1
|
Parra-Flores P, Espitia-Corredor J, Espinoza-Pérez C, Queirolo C, Ayala P, Brüggendieck F, Salas-Hernández A, Pardo-Jiménez V, Díaz-Araya G. Toll-Like Receptor 4 Activation Prevents Rat Cardiac Fibroblast Death Induced by Simulated Ischemia/Reperfusion. Front Cardiovasc Med 2021; 8:660197. [PMID: 34169098 PMCID: PMC8217466 DOI: 10.3389/fcvm.2021.660197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
Death of cardiac fibroblasts (CFs) by ischemia/reperfusion (I/R) has major implications for cardiac wound healing. In in vivo models of myocardial infarction, toll-like receptor 4 (TLR4) activation has been reported as a cardioprotector; however, it remains unknown whether TLR4 activation can prevent CF death triggered by simulated I/R (sI/R). In this study, we analyzed TLR4 activation in neonate CFs exposed to an in vitro model of sI/R and explored the participation of the pro-survival kinases Akt and ERK1/2. Simulated ischemia was performed in a free oxygen chamber in an ischemic medium, whereas reperfusion was carried out in normal culture conditions. Cell viability was analyzed by trypan blue exclusion and the MTT assay. Necrotic and apoptotic cell populations were evaluated by flow cytometry. Protein levels of phosphorylated forms of Akt and ERK1/2 were analyzed by Western blot. We showed that sI/R triggers CF death by necrosis and apoptosis. In CFs exposed only to simulated ischemia or only to sI/R, blockade of the TLR4 with TAK-242 further reduced cell viability and the activation of Akt and ERK1/2. Preconditioning with lipopolysaccharide (LPS) or treatment with LPS in ischemia or reperfusion was not protective. However, LPS incubation during both ischemia and reperfusion periods prevented CF viability loss induced by sI/R. Furthermore, LPS treatment reduced the sub-G1 population, but not necrosis of CFs exposed to sI/R. On the other hand, the protective effects exhibited by LPS were abolished when TLR4 was blocked and Akt and ERK1/2 were inhibited. In conclusion, our results suggest that TLR4 activation protects CFs from apoptosis induced by sI/R through the activation of Akt and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Pablo Parra-Flores
- Laboratorio de Farmacología Molecular, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jenaro Espitia-Corredor
- Laboratorio de Farmacología Molecular, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Department of Pharmacology, Faculty of Medicine, Instituto de Investigación Sanitaria Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Claudio Espinoza-Pérez
- Laboratorio de Farmacología Molecular, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Cristian Queirolo
- Laboratorio de Farmacología Molecular, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pedro Ayala
- Departamento de Enfermedades Respiratorias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca Brüggendieck
- Laboratorio de Farmacología Molecular, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Aimee Salas-Hernández
- Laboratorio de Farmacología Molecular, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Department of Pharmacology, Toxicology and Pharmacodependence, Pharmacy Faculty, University of Costa Rica, San José, Costa Rica
| | - Viviana Pardo-Jiménez
- Laboratorio de Farmacología Molecular, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Guillermo Díaz-Araya
- Laboratorio de Farmacología Molecular, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Nguyen TH, Turek I, Meehan-Andrews T, Zacharias A, Irving H. Analysis of interleukin-1 receptor associated kinase-3 (IRAK3) function in modulating expression of inflammatory markers in cell culture models: A systematic review and meta-analysis. PLoS One 2020; 15:e0244570. [PMID: 33382782 PMCID: PMC7774834 DOI: 10.1371/journal.pone.0244570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND IRAK3 is a critical modulator of inflammation in innate immunity. IRAK3 is associated with many inflammatory diseases, including sepsis, and is required in endotoxin tolerance to maintain homeostasis of inflammation. The impact of IRAK3 on inflammatory markers such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cell culture models remains controversial. OBJECTIVE To analyse temporal effects of IRAK3 on inflammatory markers after one- or two-challenge interventions in cell culture models. METHODS A systematic search was performed to identify in vitro cell studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data were available. Comparisons of outcome measures were performed between different cell lines and human and mouse primary cells. RESULTS The literature search identified 7766 studies for screening. After screening titles, abstracts and full-texts, a total of 89 studies were included in the systematic review. CONCLUSIONS The review identifies significant effects of IRAK3 on decreasing NF-κB DNA binding activity in cell lines, TNF-α protein level at intermediate time intervals (4h-15h) in cell lines or at long term intervals (16h-48h) in mouse primary cells following one-challenge. The patterns of TNF-α protein expression in human cell lines and human primary cells in response to one-challenge are more similar than in mouse primary cells. Meta-analyses confirm a negative correlation between IRAK3 and inflammatory cytokine (IL-6 and TNF-α) expression after two-challenges.
Collapse
Affiliation(s)
- Trang Hong Nguyen
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| |
Collapse
|
3
|
Preconditioning with toll-like receptor agonists attenuates seizure activity and neuronal hyperexcitability in the pilocarpine rat model of epilepsy. Neuroscience 2019; 408:388-399. [DOI: 10.1016/j.neuroscience.2019.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/24/2023]
|
4
|
Fan YX, Qian C, Liu B, Wang C, Liu H, Pan X, Teng P, Hu L, Zhang G, Han Y, Yang M, Wu XF, Liu WT. Induction of suppressor of cytokine signaling 3 via HSF-1-HSP70-TLR4 axis attenuates neuroinflammation and ameliorates postoperative pain. Brain Behav Immun 2018; 68:111-122. [PMID: 29017971 DOI: 10.1016/j.bbi.2017.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 01/22/2023] Open
Abstract
Postoperative pain is a common form of acute pain that, if not managed effectively, can become chronic pain. Evidence has shown that glia, especially microglia, mediate neuroinflammation, which plays a vital role in pain sensitization. Moreover, toll-like receptor 4 (TLR4), the tumor necrosis factor receptor (TNF-R), the interleukin-1 receptor (IL-1R), and the interleukin-6 receptor (IL-6R) have been considered key components in central pain sensitization and neuroinflammation. Therefore, we hypothesized that activation of the body's endogenous "immune brakes" will inhibit these receptors and achieve inflammation tolerance as well as relieve postoperative pain. After searching for potential candidates to serve as this immune brake, we identified and focused on the suppressor of cytokine signaling 3 (SOCS3) gene. To regulate SOCS3 expression, we used paeoniflorin to induce heat shock protein 70 (HSP70)/TLR4 signaling. We found that paeoniflorin significantly induced SOCS3 expression both in vitro and in vivo and promoted the efflux of HSP70 from the cytoplasm to the extracellular environment. Furthermore, paeoniflorin markedly attenuated incision-induced mechanical allodynia, and this effect was abolished by small interfering RNAs targeting SOCS3. These findings demonstrated an effective and safe strategy to alleviate postoperative pain.
Collapse
Affiliation(s)
- Yi-Xin Fan
- Department of Pharmacy, Sir Run Run Shaw Hospital Affiliated to Nanjing Medical University, Jiangsu 211166, China
| | - Cheng Qian
- Department of Pharmacy, Sir Run Run Shaw Hospital Affiliated to Nanjing Medical University, Jiangsu 211166, China
| | - Bingqian Liu
- Department of ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu, China
| | - Chaoyu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Haijiao Liu
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiuxiu Pan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Peng Teng
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Guangqin Zhang
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yuan Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Mi Yang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xue-Feng Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, Nanjing University, Jiangsu, China
| | - Wen-Tao Liu
- Department of Pharmacy, Sir Run Run Shaw Hospital Affiliated to Nanjing Medical University, Jiangsu 211166, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Yu J, Zhang W, Qian H, Tang H, Lin W, Lu B. SOCS1 regulates hepatic regenerative response and provides prognostic makers for acute obstructive cholangitis. Sci Rep 2017; 7:9482. [PMID: 28842621 PMCID: PMC5573403 DOI: 10.1038/s41598-017-09865-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
Acute obstructive cholangitis (AOC) is a common and severe infectious diseases that occurs in an obstructed biliary system. The suppressors of cytokine signaling (SOCS) family include well-known negative regulators of cytokine receptor signaling. However, few studies have been conducted to determine their function in AOC. In this study, we showed that SOCS1 expression aberrantly changed and was associated with AOC prognosis in rat models. Decreased SOCS1 expression enhances regenerative response after biliary drainage (BD) resulting from AOC by upregulating hepatocyte growth factor (HGF) signaling. To detect SOCS1 expression in the liver less invasively and to predict the prognosis for AOC after BD, miR-221 and miR-222 were investigated. Ectopic SOCS1 expression indirectly decreases miR-221/222 expression through Met in vitro. An inverse correlation between SOCS1 expression and miR-221/222 expression in liver tissue or in serum was verified in rats. Serum from AOC patients showed that lower expression of circulating miR-221/222 after endoscopic nasobiliary drainage was associated with delayed restoration of liver function. Our results showed that SOCS1 regulates hepatic regenerative response, and indirectly detecting downstream molecules, such as miR-221/222, may provide prognostic makers for AOC.
Collapse
Affiliation(s)
- Jianhua Yu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Weiguang Zhang
- Department of Molecular Medicine and Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, China
| | - Hongwei Qian
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Haijun Tang
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Weiguo Lin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Baochun Lu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China.
| |
Collapse
|
6
|
Zhang Y, Zhu J, Guo L, Zou Y, Wang F, Shao H, Li J, Deng X. Cholecystokinin protects mouse liver against ischemia and reperfusion injury. Int Immunopharmacol 2017; 48:180-186. [PMID: 28521244 DOI: 10.1016/j.intimp.2017.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Cholecystokinin (CCK), as a gastrointestinal hormone, has an important protective role against sepsis or LPS-induced endotoxic shock. We aim to address the role of CCK in hepatic ischemia followed by reperfusion (I/R) injury. MATERIALS AND METHODS A murine model of 60min partial hepatic ischemia followed by 6h of reperfusion was used in this study. CCK and CCKAR Levels in blood and liver were detected at 3h, 6h, 12h and 24h after reperfusion. Then the mice were treated with CCK or proglumide, a nonspecific CCK-receptor (CCK-R) antagonist. Mice were randomly divided into four groups as follows: (1) sham group, in which mice underwent sham operation and received saline; (2) I/R group, in which mice were subjected to hepatic I/R and received saline; (3) CCK group, in which mice were subjected to hepatic I/R and treated with CCK (400μg/kg); (4) proglumide group (Pro), in which mice underwent hepatic I/R and treated with proglumide (3mg/kg); CCK and proglumide were administrated via tail vein at the moment of reperfusion. Serum AST (sAST) and serum ALT (sALT) were determined with a biochemical assay and histological analysis were performed with hematoxylin-eosin (H&E). Cytokines (IL-1β, IL-6, IL-10, TNF-α) expressions in blood were determined with enzyme-linked immunosorbent assay (ELISA). The MPO (myeloperoxidase) assay were used to measure neutrophils' infiltration into the liver. The apoptotic index (TUNEL-positive cell number/total liver cell number×100%) was calculated to assess hepatocelluar apoptosis. Finally, activation of NF-κB and phosphor-p38 expression in liver homogenates were analyzed with Western Blot (WB). RESULTS Our findings showed that 1) CCK and CCK-AR were upregulated in our experimental model over time; 2) Treatment with CCK decreased sAST/sALT levels, inflammatory hepatic injury, neutrophil influx and hepatocelluar apoptosis, while proglumide aggravated hepatic injury. CONCLUSION These findings support our hypothesis and suggest that CCK played a positive role in the ongoing inflammatory process leading to liver I/R injury.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Anesthesiology, Central Hospital of Jiading District, 1 Chengbai Road, Shanghai 201800, China.
| | - Jiali Zhu
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China.
| | - Long Guo
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China.
| | - Yun Zou
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Fang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China
| | - Han Shao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China.
| | - Xiaoming Deng
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
7
|
Yuan G, Yu Y, Ji L, Jie X, Yue L, Kang Y, Jianping G, Zuojin L. Down-Regulated Receptor Interacting Protein 140 Is Involved in Lipopolysaccharide-Preconditioning-Induced Inactivation of Kupffer Cells and Attenuation of Hepatic Ischemia Reperfusion Injury. PLoS One 2016; 11:e0164217. [PMID: 27723769 PMCID: PMC5056758 DOI: 10.1371/journal.pone.0164217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023] Open
Abstract
Background Lipopolysaccharide (LPS) preconditioning is known to attenuate hepatic ischemia/reperfusion injury (I/RI); however, the precise mechanism remains unclear. This study investigated the role of receptor-interacting protein 140 (RIP140) on the protective effect of LPS preconditioning in hepatic I/RI involving Kupffer cells (KCs). Methods Sprague—Dawley rats underwent 70% hepatic ischemia for 90 minutes. LPS (100 μg/kg) was injected intraperitoneally 24 hours before ischemia. Hepatic injury was observed using serum and liver samples. The LPS/NF-κB (nuclear factor-κB) pathway and hepatic RIP140 expression in isolated KCs were investigated. Results LPS preconditioning significantly inhibited hepatic RIP140 expression, NF-κB activation, and serum proinflammatory cytokine expression after I/RI, with an observation of remarkably reduced serum enzyme levels and histopathologic scores. Our experiments showed that protection effects could be effectively induced in KCs by LPS preconditioning, but couldn’t when RIP140 was overexpressed in KCs. Conversely, even without LPS preconditioning, protective effects were found in KCs if RIP140 expression was suppressed with siRNA. Conclusions Down-regulated RIP140 is involved in LPS-induced inactivation of KCs and hepatic I/RI attenuation.
Collapse
Affiliation(s)
- Guo Yuan
- Department of Infection, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - You Yu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Ji
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xu Jie
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Yue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yang Kang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Gong Jianping
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liu Zuojin
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- * E-mail:
| |
Collapse
|
8
|
Preconditioning is hormesis part I: Documentation, dose-response features and mechanistic foundations. Pharmacol Res 2016; 110:242-264. [DOI: 10.1016/j.phrs.2015.12.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
|
9
|
Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks. Pharmacol Res 2016; 110:265-275. [DOI: 10.1016/j.phrs.2015.12.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/02/2023]
|
10
|
Stringa P, Lausada N, Romanin D, Portiansky E, Zanuzzi C, Machuca M, Gondolesi G, Rumbo M. Pretreatment Combination Reduces Remote Organ Damage Secondary to Intestinal Reperfusion Injury in Mice: Follow-up Study. Transplant Proc 2016; 48:210-6. [DOI: 10.1016/j.transproceed.2015.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/10/2015] [Indexed: 12/15/2022]
|
11
|
Halder SK, Matsunaga H, Ishii KJ, Ueda H. Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina. J Neurochem 2015; 135:1161-77. [PMID: 26364961 DOI: 10.1111/jnc.13356] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022]
Abstract
Prothymosin-alpha protects the brain and retina from ischemic damage. Although prothymosin-alpha contributes to toll-like receptor (TLR4)-mediated immnunopotentiation against viral infection, the beneficial effects of prothymosin-alpha-TLR4 signaling in protecting against ischemia remain to be elucidated. In this study, intravitreal administration of prothymosin-alpha 48 h before induction of retinal ischemia prevented retinal cellular damage as evaluated by histology, and retinal functional deficits as evaluated by electroretinography. Prothymosin-alpha preconditioning completely prevented the ischemia-induced loss of ganglion cells with partial survival of bipolar and photoreceptor cells, but not amacrine cells, in immunohistochemistry experiments. Prothymosin-alpha treatment in the absence of ischemia caused mild activation, proliferation, and migration of retinal microglia, whereas the ischemia-induced microglial activation was inhibited by prothymosin-alpha preconditioning. All these preventive effects of prothymosin-alpha preconditioning were abolished in TLR4 knock-out mice and by pre-treatments with anti-TLR4 antibodies or minocycline, a microglial inhibitor. Prothymosin-alpha preconditioning inhibited the retinal ischemia-induced up-regulation of TLR4-related injury genes, and increased expression of TLR4-related protective genes. Furthermore, the prothymosin-alpha preconditioning-induced prevention of retinal ischemic damage was abolished in TIR-domain-containing adapter-inducing interferon-β knock-out mice, but not in myeloid differentiation primary response gene 88 knock-out mice. Taken together, the results of this study suggest that prothymosin-alpha preconditioning selectively drives TLR4-TIR-domain-containing adapter-inducing interferon-β signaling and microglia in the prevention of retinal ischemic damage. We propose the following mechanism for prothymosin-alpha (ProTα) preconditioning-induced retinal prevention against ischemia: ProTα preconditioning-induced prevention of retinal ischemic damage is mediated by selective activation of the TIR-domain-containing adapter-inducing interferon-β (TRIF)- interferon regulatory factor 3 (IRF3) pathway downstream of toll-like receptor 4 (TLR4) in microglia, resulting in up-regulation of TRIF-IRF3-dependent protective genes and down-regulation of myeloid differentiation primary response gene 88 (MyD88)-Nuclear factor (NF)κB-dependent injury genes. Detailed investigations would be helpful to test the efficacy of ProTα as a therapeutic agent for the prevention of ischemic disorders.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
12
|
Zhu M, Lu B, Cao Q, Wu Z, Xu Z, Li W, Yao X, Liu F. IL-11 Attenuates Liver Ischemia/Reperfusion Injury (IRI) through STAT3 Signaling Pathway in Mice. PLoS One 2015; 10:e0126296. [PMID: 25946003 PMCID: PMC4422694 DOI: 10.1371/journal.pone.0126296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/30/2015] [Indexed: 01/26/2023] Open
Abstract
Background The protective role of IL-11, an IL-6 family cytokine, has been implicated in ischemia/reperfusion injury (IRI) in the heart and kidney, but its role has not been elucidated in liver IRI. This study was designed to evaluate the effects of IL-11 and its mechanism of action on liver IRI in a mouse model. Methods A partial (70%) warm liver IRI was induced by interrupting the artery/portal vein blood supply to the left/middle liver lobes. IL-11 mRNA expression of ischemic liver after reperfusion was analyzed. Signal transducer and activator of transcription 3 (STAT3) was analyzed following IL-11 treatment in vivo and in vitro. Next, IL-11 was injected intraperitoneally (ip) 1 hour before ischemia. Liver injury was assessed based on serum alanine aminotransferase levels and histopathology. Apoptosis and inflammation were also determined in the ischemic liver. To analyze the role of STAT3 in IL-11 treatment, STAT3 siRNA or non-specific (NS) siRNA was used in vitro and in vivo. Results IL-11 mRNA expression was significantly increased after reperfusion in the ischemic liver. STAT3, as a target of IL-11, was activated in hepatocytes after IL-11 treatment in vivo and in vitro. Next, effects of IL-11/STAT3 signaling pathway were assessed in liver IRI, which showed IL-11 treatment significantly attenuated liver IRI, as evidenced by reduced hepatocellular function and hepatocellular necrosis/apoptosis. In addition, IL-11 treatment significantly inhibited the gene expressions of pro-inflammatory cytokines (TNF-α and IL-10) and chemokines (IP-10 and MCP-1). To determine the role of STAT3 in the hepatoprotective effects of IL-11, STAT3 siRNA or NS siRNA was used prior to IL-11 treatment. The results showed STAT3 knockdown abrogated the protective effects of IL-11 in vitro and in vivo. Conclusions This work provides first-time evidence for the protective effect of IL-11 treatment on hepatocyte in liver IRI, through the activation of the STAT3 pathway.
Collapse
Affiliation(s)
- Miao Zhu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of TCM, 155 Hanzhong Road, Nanjing, Jiangsu Province, P. R China
| | - Bo Lu
- Department of General Surgery, Yixing People's Hospital, 75 Tongzhenguan Road, Yixing, Jiangsu Province, P. R China
| | - Qinhong Cao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of TCM, 155 Hanzhong Road, Nanjing, Jiangsu Province, P. R China
| | - Zhenfeng Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of TCM, 155 Hanzhong Road, Nanjing, Jiangsu Province, P. R China
| | - Zhe Xu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of TCM, 155 Hanzhong Road, Nanjing, Jiangsu Province, P. R China
| | - Weisu Li
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of TCM, 155 Hanzhong Road, Nanjing, Jiangsu Province, P. R China
| | - Xuequan Yao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of TCM, 155 Hanzhong Road, Nanjing, Jiangsu Province, P. R China
| | - Fukun Liu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of TCM, 155 Hanzhong Road, Nanjing, Jiangsu Province, P. R China
| |
Collapse
|
13
|
Ren W, Wang X, Zhang A, Li C, Chen G, Ge X, Pan K, Dong JH. Selective bowel decontamination improves the survival of 90% hepatectomy in rats. J Surg Res 2015; 195:454-64. [DOI: 10.1016/j.jss.2015.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 12/23/2022]
|
14
|
Huang HF, Zeng Z, Wang KH, Zhang HY, Wang S, Zhou WX, Wang ZB, Xu WG, Duan J. Heme oxygenase-1 protects rat liver against warm ischemia/reperfusion injury via TLR2/TLR4-triggered signaling pathways. World J Gastroenterol 2015; 21:2937-2948. [PMID: 25780291 PMCID: PMC4356913 DOI: 10.3748/wjg.v21.i10.2937] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/09/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the efficacy and molecular mechanisms of induced heme oxygenase (HO)-1 in protecting liver from warm ischemia/reperfusion (I/R) injury.
METHODS: Partial warm ischemia was produced in the left and middle hepatic lobes of SD rats for 75 min, followed by 6 h of reperfusion. Rats were treated with saline, cobalt protoporphyrin (CoPP) or zinc protoporphyrin (ZnPP) at 24 h prior to the ischemia insult. Blood and samples of ischemic lobes subjected to ischemia were collected at 6 h after reperfusion. Serum transaminases level, plasma lactate dehydrogenase and myeloperoxidase activity in liver were measured. Liver histological injury and inflammatory cell infiltration were evaluated by tissue section and liver immunohistochemical analysis. We used quantitative reverse transcription polymerase chain reaction to analyze liver expression of inflammatory cytokines and chemokines. The cell lysates were subjected to immunoprecipitation with anti-Toll-IL-1R-containing adaptor inducing interferon-β (TRIF) and anti-myeloid differentiation factor 88 (MyD88), and then the immunoprecipitates were analyzed by SDS-PAGE and immunoblotted with the indicated antibodies.
RESULTS: HO-1 protected livers from I/R injury, as evidenced by diminished liver enzymes and well-preserved tissue architecture. In comparison with ZnPP livers 6 h after surgery, CoPP treatment livers showed a significant increase inflammatory cell infiltration of lymphocytes, plasma cells, neutrophils and macrophages. The Toll-like receptor (TLR)-4 and TANK binding kinase 1 protein levels of rats treated with CoPP significantly reduced in TRIF-immunoprecipitated complex, as compared with ZnPP treatment. In addition, pretreatment with CoPP reduced the expression levels of TLR2, TLR4, IL-1R-associated kinase (IRAK)-1 and tumor necrosis factor receptor-associated factor 6 in MyD88-immunoprecipitated complex. The inflammatory cytokines and chemokines mRNA expression rapidly decreased in CoPP-pretreated liver, compared with the ZnPP-treated group. However, the expression of negative regulators Toll-interacting protein, suppressor of cytokine signaling-1, IRAK-M and Src homology 2 domain-containing inositol-5-phosphatase-1 in CoPP treatment rats were markedly up-regulated as compared with ZnPP-treated rats.
CONCLUSION: HO-1 protects liver against I/R injury by inhibiting TLR2/TLR4-triggered MyD88- and TRIF-dependent signaling pathways and increasing expression of negative regulators of TLR signaling in rats.
Collapse
|
15
|
Kinetic characteristics of euflammation: the induction of controlled inflammation without overt sickness behavior. Brain Behav Immun 2014; 42:96-108. [PMID: 24929192 PMCID: PMC4254289 DOI: 10.1016/j.bbi.2014.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/23/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023] Open
Abstract
We found recently that controlled progressive challenge with subthreshold levels of E. coli can confer progressively stronger resistance to future reinfection-induced sickness behavior to the host. We have termed this type of inflammation "euflammation". In this study, we further characterized the kinetic changes in the behavior, immunological, and neuroendocrine aspects of euflammation. Results show euflammatory animals only display transient and subtle sickness behaviors of anorexia, adipsia, and anhedonia upon a later infectious challenge which would have caused much more severe and longer lasting sickness behavior if given without prior euflammatory challenges. Similarly, infectious challenge-induced corticosterone secretion was greatly ameliorated in euflammatory animals. At the site of E.coli priming injections, which we termed euflammation induction locus (EIL), innate immune cells displayed a partial endotoxin tolerant phenotype with reduced expression of innate activation markers and muted inflammatory cytokine expression upon ex vivo LPS stimulation, whereas innate immune cells outside EIL displayed largely opposite characteristics. Bacterial clearance function, however, was enhanced both inside and outside EIL. Finally, sickness induction by an infectious challenge placed outside the EIL was also abrogated. These results suggest euflammation could be used as an efficient method to "train" the innate immune system to resist the consequences of future infectious/inflammatory challenges.
Collapse
|
16
|
Abstract
Liver transplantation is the best therapy in end-stage liver disease. Donor organ shortage and efforts to expand the donor organ pool are permanent issues given that advances in perioperative management and immunosuppressive therapy have brought the procedure into widespread clinical use. The management of organ procurement, including donor preconditioning and adequate organ storage, has a key role in transplantation. However, the organ procurement process can differ substantially between transplant centres, depending on local and national preferences. Advances in the field have come from experimental and clinical research on dynamic storage systems, such as machine perfusion devices, as an alternative to static cold storage. Determination of the clinical significance of these new systems is a topic worthy of future investigations.
Collapse
|
17
|
Lipopolysaccharide preconditioning protects hepatocytes from ischemia/reperfusion injury (IRI) through inhibiting ATF4-CHOP pathway in mice. PLoS One 2013; 8:e65568. [PMID: 23750267 PMCID: PMC3672158 DOI: 10.1371/journal.pone.0065568] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022] Open
Abstract
Background Low-dose lipopolysaccharide (LPS) preconditioning-induced liver protection has been demonstrated during ischemia-reperfusion injury (IRI) in several organs but has not been sufficiently elucidated underlying causal mechanism. This study investigated the role of low-dose LPS preconditioning on ATF4-CHOP pathway as well as the effects of the pathway on tissue injury and inflammation in a mouse model of liver partial-warm IRI. Methods LPS (100 µg/kg/d) was injected intraperitoneally two days before ischemia. Hepatic injury was evaluated based on serum alanine aminotransferase levels, histopathology, and caspase-3 activity. The ATF4-CHOP pathway and its related apoptotic molecules were investigated after reperfusion. The role of LPS preconditioning on apoptosis and ATF4-CHOP pathway was examined in vitro. Moreover, the effects of the ATF4-CHOP pathway on apoptosis, Caspase-12, and Caspase-3 were determined with ATF4 small interfering RNA (siRNA). Inflammatory cytokine expression was also checked after reperfusion. Inflammatory cytokines and related signaling pathways were analyzed in vitro in macrophages treated by LPS preconditioning or ATF4 siRNA. Results LPS preconditioning significantly attenuated liver injury after IRI. As demonstrated by in vitro experiments, LPS preconditioning significantly reduced the upregulation of the ATF4-CHOP pathway and inhibited Caspase-12 and Caspase-3 activation after IRI. Later experiments showed that ATF4 knockdown significantly suppressed CHOP, cleaved caspase-12 and caspase-3 expression, as well as inhibited hepatocellular apoptosis. In addition, in mice pretreated with LPS, TNF-α and IL-6 were inhibited after reperfusion, whereas IL-10 was upregulated. Similarly, low-dose LPS significantly inhibited TNF-α, IL-6, ATF4-CHOP pathway, NF-κB pathway, and ERK1/2 in high-dose LPS-stimulated macrophages, whereas IL-10 and cytokine signaling (SOCS)-3 suppressor were induced. Importantly, ATF4 siRNA is consistent with results of LPS preconditioning in macrophages. Conclusions This work is the first time to provide evidence for LPS preconditioning protects hepatocytes from IRI through inhibiting ATF4-CHOP pathway, which may be critical to reducing related apoptosis molecules and modulating innate inflammation.
Collapse
|
18
|
van Swelm RP, Laarakkers CM, Pertijs JC, Verweij V, Masereeuw R, Russel FG. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice. Toxicol Appl Pharmacol 2013; 269:141-9. [DOI: 10.1016/j.taap.2013.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/03/2013] [Accepted: 03/06/2013] [Indexed: 12/25/2022]
|
19
|
Jiménez-Castro MB, Elias-Miro M, Mendes-Braz M, Lemoine A, Rimola A, Rodés J, Casillas-Ramírez A, Peralta C. Tauroursodeoxycholic acid affects PPARγ and TLR4 in Steatotic liver transplantation. Am J Transplant 2012; 12:3257-3271. [PMID: 22994543 DOI: 10.1111/j.1600-6143.2012.04261.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous steatotic livers are discarded for transplantation because of their poor tolerance to ischemia-reperfusion (I/R). We examined whether tauroursodeoxycholic acid (TUDCA), a known inhibitor of endoplasmic reticulum (ER) stress, protects steatotic and nonsteatotic liver grafts preserved during 6 h in University of Wisconsin (UW) solution and transplanted. The protective mechanisms of TUDCA were also examined. Neither unfolded protein response (UPR) induction nor ER stress was evidenced in steatotic and nonsteatotic liver grafts after 6 h in UW preservation solution. TUDCA only protected steatotic livers grafts and did so through a mechanism independent of ER stress. It reduced proliferator-activated receptor-γ (PPARγ) and damage. When PPARγ was activated, TUDCA did not reduce damage. TUDCA, which inhibited PPARγ, and the PPARγ antagonist treatment up-regulated toll-like receptor 4 (TLR4), specifically the TIR domain-containing adaptor inducing IFNβ (TRIF) pathway. TLR4 agonist treatment reduced damage in steatotic liver grafts. When TLR4 action was inhibited, PPARγ antagonists did not protect steatotic liver grafts. In conclusion, TUDCA reduced PPARγ and this in turn up-regulated the TLR4 pathway, thus protecting steatotic liver grafts. TLR4 activating-based strategies could reduce the inherent risk of steatotic liver failure after transplantation.
Collapse
Affiliation(s)
- M B Jiménez-Castro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBPAS), Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Therapeutic role of toll-like receptor modification in cardiovascular dysfunction. Vascul Pharmacol 2012; 58:231-9. [PMID: 23070056 DOI: 10.1016/j.vph.2012.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/28/2012] [Accepted: 10/05/2012] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLR) are key pattern recognition receptors in the innate immune system. The TLR-mediated immune response against pathogens is usually protective however inappropriate TLR activation may lead to excessive tissue damage. It is well recognised that TLRs respond to a variety of endogenous as well as exogenous ligands. By responding to endogenous ligands that are exposed during cellular damage, TLRs have been implicated in a range of pathological conditions associated with cardiovascular dysfunction. Increasing knowledge on the mechanisms involved in TLR signalling has encouraged the exploration of therapeutic pharmacological modulation of TLR activation in conditions such as atherosclerosis, ischaemic heart disease, heart failure and ischaemic reperfusion injury. The aim of this review is to explore the translational potentials of TLR modification in cardiovascular dysfunction, where these agents have been studied.
Collapse
|
21
|
Li Q, Liu Y, Che Z, Zhu H, Meng G, Hou Y, Ding B, Yin Y, Chen F. Dietary L-arginine supplementation alleviates liver injury caused by Escherichia coli LPS in weaned pigs. Innate Immun 2012; 18:804-14. [DOI: 10.1177/1753425912441955] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study was conducted to evaluate whether dietary supplementation with L-arginine (Arg) could attenuate Escherichia coli LPS-induced liver injury through the TLR4 signaling pathway in weaned pigs. Eighteen weaned pigs were allotted to three treatments: non-challenged control, LPS challenged control and LPS + 0.5% Arg. On d 18, pigs were injected with LPS at 100 µg/kg of body weight (BW) or sterile saline. Blood samples were obtained at 4 h post-injection. Pigs were then sacrificed for the collection of liver samples. Arg supplementation (0.5%) alleviated liver morphological impairment, including hepatocyte caryolysis, karyopycnosis and fibroblast proliferation induced by LPS challenge; it mitigated the increase of serum aspartate aminotransferase and alkaline phosphatase activities induced by LPS ( P < 0.05); it prevented the increase of hepatic TNF-α, malondialdehyde contents and mast cell number induced by LPS administration ( P < 0.05); and it attenuated the elevation of hepatic NF- κB and TLR4-positive cell percentages ( P < 0.05). These results indicate that Arg supplementation has beneficial effects in attenuating hepatic morphological and functional injury induced by LPS challenge in piglets. Additionally, it is possible that the protective effects of Arg on the liver are associated with a decreased release of liver pro-inflammatory cytokines and free radicals through inhibiting TLR4 signaling.
Collapse
Affiliation(s)
- Quan Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Zhengquan Che
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Guoquan Meng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | | | - Yulong Yin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Feng Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| |
Collapse
|
22
|
Land WG. Role of heat shock protein 70 in innate alloimmunity. Front Immunol 2012; 2:89. [PMID: 22566878 PMCID: PMC3342172 DOI: 10.3389/fimmu.2011.00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/19/2011] [Indexed: 12/15/2022] Open
Abstract
This article briefly describes our own experience with the proven demonstration of heat shock protein 70 (HSP70) in reperfused renal allografts from brain-dead donors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP) in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of HSP70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of HSP70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings. Nevertheless, HSP70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can every molecule be termed a DAMP that is generated in association with any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it. In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of HSP70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of HSP70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a (futile) attempt of the innate immune system to restore homeostasis with the aim to eliminate the "unwanted foreign allograft invader" by contributing to development of an adaptive alloimmune response. However, this adaptive immune response against donor histocompatibility alloantigens - in its evolutionary sense aimed to restore homeostasis - is by no means protective from a recipient's view point but tragically ends up with allograft rejection. Indeed: in this sense, allograft rejection is the result of a fateful confusion by the immune system of danger and benefit!
Collapse
Affiliation(s)
- Walter G Land
- German Academy of Transplantation Medicine Munich, Germany.
| |
Collapse
|