transplantation remains the gold standard treatment for patients suffering from end-stage kidney disease. To meet the constantly growing organ demands grafts donated after circulatory death (DCD) or retrieved from extended criteria donors (ECD) are increasingly utilized. Not surprisingly, usage of those organs is challenging due to their susceptibility to ischemia-reperfusion injury, high immunogenicity, and demanding immune regulation after implantation. Lately, a lot of effort has been put into improvement of kidney preservation strategies. After demonstrating a definite advantage over static cold storage in reduction of delayed graft function rates in randomized-controlled clinical trials, hypothermic machine perfusion has already found its place in clinical practice of kidney transplantation. Nevertheless, an active investigation of perfusion variables, such as temperature (normothermic or subnormothermic), oxygen supply and perfusate composition, is already bringing evidence that ex-vivo machine perfusion has a potential not only to maintain kidney viability, but also serve as a platform for organ conditioning, targeted treatment and even improve its quality. Many different therapies, including pharmacological agents, gene therapy, mesenchymal stromal cells, or nanoparticles (NPs), have been successfully delivered directly to the kidney during ex-vivo machine perfusion in experimental models, making a big step toward achievement of two main goals in transplant surgery: minimization of graft ischemia-reperfusion injury and reduction of immunogenicity (or even reaching tolerance). In this comprehensive review current state of evidence regarding ex-vivo kidney machine perfusion and its capacity in kidney graft treatment is presented. Moreover, challenges in application of these novel techniques in clinical practice are discussed.
Collapse
Affiliation(s)
- Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Wu Y, Zwaini ZD, Brunskill NJ, Zhang X, Wang H, Chana R, Stover CM, Yang B. Properdin Deficiency Impairs Phagocytosis and Enhances Injury at Kidney Repair Phase Post Ischemia-Reperfusion. Front Immunol 2021; 12:697760. [PMID: 34552582 PMCID: PMC8450566 DOI: 10.3389/fimmu.2021.697760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Properdin, a positive regulator of complement alternative pathway, participates in renal ischemia–reperfusion (IR) injury and also acts as a pattern-recognition molecule affecting apoptotic T-cell clearance. However, the role of properdin in tubular epithelial cells (TECs) at the repair phase post IR injury is not well defined. This study revealed that properdin knockout (PKO) mice exhibited greater injury in renal function and histology than wild-type (WT) mice post 72-h IR, with more apoptotic cells and macrophages in tubular lumina, increased active caspase-3 and HMGB1, but better histological structure at 24 h. Raised erythropoietin receptor by IR was furthered by PKO and positively correlated with injury and repair markers. Properdin in WT kidneys was also upregulated by IR, while H2O2-increased properdin in TECs was reduced by its small-interfering RNA (siRNA), with raised HMGB1 and apoptosis. Moreover, the phagocytic ability of WT TECs, analyzed by pHrodo Escherichia coli bioparticles, was promoted by H2O2 but inhibited by PKO. These results were confirmed by counting phagocytosed H2O2-induced apoptotic TECs by in situ end labeling fragmented DNAs but not affected by additional serum with/without properdin. Taken together, PKO results in impaired phagocytosis at the repair phase post renal IR injury. Properdin locally produced by TECs plays crucial roles in optimizing damaged cells and regulating phagocytic ability of TECs to effectively clear apoptotic cells and reduce inflammation.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Basic Medical Research Centre, Medical School of Nantong University, Nantong, China
| | - Zinah D Zwaini
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Nigel J Brunskill
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyue Zhang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Hui Wang
- Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ravinder Chana
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Cordula M Stover
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
Yang B, Sylvius N, Luo J, Yang C, Da Z, Crotty C, Nicholson ML. Identifying Biomarkers from Transcriptomic Signatures in Renal Allograft Biopsies Using Deceased and Living Donors. Front Immunol 2021; 12:657860. [PMID: 34276651 PMCID: PMC8282197 DOI: 10.3389/fimmu.2021.657860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
The survival of transplant kidneys using deceased donors (DD) is inferior to living donors (LD). In this study, we conducted a whole-transcriptome expression analysis of 24 human kidney biopsies paired at 30 minutes and 3 months post-transplantation using DD and LD. The transcriptome profile was found significantly different between two time points regardless of donor types. There were 446 differentially expressed genes (DEGs) between DD and LD at 30 minutes and 146 DEGs at 3 months, with 25 genes common to both time points. These DEGs reflected donor injury and acute immune responses associated with inflammation and cell death as early as at 30 minutes, which could be a precious window of potential intervention. DEGs at 3 months mainly represented the changes of adaptive immunity, immunosuppressive treatment, remodeling or fibrosis via different networks and signaling pathways. The expression levels of 20 highly DEGs involved in kidney diseases and 10 genes dysregulated at 30 minutes were found correlated with renal function and histology at 12 months, suggesting they could be potential biomarkers. These genes were further validated by quantitative polymerase chain reaction (qPCR) in 24 samples analysed by microarray, as well as in a validation cohort of 33 time point unpaired allograft biopsies. This analysis revealed that SERPINA3, SLPI and CBF were up-regulated at 30 minutes in DD compared to LD, while FTCD and TASPN7 were up-regulated at both time points. At 3 months, SERPINA3 was up-regulated in LD, but down-regulated in DD, with increased VCAN and TIMP1, and decreased FOS, in both donors. Taken together, divergent transcriptomic signatures between DD and LD, and changed by the time post-transplantation, might contribute to different allograft survival of two type kidney donors. Some DEGs including FTCD and TASPN7 could be novel biomarkers not only for timely diagnosis, but also for early precise genetic intervention at donor preservation, implantation and post-transplantation, in particular to effectively improve the quality and survival of DD.
Collapse
Affiliation(s)
- Bin Yang
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Research and Innovation, University Hospitals of Leicester, Leicester, United Kingdom.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Nicolas Sylvius
- Genomics Core Facility, University of Leicester, Leicester, United Kingdom
| | - Jinli Luo
- Bioinformatics and Biostatistics Support Hub Leicester, University of Leicester, Leicester, United Kingdom
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Zhanyun Da
- Department of Rheumatology and Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Charlottelrm Crotty
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Research and Innovation, University Hospitals of Leicester, Leicester, United Kingdom
| | - Michael L Nicholson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,Research and Innovation, University Hospitals of Leicester, Leicester, United Kingdom.,Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Novel Insights into the Molecular Mechanisms of Ischemia/Reperfusion Injury in Kidney Transplantation. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is one of the most important mechanisms involved in delayed or reduced graft function after kidney transplantation. It is a complex pathophysiological process, followed by a pro-inflammatory response that enhances the immunogenicity of the graft and the risk of acute rejection. Many biologic processes are involved in its development, such as transcriptional reprogramming, the activation of apoptosis and cell death, endothelial dysfunction and the activation of the innate and adaptive immune response. Recent evidence has highlighted the importance of complement activation in IRI cascade, which expresses a pleiotropic action on tubular cells, on vascular cells (pericytes and endothelial cells) and on immune system cells. The effects of IRI in the long term lead to interstitial fibrosis and tubular atrophy, which contribute to chronic graft dysfunction and subsequently graft failure. Furthermore, several metabolic alterations occur upon IRI. Metabolomic analyses of IRI detected a “metabolic profile” of this process, in order to identify novel biomarkers that may potentially be useful for both early diagnosis and monitoring the therapeutic response. The aim of this review is to update the most relevant molecular mechanisms underlying IRI, and also to discuss potential therapeutic targets in future clinical practice.
Collapse
|
15
|
Wu Y, Chen W, Zhang Y, Liu A, Yang C, Wang H, Zhu T, Fan Y, Yang B. Potent Therapy and Transcriptional Profile of Combined Erythropoietin-Derived Peptide Cyclic Helix B Surface Peptide and Caspase-3 siRNA against Kidney Ischemia/Reperfusion Injury in Mice. J Pharmacol Exp Ther 2020; 375:92-103. [PMID: 32759272 DOI: 10.1124/jpet.120.000092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cause-specific treatment and timely diagnosis are still not available for acute kidney injury (AKI) apart from supportive therapy and serum creatinine measurement. A novel erythropoietin-derived cyclic helix B surface peptide (CHBP) protects kidneys against AKI with different causes, but the underlying mechanism is not fully defined. Herein, we investigated the transcriptional profile of renoprotection induced by CHBP and its potential synergistic effects with siRNA targeting caspase-3, an executing enzyme of apoptosis and inflammation (CASP3siRNA), on ischemia/reperfusion (IR)-induced AKI. Utilizing a mouse model with 30-minute renal bilateral ischemia and 48-hour reperfusion, the renoprotection of CHBP or CASP3siRNA was demonstrated in renal function and structure, active caspase-3 and HMGB1 expression. Combined treatment of CHBP and CASP3siRNA further preserved kidney structure and reduced active caspase-3 and HMGB1. Furthermore, differentially expressed genes (DEGs) were identified with fold change >1.414 and P < 0.05. In IR kidneys, 281 DEGs induced by CHBP were mainly involved in promoting cell division and improving cellular function and metabolism (upregulated signal transducer and activator of transcription 5B and solute carrier family 22 member 7). The additional administration of CASP3siRNA caused 504 and 418 DEGs in IR + CHBP kidneys with or without negative control small-interfering RNA, with 37 genes in common. These DEGs were associated with modulated apoptosis and inflammation (upregulated BCL6, SLPI, and SERPINA3M) as well as immunity, injury, and microvascular homeostasis (upregulated complement factor H and GREM1 and downregulated ANGPTL2). This proof-of-effect study indicated the potent renoprotection of CASP3siRNA upon CHBP at the early stage of IR-induced AKI. Underlying genes, BCL6, SLPI, SERPINA3M, GREM1, and ANGPTL2, might be potential new biomarkers for clinical applications. SIGNIFICANCE STATEMENT: It is imperative to explore new strategies of cause-specific treatment and timely diagnosis for acute kidney injury (AKI). CHBP and CASP3siRNA synergistically protected kidney structure after 48-hour ischemia/reperfusion-induced AKI with reduced injury mediators CASP3 and high mobility group box 1. CHBP upregulated cell division-, function-, and metabolism-related genes, whereas CASP3siRNA further regulated immune response- and tissue homeostasis-associated genes. Combined CHBP and CASP3siRNA might be a potent and specific treatment for AKI, and certain dysregulated genes secretory leukocyte peptidase inhibitor and SERPINA3M could facilitate timely diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Weiwei Chen
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Yufang Zhang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Aifen Liu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Cheng Yang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Hui Wang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Tongyu Zhu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Yaping Fan
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Bin Yang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| |
Collapse
|
16
|
Decuypere JP, Hutchinson S, Monbaliu D, Martinet W, Pirenne J, Jochmans I. Autophagy Dynamics and Modulation in a Rat Model of Renal Ischemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21197185. [PMID: 33003356 PMCID: PMC7583807 DOI: 10.3390/ijms21197185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Renal ischemia-reperfusion (IR) injury leading to cell death is a major cause of acute kidney injury, contributing to morbidity and mortality. Autophagy counteracts cell death by removing damaged macromolecules and organelles, making it an interesting anchor point for treatment strategies. However, autophagy is also suggested to enhance cell death when the ischemic burden is too strong. To investigate whether the role of autophagy depends on the severity of ischemic stress, we analyzed the dynamics of autophagy and apoptosis in an IR rat model with mild (45 min) or severe (60 min) renal ischemia. Following mild IR, renal injury was associated with reduced autophagy, enhanced mammalian target of rapamycin (mTOR) activity, and apoptosis. Severe IR, on the other hand, was associated with a higher autophagic activity, independent of mTOR, and without affecting apoptosis. Autophagy stimulation by trehalose injected 24 and 48 h prior to onset of severe ischemia did not reduce renal injury markers nor function, but reduced apoptosis and restored tubular dilation 7 days post reperfusion. This suggests that trehalose-dependent autophagy stimulation enhances tissue repair following an IR injury. Our data show that autophagy dynamics are strongly dependent on the severity of IR and that trehalose shows the potential to trigger autophagy-dependent repair processes following renal IR injury.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Shawn Hutchinson
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Diethard Monbaliu
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Wim Martinet
- Department of Pharmaceutical Sciences, University of Antwerp, B-2610 Antwerp, Belgium;
| | - Jacques Pirenne
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology and Immunology, KU Leuven, B-3000 Leuven, Belgium; (J.-P.D.); (S.H.); (D.M.); (J.P.)
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-348727
| |
Collapse
|
17
|
Brüggenwirth IMA, Martins PN. RNA interference therapeutics in organ transplantation: The dawn of a new era. Am J Transplant 2020; 20:931-941. [PMID: 31680428 DOI: 10.1111/ajt.15689] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/25/2023]
Abstract
RNA interference (RNAi) is a natural process through which double-stranded RNA molecules can silence the gene carrying the same code as the particular RNA of interest. In 2006, the discovery of RNAi was awarded the Nobel Prize in Medicine and its success has accumulated since. Gene silencing through RNAi has been used successfully in a broad range of diseases, and, more recently, this technique has gained interest in the field of organ transplantation. Here, genes related to ischemia-reperfusion injury (IRI) or graft rejection may be silenced to improve organ quality after transplantation. Several strategies have been used to deliver siRNA, and pretransplant machine perfusion presents a unique opportunity to deliver siRNA to the target organ during ex situ preservation. In this review, the potential of RNAi in the field of organ transplantation will be discussed. A brief overview on the discovery of RNAi, its mechanism, and limitations are included. In addition, studies using RNAi to target genes related to IRI in liver, kidney, lung, and heart transplantation are discussed.
Collapse
Affiliation(s)
- Isabel M A Brüggenwirth
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, the Netherlands
| | - Paulo N Martins
- Department of Surgery, Division of Organ Transplantation, UMass Memorial Medical Center, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|
18
|
Yuzefovych Y, Valdivia E, Rong S, Hack F, Rother T, Schmitz J, Bräsen JH, Wedekind D, Moers C, Wenzel N, Gueler F, Blasczyk R, Figueiredo C. Genetic Engineering of the Kidney to Permanently Silence MHC Transcripts During ex vivo Organ Perfusion. Front Immunol 2020; 11:265. [PMID: 32140158 PMCID: PMC7042208 DOI: 10.3389/fimmu.2020.00265] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
Organ gene therapy represents a promising tool to correct diseases or improve graft survival after transplantation. Polymorphic variation of the major histocompatibility complex (MHC) antigens remains a major obstacle to long-term graft survival after transplantation. Previously, we demonstrated that MHC-silenced cells are protected against allogeneic immune responses. We also showed the feasibility to silence MHC in the lung. Here, we aimed at the genetic engineering of the kidney toward permanent silencing of MHC antigens in a rat model. We constructed a sub-normothermic ex vivo perfusion system to deliver lentiviral vectors encoding shRNAs targeting β2-microglobulin and the class II transactivator to the kidney. In addition, the vector contained the sequence for a secreted nanoluciferase. After kidney transplantation (ktx), we detected bioluminescence in the plasma and urine of recipients of an engineered kidney during the 6 weeks of post-transplant monitoring, indicating a stable transgene expression. Remarkably, transcript levels of β2-microglobulin and the class II transactivator were decreased by 70% in kidneys expressing specific shRNAs. Kidney genetic modification did not cause additional cell death compared to control kidneys after machine perfusion. Nevertheless, cytokine secretion signatures were altered during perfusion with lentiviral vectors as revealed by an increase in the secretion of IL-10, MIP-1α, MIP-2, IP-10, and EGF and a decrease in the levels of IL-12, IL-17, MCP-1, and IFN-γ. Biodistribution assays indicate that the localization of the vector was restricted to the graft. This study shows the potential to generate immunologically invisible kidneys showing great promise to support graft survival after transplantation and may contribute to reduce the burden of immunosuppression.
Collapse
Affiliation(s)
- Yuliia Yuzefovych
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Emilio Valdivia
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Franziska Hack
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Tamina Rother
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Jessica Schmitz
- Hannover Medical School, Institute for Pathology, Hanover, Germany
| | | | - Dirk Wedekind
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nadine Wenzel
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | - Rainer Blasczyk
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Constanca Figueiredo
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| |
Collapse
|
19
|
Rezaei M, Figueroa B, Orfahli LM, Ordenana C, Brunengraber H, Dasarathy S, Rampazzo A, Bassiri Gharb B. Composite Vascularized Allograft Machine Preservation: State of the Art. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00263-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Chen Y, Shi J, Xia TC, Xu R, He X, Xia Y. Preservation Solutions for Kidney Transplantation: History, Advances and Mechanisms. Cell Transplant 2019; 28:1472-1489. [PMID: 31450971 PMCID: PMC6923544 DOI: 10.1177/0963689719872699] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Solid organ transplantation was one of the greatest medical advances during the past few
decades. Organ preservation solutions have been applied to diminish ischemic/hypoxic
injury during cold storage and improve graft survival. In this article, we provide a
general review of the history and advances of preservation solutions for kidney
transplantation. Key components of commonly used solutions are listed, and effective
supplementations for current available preservation solutions are discussed. At cellular
and molecular levels, further insights were provided into the pathophysiological
mechanisms of effective ingredients against ischemic/hypoxic renal injury during cold
storage. We pay special attention to the cellular and molecular events during
transplantation, including ATP depletion, acidosis, mitochondrial dysfunction, oxidative
stress, inflammation, and other intracellular mechanisms.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Terry C Xia
- The University of Connecticut, Storrs, CT, USA
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Novel therapeutic strategies for renal graft preservation and their potential impact on the future of clinical transplantation. Curr Opin Organ Transplant 2019; 24:385-390. [DOI: 10.1097/mot.0000000000000660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Chandak P, Phillips BL, Uwechue R, Thompson E, Bates L, Ibrahim I, Sewpaul A, Figueiredo R, Olsburgh J, Hosgood S, Nicholson ML, Wilson C, Callaghan CJ. Dissemination of a novel organ perfusion technique: ex vivo normothermic perfusion of deceased donor kidneys. Artif Organs 2019; 43:E308-E319. [PMID: 31087667 DOI: 10.1111/aor.13499] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/07/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Ex vivo normothermic perfusion (EVNP) technology is a promising means of organ preservation, assessment, and preconditioning prior to kidney transplantation, which has been pioneered by a single group. We describe the challenges of setting up clinical EVNP programs in 2 new centers, as well as early patient outcomes. Governance, training, and logistical pathways are described. In order to demonstrate safety and proficiency in this new technique, early patient outcomes are also described. Patient outcomes included the incidence of primary nonfunction, delayed graft function, graft and patient survival at 1 year. Contralateral kidneys undergoing static cold storage alone were used as a comparator group. Between March 2016 and July 2017, EVNP was performed on 14 kidneys from 12 donors (11 kidneys in center 1, 3 kidneys in center 2). Of the 14 kidneys that underwent EVNP, 12 organs were implanted into 10 recipients. Two pairs of kidneys were implanted as dual grafts and 1 kidney was implanted simultaneously with a pancreas. The remaining 7 kidneys were transplanted as single allografts. Seven pairs of kidneys were available for paired analysis comparing EVNP versus static cold storage. Graft and patient outcomes were comparable between the 2 preservation techniques. The introduction of a clinical EVNP service requires a careful multimodal approach, drawing on the expertise of specialists in transplantation, hematology, and microbiology. Both new clinical EVNP programs demonstrated proficiency and safety when a structured dissemination process was followed.
Collapse
Affiliation(s)
- Pankaj Chandak
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Benedict L Phillips
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Raphael Uwechue
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Emily Thompson
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Lucy Bates
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Ibrahim Ibrahim
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Avinash Sewpaul
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Rodrigo Figueiredo
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jonathon Olsburgh
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | | | - Colin Wilson
- National Institute of Health Research Blood and Transplant Research Unit, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Chris J Callaghan
- Department of Nephrology and Transplantation, Guy's and St Thomas' Hospitals NHS Trust and King's College London, London, United Kingdom
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Despite over 60 years of progress in the field of since the first organ transplant, insufficient organ preservation capabilities still place profound constraints on transplantation. These constraints play multiple and compounding roles in the predominant limitations of the field: the severe shortages of transplant organs, short-term and long-term posttransplant outcomes and complications, the unmet global need for development of transplant infrastructures, and economic burdens that limit patient access to transplantation and contribute to increasing global healthcare costs. This review surveys ways that advancing preservation technologies can play a role in each of these areas, ultimately benefiting thousands if not millions of patients worldwide. RECENT FINDINGS Preservation advances can create a wide range of benefits across many facets of organ transplantation, as well as related areas of transplant research. As these technologies mature, so will the policies around their use to maximize the benefits offered by organ preservation. SUMMARY Organ preservation advances stand to increase local and global access to transplantation, improve transplant outcomes, and accelerate progress in related areas such as immune tolerance induction and xenotransplantation. This area holds the potential to save the healthcare system many billions of dollars and reduce costs across many aspects of transplantation. Novel preservation technologies, along with other technologies facilitated by preservation advances, could potentially save millions of lives in the coming years.
Collapse
|
24
|
Moeckli B, Sun P, Lazeyras F, Morel P, Moll S, Pascual M, Bühler LH. Evaluation of donor kidneys prior to transplantation: an update of current and emerging methods. Transpl Int 2019; 32:459-469. [PMID: 30903673 DOI: 10.1111/tri.13430] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The lack of suitable kidney donor organs has led to rising numbers of patients with end stage renal disease waiting for kidney transplantation. Despite decades of clinical experience and research, no evaluation process that can reliably predict the outcome of an organ has yet been established. This review is an overview of current methods and emerging techniques in the field of donor kidney evaluation prior to transplantation. Established techniques like histological evaluation, clinical scores, and machine perfusion systems offer relatively reliable predictions of delayed graft function but are unable to consistently predict graft survival. Emerging techniques including molecular biomarkers, new imaging technologies, and normothermic machine perfusion offer innovative approaches toward a more global evaluation of an organ with better outcome prediction and possibly even identification of targets for therapeutic interventions prior to transplantation. These techniques should be studied in randomized controlled trials to determine whether they can be safely used in routine clinical practice to ultimately reduce the discard rate and improve graft outcomes.
Collapse
Affiliation(s)
- Beat Moeckli
- Department of Surgery and Transplantation, Zurich University Hospital, Zurich, Switzerland
| | - Pamela Sun
- Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, CIBM, Geneva University Hospital, Geneva, Switzerland
| | - Philippe Morel
- Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Solange Moll
- Department of Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Léo H Bühler
- Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
25
|
The evolution of donation after circulatory death donor kidney repair in the United Kingdom. Curr Opin Organ Transplant 2019; 23:130-135. [PMID: 29045248 DOI: 10.1097/mot.0000000000000477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The increasing reliance on marginal donors has driven research to investigate ways to repair and improve the quality of kidneys for transplantation. Normothermic perfusion technologies provide an opportunity for improved preservation, organ assessment and resuscitation/repair of damaged kidneys. This review describes the evolution of normothermic perfusion in kidney transplantation in the United Kingdom. RECENT FINDINGS One hour of normothermic perfusion can be used to restore function and improve early graft function of extended criteria donor kidneys. A large multicentre trial is investigating the impact of normothermic perfusion on delayed graft function in a series of donation after circulatory death kidneys. Normothermic perfusion is also a platform for the delivery of therapies to the kidney to upregulate and modulate repair mechanisms or prevent injurious processes, such as activation of caspase-3 with the delivery of caspase-3 targeted small interfering RNAs. Normothermic perfusion can also be used to assess the quality and anatomical structure of a kidney to judge suitability for transplantation. SUMMARY Normothermic perfusion technology is a useful adjunct in kidney transplantation. It can improve early graft function by upregulating protective mechanisms. It also has the advantage of providing a functional assessment of the kidney and as a platform for the delivery of therapies or graft manipulation to target ischaemia reperfusion injury or the immune response. This technology can be used to expand the organ donor pool and prevent the unnecessary discard of kidneys.
Collapse
|
26
|
Yang C, Qi R, Yang B. Pathogenesis of Chronic Allograft Dysfunction Progress to Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:101-116. [PMID: 31399963 DOI: 10.1007/978-981-13-8871-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kidney transplantation is a life-change measurement for the patients of end-stage renal disease (ESRD). However, the renal allograft cannot avoid initial acute kidney injury (AKI) and subsequent chronic allograft dysfunction (CAD), gradually develops fibrosis and eventually loses function. It is imperative to disclose the pathogenesis of AKI and CAD in order to facilitate interventions. We have studied the involvement of immunity, inflammation, and apoptosis in ischemia-reperfusion injury (IRI) and/or immunosuppressant induced AKI models, with associated chronic damage. Our research mainly focused on tubular epithelial cells (TECs) that are passive victims and also active participators in injury and mediate following repair or fibrosis. Targeting not only fibroblasts/myofibroblasts, but also TECs, might be a fundamental strategy to prevent and treat renal fibrosis. We have also evaluated the potential application of siRNA targeting caspase-3 and tissue protective erythropoietin derivatives, HBSP and CHBP, aiming to treat AKI and prevent CAD. Significant improvements have been obtained, but timely diagnosis and precise therapy of AKI and prevention of CAD progressing to ESRD are still very challenging. Modern technologies such as microarray and sequencing analysis have been used to identify biomarkers and potentially facilitate individual cell target treatment for transplant patients.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Zhangjiang Technology Institute, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruochen Qi
- Department of Urology, Zhongshan Hospital, Zhangjiang Technology Institute, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Bin Yang
- Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Renal Group, Basic Medical Research Centre, Medical College of Nantong University, Nantong, 226001, Jiangsu, China. .,Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
27
|
Krezdorn N, Tasigiorgos S, Wo L, Turk M, Lopdrup R, Kiwanuka H, Win TS, Bueno E, Pomahac B. Tissue conservation for transplantation. Innov Surg Sci 2017; 2:171-187. [PMID: 31579751 PMCID: PMC6754021 DOI: 10.1515/iss-2017-0010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Pathophysiological changes that occur during ischemia and subsequent reperfusion cause damage to tissues procured for transplantation and also affect long-term allograft function and survival. The proper preservation of organs before transplantation is a must to limit these injuries as much as possible. For decades, static cold storage has been the gold standard for organ preservation, with mechanical perfusion developing as a promising alternative only recently. The current literature points to the need of developing dedicated preservation protocols for every organ, which in combination with other interventions such as ischemic preconditioning and therapeutic additives offer the possibility of improving organ preservation and extending it to multiple times its current duration. This review strives to present an overview of the current body of knowledge with regard to the preservation of organs and tissues destined for transplantation.
Collapse
Affiliation(s)
- Nicco Krezdorn
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Sotirios Tasigiorgos
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Luccie Wo
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marvee Turk
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel Lopdrup
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Harriet Kiwanuka
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thet-Su Win
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ericka Bueno
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bohdan Pomahac
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
28
|
Mottaghitalab F, Rastegari A, Farokhi M, Dinarvand R, Hosseinkhani H, Ou KL, Pack DW, Mao C, Dinarvand M, Fatahi Y, Atyabi F. Prospects of siRNA applications in regenerative medicine. Int J Pharm 2017; 524:312-329. [PMID: 28385649 DOI: 10.1016/j.ijpharm.2017.03.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Small interfering RNA (siRNA) has established its reputation in the field of tissue engineering owing to its ability to silence the proteins that inhibit tissue regeneration. siRNA is capable of regulating cellular behavior during tissue regeneration processes. The concept of using siRNA technology in regenerative medicine derived from its ability to inhibit the expression of target genes involved in defective tissues and the possibility to induce the expression of tissue-inductive factors that improve the tissue regeneration process. To date, siRNA has been used as a suppressive biomolecule in different tissues, such as nervous tissue, bone, cartilage, heart, kidney, and liver. Moreover, various delivery systems have been applied in order to deliver siRNA to the target tissues. This review will provide an in-depth discussion on the development of siRNA and their delivery systems and mechanisms of action in different tissues.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan
| | - Daniel W Pack
- Department of Chemical & Materials Engineering and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Meshkat Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
|
30
|
Attenuating Ischemia-Reperfusion Injury in Kidney Transplantation by Perfusing Donor Organs With siRNA Cocktail Solution. Transplantation 2016; 100:743-52. [PMID: 26998850 DOI: 10.1097/tp.0000000000000960] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Glebova K, Reznik ON, Reznik AO, Mehta R, Galkin A, Baranova A, Skoblov M. siRNA technology in kidney transplantation: current status and future potential. BioDrugs 2015; 28:345-61. [PMID: 24573958 DOI: 10.1007/s40259-014-0087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kidney transplantation is one of the most common transplantation operations in the world, accounting for up to 50 % of all transplantation surgeries. To curtail the damage to transplanted organs that is caused by ischemia-reperfusion injury and the recipient's immune system, small interfering RNA (siRNA) technology is being explored. Importantly, the kidney as a whole is a preferential site for non-specific systemic delivery of siRNA. To date, most attempts at siRNA-based therapy for transplantation-related conditions have remained at the in vitro stage, with only a few of them being advanced into animal models. Hydrodynamic intravenous injection of naked or carrier-bound siRNAs is currently the most common route for delivery of therapeutic constructs. To our knowledge, no systematic screens for siRNA targets most relevant for kidney transplantation have been attempted so far. A majority of researchers have arrived at one or another target of interest by analyzing current literature that dissects pathological processes taking place in transplanted organs. A majority of the genes that make up the list of 53 siRNA targets that have been tested in transplantation-related models so far belong to either apoptosis- or immune rejection-centered networks. There is an opportunity for therapeutic siRNA combinations that may be delivered within the same delivery vector or injected at the same time and, by targeting more than one pathway, or by hitting the same pathways within two different key points, will augment the effects of each other.
Collapse
Affiliation(s)
- Kristina Glebova
- Research Center for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
32
|
Cyclic Helix B Peptide in Preservation Solution and Autologous Blood Perfusate Ameliorates Ischemia-Reperfusion Injury in Isolated Porcine Kidneys. Transplant Direct 2015; 1:e6. [PMID: 27500213 DOI: 10.1097/txd.0000000000000515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/04/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED There is a critical need to better preserve isolated organs before transplantation. We developed a novel nonerythropoiesis cyclic helix B peptide (CHBP) derived from erythropoietin, which has potent tissue protection and prolonged serum stability. The renoprotection and potential mechanism of CHBP were evaluated in a kidney preservation model. MATERIALS AND METHODS Porcine kidneys (n = 5) subjected to 20-minute warm ischemia were retrieved and flushed with hyperosmolar citrate to mimic deceased donation. The kidneys and autologous blood ± 10.56 nmol/L CHBP were placed in cold storage (CS) for 18 hours. These kidneys were then normothermically hemoreperfused for 3 hours using an isolated organ perfusion system. The renal function and structure, apoptosis, inflammation, and expression of caspase-3 and heat shock protein 70 (HSP70) were assessed. RESULTS Cyclic helix B peptide significantly increased the renal blood flow, oxygen consumption, and urine output during reperfusion, but decreased serum potassium and renal tissue damage. Apoptotic cells were significantly decreased in the tubular areas, but increased in the lumens and interstitial areas in the post-CS and postreperfused kidneys, whereas myeloperoxidase+ cells were reduced. In addition, the expression of both caspase-3 precursor and active subunits was downregulated by CHBP in reperfused kidneys. However, HSP70 was upregulated in the post-CS and postreperfused kidneys treated with CHBP. CONCLUSIONS Cyclic helix B peptide administered into preservation and reperfusion solutions ameliorated renal ischemia-reperfusion injury, which might be associated with decreased apoptosis, inflammation and caspase-3, but increased HSP70. This novel preservation approach using CHBP may be applied in a porcine kidney transplant model and potential human donor kidney preservation.
Collapse
|
33
|
Yang C, Zhang C, Zhao Z, Zhu T, Yang B. Fighting against kidney diseases with small interfering RNA: opportunities and challenges. J Transl Med 2015; 13:39. [PMID: 25637948 PMCID: PMC4354745 DOI: 10.1186/s12967-015-0387-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/12/2015] [Indexed: 11/21/2022] Open
Abstract
The significant improvements in siRNA therapy have been achieved, which have great potential applications in humans. The kidney is a comparatively easy target organ of siRNA therapy due to its unique structural and functional characteristics. Here, we reviewed recent achievements in siRNA design, delivery and application with focuses on kidney diseases, in particular kidney transplant-related injuries. In addition, the strategy for increasing serum stability and immune tolerance of siRNA was also discussed. At last, the future challenges of siRNA therapy including organ/tissue/cell-specific delivery and time-controlled silence, as well as selecting therapeutic targets, were addressed as well.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Chao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Bin Yang
- Transplant Group, Department of Infection, Immunity and Inflammation, University Hospitals of Leicester, University of Leicester, Leicester, UK. .,Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China. .,Basic Medical Research Centre, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
34
|
Solhjou Z, Athar H, Xu Q, Abdi R. Emerging therapies targeting intra-organ inflammation in transplantation. Am J Transplant 2015; 15:305-11. [PMID: 25612486 DOI: 10.1111/ajt.13073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/16/2014] [Accepted: 10/12/2014] [Indexed: 01/25/2023]
Abstract
Over the past several years, the field of transplantation has witnessed significant progress on several fronts; in particular, achievements have been made in devising novel immunosuppressive strategies. An under-explored area that may hold great potential to improve transplantation outcomes is the design of novel strategies to apply specifically to organs to reduce intra-graft inflammation. A growing body of evidence indicates a key role of intra-graft inflammatory cascade in potently instigating the alloimmune response. Indeed, controlling the activation of innate immunity/inflammatory responses has been shown to be a promising strategy to increase the graft acceptance and survival. In this minireview, we provide an overview of emerging targeted strategies, which can be directly applied to grafts to down-regulate intra-graft inflammation prior to transplantation.
Collapse
Affiliation(s)
- Z Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
35
|
Yang C, Zhao T, Zhao Z, Jia Y, Li L, Zhang Y, Song M, Rong R, Xu M, Nicholson ML, Zhu T, Yang B. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model. Mol Ther 2014; 22:1817-28. [PMID: 24930602 DOI: 10.1038/mt.2014.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/11/2014] [Indexed: 11/09/2022] Open
Abstract
The naked small interfering RNA (siRNA) of caspase-3, a key player in ischemia reperfusion injury, was effective in cold preserved and hemoreperfused kidneys, but not autotransplanted kidneys in our porcine models. Here, chemically modified serum stabilized caspase-3 siRNAs were further evaluated. The left kidney was retrieved and infused by University of Wisconsin solution with/without 0.3 mg caspase-3 or negative siRNA into the renal artery for 24-hour cold storage (CS). After an intravenous injection of 0.9 mg siRNA and right-uninephrectomy, the left kidney was autotransplanted for 2 weeks. The effectiveness of caspase-3 siRNA was confirmed by caspase-3 knockdown in the post-CS and/or post-transplant kidneys with reduced apoptosis and inflammation, while the functional caspase-3 siRNA in vivo was proved by detected caspase-3 mRNA degradation intermediates. HMGB1 protein was also decreased in the post-transplanted kidneys; correlated positively with renal IL-1β mRNA, but negatively with serum IL-10 or IL-4. The minimal off-target effects of caspase-3 siRNA were seen with favorable systemic responses. More importantly, renal function, associated with active caspase-3, HMGB1, apoptosis, inflammation, and tubulointerstitial damage, was improved by caspase-3 siRNA. Taken together, the 2-week autotransplanted kidneys were protected when caspase-3 siRNA administrated locally and systemically, which provides important evidence for future clinical trials.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tian Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yichen Jia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yufang Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Medical Research Centre, Medical School, University of Nantong, Nantong, China
| | - Mangen Song
- 1] Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China [2] Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruiming Rong
- 1] Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China [2] Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Michael L Nicholson
- Transplant Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK
| | - Tongyu Zhu
- 1] Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China [2] Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Yang
- 1] Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China [2] Department of Nephrology, Affiliated Hospital of Nantong University, Medical Research Centre, Medical School, University of Nantong, Nantong, China
| |
Collapse
|
36
|
Hosgood SA, van Heurn E, Nicholson ML. Normothermic machine perfusion of the kidney: better conditioning and repair? Transpl Int 2014; 28:657-64. [PMID: 24629095 DOI: 10.1111/tri.12319] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
Abstract
Kidney transplantation is limited by hypothermic preservation techniques. Prolonged periods of cold ischaemia increase the risk of early graft dysfunction and reduce long-term survival. To extend the boundaries of transplantation and utilize kidneys from more marginal donors, improved methods of preservation are required. Normothermic perfusion restores energy levels in the kidney allowing renal function to be restored ex vivo. This has several advantages: cold ischaemic injury can be avoided or minimized, the kidney can be maintained in a stable state allowing close observation and assessment of viability and lastly, it provides the ideal opportunity to add therapies to directly manipulate and improve the condition of the kidney. This review explores the experimental and clinical evidence for ex vivo normothermic perfusion in kidney transplantation and its role in conditioning and repair.
Collapse
Affiliation(s)
- Sarah A Hosgood
- Department of Infection Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, Leicester, UK
| | - Ernest van Heurn
- Department of General Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michael L Nicholson
- Department of Infection Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, Leicester, UK
| |
Collapse
|
37
|
Yang C, Li L, Xue Y, Zhao Z, Zhao T, Jia Y, Rong R, Xu M, Nicholson ML, Zhu T, Yang B. Innate immunity activation involved in unprotected porcine auto-transplant kidneys preserved by naked caspase-3 siRNA. J Transl Med 2013; 11:210. [PMID: 24034868 PMCID: PMC3847504 DOI: 10.1186/1479-5876-11-210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background The naked caspase-3 small interfering RNA (siRNA) infused into the renal artery during cold preservation was effective, but did not protect auto-transplant porcine kidneys with increased inflammation and apoptosis in our previous study. The mechanisms involved, in particular, whether siRNA or complementary systemic feedback eliciting innate immune responses are worthy to be further investigated. Methods The protein and mRNA expression of innate immunity-related molecules were detected by western blotting and quantitative PCR in the tissues previously collected from 48 h auto-transplant kidneys. The donor kidneys were retrieved from mini pigs and cold preserved by University of Wisconsin solution with/without 0.3 mg caspase-3 siRNA for 24 h. Results The protein level of Toll like receptor (TLR) 3, TLR7, and their main adapters, TRIF and MyD88, was up-regulated in the siRNA preserved auto-transplant kidneys. The mRNA level of NF-κB and c-Jun was increased, as well as pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α and interferon (IFN)-α, β and γ. In addition, the non-TLR RNA sensor PKR protein, but not RIG1, was also increased in the siRNA preserved auto-transplant kidneys. Conclusions The activation of innate immunity with amplified inflammatory responses in the caspase-3 siRNA preserved auto-transplant kidneys are associated with increased TLR3, TLR7 and PKR, which might be due to complementary systemic feedback, although persistent actions initiated by short-acting caspase-3 siRNA cannot be completely ruled out. These results provided valuable evidence to guide future siRNA design and pre-clinic studies.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University; Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai 200032, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wszola M, Kwiatkowski A, Diuwe P, Domagała P, Górski L, Kieszek R, Berman A, Perkowska-Ptasińska A, Durlik M, Pączek L, Chmura A. One-year results of a prospective, randomized trial comparing two machine perfusion devices used for kidney preservation. Transpl Int 2013; 26:1088-96. [PMID: 24033725 DOI: 10.1111/tri.12169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/23/2013] [Accepted: 07/21/2013] [Indexed: 02/03/2023]
Abstract
Studies have shown beneficial effects of machine perfusion (MP) on early kidney function and long-term graft survival. The aim of this study was to investigate whether the type of perfusion device could affect outcome of transplantation of deceased donor kidneys. A total of 50 kidneys retrieved from 25 donors were randomized to machine perfusion using a flow-driven (FD) device (RM3; Waters Medical Inc) or a pressure-driven (PD) device (LifePort; Organ Recovery Systems), 24 of these kidneys (n = 12 pairs; 48%) were procured from expanded criteria donors (ECD). The primary endpoints were kidney function after transplantation defined using the incidence of delayed graft function (DGF), the number of hemodialysis sessions required, graft function at 12 months, and analyses of biopsy. DGF was similar in both groups (32%; 8/25). Patients with DGF in the FD group required a mean of 4.66 hemodialysis sessions versus 2.65 in the PD group (P = 0.005). Overall, 1-year graft survival was 80% (20/25) vs. 96% (24/25) in the FD and PD groups. One-year graft survival of ECD kidneys was 66% (8/12) in the FD group versus 92% (11/12) in the PD group. Interstitial fibrosis and tubular atrophy were significantly more common in the FD group - 45% (5/11) vs. 0% (0/9) (P = 0.03) in PD group. There were no differences in creatinine levels between the groups. Machine perfusion using a pressure-driven device generating lower pulse stress is superior to a flow-driven device with higher pulse stress for preserving kidney function.
Collapse
Affiliation(s)
- Michal Wszola
- Department of General and Transplantation Surgery, Warsaw Medical University, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yang C, Jia Y, Zhao T, Xue Y, Zhao Z, Zhang J, Wang J, Wang X, Qiu Y, Lin M, Zhu D, Qi G, Qiu Y, Tang Q, Rong R, Xu M, Ni S, Lai B, Nicholson ML, Zhu T, Yang B. Naked caspase 3 small interfering RNA is effective in cold preservation but not in autotransplantation of porcine kidneys. J Surg Res 2013; 181:342-54. [DOI: 10.1016/j.jss.2012.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/16/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
|
40
|
Yang B, Hosgood SA, Da Z, Harper SJF, Waller HL, Kay MD, Furness PN, Nicholson ML. Biomarkers assessing warm ischemic injury using an isolated porcine kidney hemoreperfusion model. Exp Biol Med (Maywood) 2013; 237:1462-73. [PMID: 23354405 DOI: 10.1258/ebm.2012.012050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prolonged warm ischemia (WI) occurring in marginal kidney donors together with reperfusion injury determines allograft survival, in which apoptosis and inflammation play crucial roles. There is no single valid biomarker, so far, to assess the degree of kidney donor injury. To define new biomarkers for detecting initial donor ischemic injury, caspase-3, caspase-7, apoptosis, inflammation, HSP70 and renal histological changes were examined in porcine kidneys subjected to 7- 15- 25- or 40-min WI, two-hour cold storage and six-hour hemoreperfusion. Caspase-3 activity was gradually increased by prolonged reperfusion, with a decrease trend against WI time. This result was verified by raised 17 kDa active caspase-3 in postreperfusion kidneys, with elevated 12 kDa active caspase-3 and lowered precursor at seven-minute WI. Active caspase-7 was also doubled by reperfusion with decreased precursor at seven-minute WI, but declined against prolonged WI. Apoptotic cells in tubular and interstitial areas were greatly increased by reperfusion at seven-minute WI, but decreased against prolonged WI. In addition, myeloperoxidase (MPO)+ cells were dramatically increased by reperfusion and presented as a bell-shape against WI time, while HSP70 was significantly increased at 7-min WI, but decreased at 40-min WI after reperfusion. In postreperfusion kidneys, tubular dilation and cell shedding were observed at 7- and 15-min WI, while tubular vacuolation and cell debris were found in tubular lumens at longer WI times. At 40-min WI, early nuclear pyknosis, tubular epithelia detachment and peri-tubular capillary dilation were detected. Furthermore, caspase-3, caspase-7, apoptosis, but not MPO+ cells or HSP70, were correlated with renal function. In conclusion, caspase-3, caspase-7 and apoptosis appear to be better biomarkers than MPO+ cells or HSP70 for assessing warm ischemic injury in donor kidneys. Hemoreperfusion activates caspase-3 and caspase-7, promotes apoptosis of damaged cells in kidneys only with limited WI, which might be beneficial to renal structural re-modeling and functional recovery.
Collapse
Affiliation(s)
- Bin Yang
- Transplant Surgery Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Campbell LH, Taylor MJ, Brockbank KGM. Development of pancreas storage solutions: Initial screening of cytoprotective supplements for β-cell survival and metabolic status after hypothermic storage. Biopreserv Biobank 2013; 11:12-8. [PMID: 24845250 DOI: 10.1089/bio.2012.0023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Insulin-dependent diabetes mellitus is one of the leading causes of death world-wide. Donor-derived pancreas and Islet of Langerhans transplantation are potential cures; however, postmortem ischemia impacts islet quality. The murine βt3 cell line was employed as a model to study cell viability and proliferation after hypothermic storage by comparing Belzer's Machine Perfusion Solution with Unisol™ Solution. The objective was to determine which of these solutions provided the best base line support for βt3 cells and to screen potential cytoprotective additives to the solutions. Initial βt3 cell viability was similar in the two storage solutions; however, better proliferation was observed after storage in Unisol Solution. The caspase inhibitor, Q-VD-OPH, and α-tocopherol improved viability in both storage solutions, suggesting that apoptotic pathways may be responsible for cell death during hypothermic storage of βt3 cells. Analysis of apoptosis markers, caspase activity, and DNA laddering showed a reduction in apoptosis when these additives were included. The effects of Q-VD-OPH and α-tocopherol were also synergistic when employed together during either hypothermic exposure, post-hypothermic physiologic incubation, or combinations of hypothermic exposure and physiologic incubation. These results suggest that both supplements should be included in pancreas hypothermic storage solutions and in islet culture media during post-isolation culture prior to transplantation.
Collapse
Affiliation(s)
- Lia H Campbell
- 1 Cell and Tissue Systems, Inc. , North Charleston, South Carolina
| | | | | |
Collapse
|
42
|
Jia Y, Zhao Z, Xu M, Zhao T, Qiu Y, Ooi Y, Yang B, Rong R, Zhu T. Prevention of renal ischemia-reperfusion injury by short hairpin RNA of endothelin A receptor in a rat model. Exp Biol Med (Maywood) 2012; 237:894-902. [PMID: 22903134 DOI: 10.1258/ebm.2012.011368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endothelin A receptor (ETaR) is a key molecule involved in a variety of biological events such as vessel contraction and inflammatory response in ischemia-reperfusion (I/R) injury. RNA interference using short hairpin RNA (shRNA) is a powerful tool to silence gene expression. Here, the effect of ETaR shRNA on I/R injury in rats was studied. A more effective shRNA sequence out of two constructed into plasmid vectors was selected using the A-10 cell line, and was then applied to a rat model. Twenty-eight male Sprague-Dawley rats were randomized into four groups: Sham, shRNA, vector and phosphate-buffered saline (PBS). Renal I/R injury was induced by clamping the left renal pedicle for one hour followed by reperfusion for 24 h. ETaR shRNA (100 μg) plasmid was administered by renal vein injection 48 h before clamping. The expression of both ETaR mRNA and protein was lowered by ETaR shRNA treatment compared with that in the vector and PBS groups; serum creatinine and blood urea nitrogen were significantly decreased; the semi-quantitative score of renal structural damage was improved; the mRNA level of endothelin 1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), macrophage inflammatory protein 2 (MIP-2) and monocyte chemoattractant protein 1 (MCP-1) was reduced, but nitric oxide (NO) production in kidney tissues was increased (P < 0.05). In conclusion, ETaR shRNA partially silenced ETaR expression in I/R injury kidneys, reduced the mRNA level of ET-1, inflammatory mediators including TNF-α, IL-6, MIP-2 and MCP-1, increased NO production, and ultimately improved renal function and structure.
Collapse
Affiliation(s)
- Yichen Jia
- Shanghai Key laboratory of Organ Transplantation, Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bon D, Chatauret N, Giraud S, Thuillier R, Favreau F, Hauet T. New strategies to optimize kidney recovery and preservation in transplantation. Nat Rev Nephrol 2012; 8:339-47. [DOI: 10.1038/nrneph.2012.83] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Zhang ZX, Min WP, Jevnikar AM. Use of RNA interference to minimize ischemia reperfusion injury. Transplant Rev (Orlando) 2012; 26:140-155. [PMID: 22000663 DOI: 10.1016/j.trre.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) is an endogenous mechanism of cellular RNA control through degradation of specific messenger RNA sequences. This process of gene silencing may be exploited by the use of small interfering RNA (siRNA) to mediate precise control of targeted cellular functions. The nature of transplantation leads invariably to tissue injury, as organs are damaged by the loss of blood supply and resultant ischemia associated with the procurement procedure. Upon reperfusion, an inflammatory program is activated, and subsequent injury results in delayed graft function and, potentially, organ failure. Many of the molecular components in ischemia-reperfusion injury (IRI) have been identified, but effective therapeutics are not currently available. Accumulating evidence supports a role for siRNA in controlling IRI, as siRNA is specific, relatively low in toxicity, and limited in duration of effect. The capacity of siRNA to control IRI-related transcription factors, cell death and apoptosis, complement factors, and oxidative stress molecules supports the concept that RNAi-based therapeutics represent a novel and promising strategy for the control of IRI. However, there are issues of RNAi strategies, including siRNA design, "off-target" effects, and delivery that merit consideration in approaching IRI with gene silencing. This review will provide an overview of current concepts in RNAi and the potential application to IRI in solid organ transplantation.
Collapse
Affiliation(s)
- Zhu-Xu Zhang
- The Multi-Organ Transplant Program, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
45
|
Liao XH, Chen GT, Li Y, Zhang L, Liu Q, Sun H, Guo H. Augmenter of liver regeneration attenuates tubular cell apoptosis in acute kidney injury in rats: the possible mechanisms. Ren Fail 2012; 34:590-599. [PMID: 22417144 DOI: 10.3109/0886022x.2012.664470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Augmenter of liver regeneration (ALR), the expression of which increased in rat kidneys after renal ischemia/reperfusion (I/R) injury, enhances renal tubular cell regeneration in vivo and in vitro. We aimed to investigate the effects of ALR on apoptosis of renal tubular cells after renal I/R injury in vivo and consider the possible mechanisms. Rats that were subjected to bilateral renal ischemia for 60 min followed by reperfusion were administered with either vehicle or recombinant human ALR (rhALR). Renal dysfunction and histologic injury were assessed by the measurement of serum biochemical markers and histological grading. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL). Caspase-3 activity was measured using a colorimetric protease assay. Expression of Bcl-2, Bax Fas, phosphorylated-Akt (p-Akt), and phosphorylated-p53 (p-p53) was determined by western blotting. Compared with vehicle-treated rats, renal dysfunction and histologic injury were significantly attenuated by administration of rhALR. The number of TUNEL-positive tubular cells and caspase-3 activity were decreased, Bcl-2 and p-Akt expression was up-regulated, and Bax and p-p53 expression was down-regulated by administration of rhALR. However, administration of rhALR had no effect on Fas protein expression. These results indicate that the protective effect of rhALR on renal I/R injury is associated with its anti-apoptotic action in renal tubular cells. RhALR inhibits apoptosis by increasing the ratio of Bcl-2 to Bax and by decreasing the activity of caspase-3. The activation of Akt and inactivation of p53 are involved in the rhALR anti-apoptosis process.
Collapse
Affiliation(s)
- Xiao-hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Hu L, Yang C, Zhao T, Xu M, Tang Q, Yang B, Rong R, Zhu T. Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation. J Surg Res 2011; 176:260-6. [PMID: 21816412 DOI: 10.1016/j.jss.2011.06.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/11/2011] [Accepted: 06/15/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tubulointerstitial inflammation is the characteristics of renal ischemia reperfusion injury (IRI) that is inevitable in kidney transplantation. Erythropoietin (EPO) has recently been shown to have protective effects on renal IRI by anti-apoptosis and anti-oxidation. Here, the effect and mechanism of EPO on renal IRI were further investigated, with a focus on tubulointerstitial inflammation. MATERIALS AND METHODS Male Sprague-Dawley rats were administrated with saline or EPO prior to IRI induced by bilateral renal pedicle clamping. Twenty-four hours following reperfusion, the effects of EPO on renal IRI were assessed by renal function and structure, tubulointerstitial myeloperoxidase (MPO) positive neutrophils, and proinflammatory mediator gene expression. The translocation and activity of NF-κB in renal tissues were also evaluated. RESULTS Compared with control groups, the EPO treated group exhibited lower serum urea and creatinine levels, limited tubular necrosis with a lower score of renal histological lesion. MPO positive cells in the tubulointerstitial area were greatly increased by IRI, but significantly reduced by the treatment of EPO. The gene expression of proinflammatory cytokines (IL-1β, IL-6, IL-10, and TNF-α) and chemokine (MCP-1) was also significantly decreased by EPO. In addition, less activation and nuclear-translocation of NF-κB was observed in the kidney treated by EPO as well. CONCLUSION EPO improved renal function and structure in IRI rats via reducing neutrophils in the tubulointerstitium, the production of proinflammatory cytokines and chemokine, as well as the activation and nuclear-translocation of NF-κB. EPO may have potential clinical applications as an anti-inflammation agent clinically for a wide range of injury.
Collapse
Affiliation(s)
- Linkun Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|