1
|
Nord D, Brunson JC, Langerude L, Moussa H, Gill B, Machuca T, Rackauskas M, Sharma A, Lin C, Emtiazjoo A, Atkinson C. Predicting Primary Graft Dysfunction in Lung Transplantation: Machine Learning-Guided Biomarker Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595368. [PMID: 39386627 PMCID: PMC11463600 DOI: 10.1101/2024.05.24.595368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
BACKGROUND – There is an urgent need to better understand the pathophysiology of primary graft dysfunction (PGD) so that point-of-care methods can be developed to predict those at risk. Here we utilize a multiplex multivariable approach to define cytokine, chemokines, and growth factors in patient-matched biospecimens from multiple biological sites to identify factors predictive of PGD. METHODS – Biospecimens were collected from patients undergoing bilateral LTx from three distinct sites: donor lung perfusate, post-transplant bronchoalveolar lavage (BAL) fluid (2h), and plasma (2h and 24h). A 71-multiplex panel was performed on each biospecimen. Cross-validated logistic regression (LR) and random forest (RF) machine learning models were used to determine whether analytes in each site or from combination of sites, with or without clinical data, could discriminate between PGD grade 0 (n = 9) and 3 (n = 8). RESULTS – Using optimal AUROC, BAL fluid at 2h was the most predictive of PGD (LR, 0.825; RF, 0.919), followed by multi-timepoint plasma (LR, 0.841; RF, 0.653), then perfusate (LR, 0.565; RF, 0.448). Combined clinical, BAL, and plasma data yielded strongest performance (LR, 1.000; RF, 1.000). Using a LASSO of the predictors obtained using LR, we selected IL-1RA, BCA-1, and Fractalkine, as most predictive of severe PGD. CONCLUSIONS – BAL samples collected 2h post-transplant were the strongest predictors of severe PGD. Our machine learning approach not only identified novel cytokines not previously associated with PGD, but identified analytes that could be used as a point-of-care cytokine panel aimed at identifying those at risk for developing severe PGD.
Collapse
Affiliation(s)
- Dianna Nord
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL
| | | | - Logan Langerude
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL
| | - Hassan Moussa
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL
| | - Blake Gill
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL
| | - Tiago Machuca
- Department of Surgery, University of Miami, Miami, FL
| | | | - Ashish Sharma
- Department of Surgery, University of Florida, Gainesville, FL
| | - Christine Lin
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Amir Emtiazjoo
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL
| | - Carl Atkinson
- Department of Surgery, Northwestern University, Chicago, IL
| |
Collapse
|
2
|
Niroomand A, Hirdman G, Bèchet N, Ghaidan H, Stenlo M, Kjellström S, Isaksson M, Broberg E, Pierre L, Hyllén S, Olm F, Lindstedt S. Proteomic Analysis of Primary Graft Dysfunction in Porcine Lung Transplantation Reveals Alveolar-Capillary Barrier Changes Underlying the High Particle Flow Rate in Exhaled Breath. Transpl Int 2024; 37:12298. [PMID: 38741700 PMCID: PMC11089893 DOI: 10.3389/ti.2024.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Primary graft dysfunction (PGD) remains a challenge for lung transplantation (LTx) recipients as a leading cause of poor early outcomes. New methods are needed for more detailed monitoring and understanding of the pathophysiology of PGD. The measurement of particle flow rate (PFR) in exhaled breath is a novel tool to monitor and understand the disease at the proteomic level. In total, 22 recipient pigs underwent orthotopic left LTx and were evaluated for PGD on postoperative day 3. Exhaled breath particles (EBPs) were evaluated by mass spectrometry and the proteome was compared to tissue biopsies and bronchoalveolar lavage fluid (BALF). Findings were confirmed in EBPs from 11 human transplant recipients. Recipients with PGD had significantly higher PFR [686.4 (449.7-8,824.0) particles per minute (ppm)] compared to recipients without PGD [116.6 (79.7-307.4) ppm, p = 0.0005]. Porcine and human EBP proteins recapitulated proteins found in the BAL, demonstrating its utility instead of more invasive techniques. Furthermore, adherens and tight junction proteins were underexpressed in PGD tissue. Histological and proteomic analysis found significant changes to the alveolar-capillary barrier explaining the high PFR in PGD. Exhaled breath measurement is proposed as a rapid and non-invasive bedside measurement of PGD.
Collapse
Affiliation(s)
- Anna Niroomand
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Rutgers Robert Wood Johnson University Hospital, New Brunswick, NJ, United States
| | - Gabriel Hirdman
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Nicholas Bèchet
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transpantation, Skåne University Hospital, Lund, Sweden
| | - Martin Stenlo
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | | | - Marc Isaksson
- Department of Clinical Sciences, BioMS, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transpantation, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transpantation, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Ba R, Geffard E, Douillard V, Simon F, Mesnard L, Vince N, Gourraud PA, Limou S. Surfing the Big Data Wave: Omics Data Challenges in Transplantation. Transplantation 2022; 106:e114-e125. [PMID: 34889882 DOI: 10.1097/tp.0000000000003992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In both research and care, patients, caregivers, and researchers are facing a leap forward in the quantity of data that are available for analysis and interpretation, marking the daunting "big data era." In the biomedical field, this quantitative shift refers mostly to the -omics that permit measuring and analyzing biological features of the same type as a whole. Omics studies have greatly impacted transplantation research and highlighted their potential to better understand transplant outcomes. Some studies have emphasized the contribution of omics in developing personalized therapies to avoid graft loss. However, integrating omics data remains challenging in terms of analytical processes. These data come from multiple sources. Consequently, they may contain biases and systematic errors that can be mistaken for relevant biological information. Normalization methods and batch effects have been developed to tackle issues related to data quality and homogeneity. In addition, imputation methods handle data missingness. Importantly, the transplantation field represents a unique analytical context as the biological statistical unit is the donor-recipient pair, which brings additional complexity to the omics analyses. Strategies such as combined risk scores between 2 genomes taking into account genetic ancestry are emerging to better understand graft mechanisms and refine biological interpretations. The future omics will be based on integrative biology, considering the analysis of the system as a whole and no longer the study of a single characteristic. In this review, we summarize omics studies advances in transplantation and address the most challenging analytical issues regarding these approaches.
Collapse
Affiliation(s)
- Rokhaya Ba
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
- Département Informatique et Mathématiques, Ecole Centrale de Nantes, Nantes, France
| | - Estelle Geffard
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Venceslas Douillard
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Françoise Simon
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
- Mount Sinai School of Medicine, New York, NY
| | - Laurent Mesnard
- Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Nicolas Vince
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Pierre-Antoine Gourraud
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Sophie Limou
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
- Département Informatique et Mathématiques, Ecole Centrale de Nantes, Nantes, France
| |
Collapse
|
4
|
Proteomics, brain death, and organ transplantation. J Heart Lung Transplant 2021; 41:325-326. [PMID: 35016814 DOI: 10.1016/j.healun.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
|
5
|
Müller C, Rosmark O, Åhrman E, Brunnström H, Wassilew K, Nybom A, Michaliková B, Larsson H, Eriksson LT, Schultz HH, Perch M, Malmström J, Wigén J, Iversen M, Westergren-Thorsson G. Protein Signatures of Remodeled Airways in Transplanted Lungs with Bronchiolitis Obliterans Syndrome Obtained Using Laser-Capture Microdissection. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1398-1411. [PMID: 34111430 DOI: 10.1016/j.ajpath.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 10/25/2022]
Abstract
Bronchiolitis obliterans syndrome, a common form of chronic lung allograft dysfunction, is the major limitation to long-term survival after lung transplantation. The histologic correlate is progressive, fibrotic occlusion of small airways, obliterative bronchiolitis lesions, which ultimately lead to organ failure. The molecular composition of these lesions is unknown. In this sutdy, the protein composition of the lesions in explanted lungs from four end-stage bronchiolitis obliterans syndrome patients was analyzed using laser-capture microdissection and optimized sample preparation protocols for mass spectrometry. Immunohistochemistry and immunofluorescence were used to determine the spatial distribution of commonly identified proteins on the tissue level, and protein signatures for 14 obliterative bronchiolitis lesions were established. A set of 39 proteins, identified in >75% of lesions, included distinct structural proteins (collagen types IV and VI) and cellular components (actins, vimentin, and tryptase). Each respective lesion exhibited a unique composition of proteins (on average, n = 66 proteins), thereby mirroring the morphologic variation of the lesions. Antibody-based staining confirmed these mass spectrometry-based findings. The 14 analyzed obliterative bronchiolitis lesions showed variations in their protein content, but also common features. This study provides molecular and morphologic insights into the development of chronic rejection after lung transplantation. The protein patterns in the lesions were correlated to pathways of extracellular matrix organization, tissue development, and wound healing processes.
Collapse
Affiliation(s)
- Catharina Müller
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oskar Rosmark
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma Åhrman
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden; Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Division of Laboratory Medicine, Department of Genetics and Pathology, Region Skåne, Lund, Sweden
| | - Katharina Wassilew
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annika Nybom
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Barbora Michaliková
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hillevi Larsson
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Leif T Eriksson
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Hans H Schultz
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jenny Wigén
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin Iversen
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Cheng P, Zhong L, Jiang Z, Wang Y, Pan M, Gao YI. High-dose immunosuppressant alters the immunological status of New Zealand white rabbits following skin transplantation. Exp Ther Med 2015; 10:1003-1008. [PMID: 26622429 DOI: 10.3892/etm.2015.2608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 05/01/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effect of an immunosuppressant on the immunological status of New Zealand white rabbits after skin grafting, and to evaluate a method for monitoring the immunological status of subjects with skin transplants. The rabbits were randomly divided into allograft rejection, autograft tolerance, nontransplant, allograft low-dose immunosuppressant and allograft high-dose immunosuppressant groups. The rabbits in the low- and high-dose immunosuppressant groups were treated with cyclosporine A intravenously 8 h prior to skin transplantation and once daily following transplantation at doses of 2 and 25 mg/kg, respectively. At 12 days after skin transplantation, the spleens of donor (female) rabbits and recipient (male) rabbits were harvested for the preparation of single-cell suspensions. The splenocytes from recipient and donor rabbits were labeled with 0.3 or 6 µM carboxy fluorescein diacetate succinimidyl ester, respectively, and a mixed cell suspension was prepared. The final preparation was intravenously injected into recipient New Zealand white rabbits. The ratio of the two fluorescently labeled cell populations in the peripheral blood was measured using flow cytometry at 1, 2, 4 and 8 h after the injection, and the cell death rate was calculated. Histological analysis was also performed on samples collected at the time of splenectomy. The cell death rates of the allograft rejection and low-dose immunosuppressant groups reached their highest levels 8 h after the injection of spleen cell suspension. Allogeneic spleen cells from donor male rabbits were almost completely removed within 8 h of injection. The cell death rate increased slowly in the nontransplant, autograft and high-dose immunosuppressant groups without specificity. This study provides a specific method for the in vivo monitoring of the immunological status of patients after skin grafting. This method can quickly and accurately detect the immunological status of recipients following the injection of a mixed splenocyte suspension, thereby indicating the strength of immune rejection by the immune systems of the recipients.
Collapse
Affiliation(s)
- Peilun Cheng
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Liming Zhong
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Zesheng Jiang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yan Wang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China ; Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Mingxin Pan
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Y I Gao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China ; Institute of Regenerative Medicine, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
7
|
Jonigk D, Izykowski N, Rische J, Braubach P, Kühnel M, Warnecke G, Lippmann T, Kreipe H, Haverich A, Welte T, Gottlieb J, Laenger F. Molecular Profiling in Lung Biopsies of Human Pulmonary Allografts to Predict Chronic Lung Allograft Dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3178-88. [PMID: 26476349 DOI: 10.1016/j.ajpath.2015.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/03/2015] [Accepted: 08/28/2015] [Indexed: 10/22/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) is the main reason for poor long-term outcome of lung transplantation, with bronchiolitis obliterans (BO) representing the predominant pathological feature. BO is defined as a progressive fibrous obliteration of the small airways, thought to be triggered by a combination of nonimmune bronchial injury and alloimmune and autoimmune mechanisms. Because biopsy samples are too insensitive to reliably detect BO and a decline in lung function test results, which is clinically used to define CLAD, does not detect early stages, there is need for alternative biomarkers for early diagnosis. Herein, we analyzed the cellular composition and differential expression of 45 tissue remodeling-associated genes in transbronchial lung biopsy specimens from two cohorts with 18 patients each: patients who did not develop CLAD within 3 years after transplantation (48 biopsy specimens) and patients rapidly developing CLAD within the first 3 postoperative years (57 biopsy specimens). Integrating the mRNA expression levels of the five most significantly dysregulated genes from the transforming growth factor-β axis (BMP4, IL6, MMP1, SMAD1, and THBS1) into a score, patient groups could be confidently separated and the outcome predicted (P < 0.001). We conclude that overexpression of fibrosis-associated genes may be valuable as a tissue-based molecular biomarker to more accurately diagnose or predict the development of CLAD.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hanover Medical School, Hanover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany.
| | - Nicole Izykowski
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Johanna Rische
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Peter Braubach
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Mark Kühnel
- Institute of Functional and Applied Anatomy, Hanover Medical School, Hanover, Germany
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Thoracic Surgery, Hanover Medical School, Hanover, Germany
| | - Torsten Lippmann
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Axel Haverich
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Thoracic Surgery, Hanover Medical School, Hanover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Jens Gottlieb
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Florian Laenger
- Institute of Pathology, Hanover Medical School, Hanover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany
| |
Collapse
|
8
|
Abstract
Proteomics and biochemical profiling have emerged as exciting and powerful tools in clinical biomarker research. In the field of transplantation, proteomics aims not only at developing noninvasive means for immune monitoring but also to gain mechanistic insights into the pathophysiology of the alloimmune response and hence defining new therapeutic targets. This chapter provides an overview of proteomic biomarker-driven approaches and its underlying concepts and discusses the advantages, clinical implications, challenges, and limitations of this novel modality as it relates to solid organ transplantation.
Collapse
Affiliation(s)
- Katrin Kienzl-Wagner
- Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Abstract
The enduring success of lung transplantation is built on the use of immunosuppressive drugs to stop the immune system from rejecting the newly transplanted lung allograft. Most patients receive a triple-drug maintenance immunosuppressive regimen consisting of a calcineurin inhibitor, an antiproliferative and corticosteroids. Induction therapy with either an antilymphocyte monoclonal or an interleukin-2 receptor antagonist are prescribed by many centres aiming to achieve rapid inhibition of recently activated and potentially alloreactive T lymphocytes. Despite this generic approach acute rejection episodes remain common, mandating further fine-tuning and augmentation of the immunosuppressive regimen. While there has been a trend away from cyclosporine and azathioprine towards a preference for tacrolimus and mycophenolate mofetil, this has not translated into significant protection from the development of chronic lung allograft dysfunction, the main barrier to the long-term success of lung transplantation. This article reviews the problem of lung allograft rejection and the evidence for immunosuppressive regimens used both in the short- and long-term in patients undergoing lung transplantation.
Collapse
|
10
|
Snell GI, Paraskeva M, Westall GP. Managing bronchiolitis obliterans syndrome (BOS) and chronic lung allograft dysfunction (CLAD) in children: what does the future hold? Paediatr Drugs 2013; 15:281-9. [PMID: 23605986 DOI: 10.1007/s40272-013-0026-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The success of pediatric lung transplantation continues to be limited by long-term graft dysfunction. Historically this has been characterized as an obstructive spirometric defect in the form of the bronchiolitis obliterans syndrome (BOS). It is recognized, however, that this does not reflect many of the other acknowledged etiologies of chronic lung dysfunction-noting it is the sum of the parts that contribute to respiratory morbidity and mortality after transplant. The term chronic lung allograft dysfunction (CLAD) has been coined to reflect these other entities and, in particular, a group of relatively recently described lung disorders called the restrictive allograft syndrome (RAS). RAS is characterized by a restrictive spirometric defect. Although these entities have not yet been studied in a pediatric setting their association with poor compliance, antibody-mediated rejection (AMR), and post-infectious lung damage (particularly viral) warrants attention by pediatric lung transplant teams. Current therapy for the BOS subset of CLAD is otherwise limited to changing immunosuppressants and avoiding excessive infectious risk by avoiding over-immunosuppression. Long-term macrolide therapy in lung transplantation is not of proven efficacy. Reviewing previous BOS studies to explore restrictive spirometric cases and joint projects via groups like the International Pediatric Lung Transplant Collaborative will be the way forward to solve this pressing problem.
Collapse
Affiliation(s)
- Gregory I Snell
- National Paediatric Lung Transplant Service, Alfred Hospital and Monash University, Melbourne 3004, Australia.
| | | | | |
Collapse
|
11
|
Biomarker discovery in transplantation—proteomic adventure or mission impossible? Clin Biochem 2013; 46:497-505. [DOI: 10.1016/j.clinbiochem.2012.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 01/10/2023]
|
12
|
Kennedy VE, Todd JL, Palmer SM. Bronchoalveolar lavage as a tool to predict, diagnose and understand bronchiolitis obliterans syndrome. Am J Transplant 2013; 13:552-61. [PMID: 23356456 PMCID: PMC3582805 DOI: 10.1111/ajt.12091] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/03/2012] [Accepted: 12/08/2012] [Indexed: 01/25/2023]
Abstract
Bronchiolitis obliterans syndrome (BOS), a condition of irreversible small airway fibrosis, is the principal factor limiting long-term survival after lung transplantation. Bronchoscopy and bronchoalveolar lavage (BAL), techniques central to lung transplant clinical practice, provide a unique opportunity to interrogate the lung allograft during BOS development and identify potential disease mechanisms or biomarkers. Over the past 20 years, numerous studies have evaluated the BAL cellular composition, cytokine profiles and protein constituents in lung transplant recipients with BOS. To date, however, no summative evaluation of this literature has been reported. We developed and applied objective criteria to qualitatively rank the strength of associations between BAL parameters and BOS in order to provide a comprehensive and systematic assessment of the literature. Our analysis indicates that several BAL parameters, including neutrophil count, interleukin-8, alpha defensins and MMP-9, demonstrate highly replicable associations with BOS. Additionally, we suggest that considerable opportunity exists to increase the knowledge gained from BAL analyses in BOS through increased sample sizes, covariant adjustment and standardization of the BAL technique. Further efforts to leverage analysis of BAL constituents in BOS may offer great potential to provide additional in-depth and mechanistic insights into the pathogenesis of this complex disease.
Collapse
Affiliation(s)
- Vanessa E. Kennedy
- Division of Pulmonary, Allergy and Critical Care Medicine- Duke University Medical Center, Durham, NC
| | - Jamie L. Todd
- Division of Pulmonary, Allergy and Critical Care Medicine- Duke University Medical Center, Durham, NC,Duke Clinical Research Institute, Durham, NC
| | - Scott M. Palmer
- Division of Pulmonary, Allergy and Critical Care Medicine- Duke University Medical Center, Durham, NC,Duke Clinical Research Institute, Durham, NC
| |
Collapse
|
13
|
Kelly FL, Kennedy VE, Jain R, Sindhwani NS, Finlen Copeland CA, Snyder LD, Eu JP, Meltzer EB, Brockway BL, Pavlisko E, Stripp BR, Palmer SM. Epithelial clara cell injury occurs in bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant 2012; 12:3076-84. [PMID: 22883104 PMCID: PMC3484196 DOI: 10.1111/j.1600-6143.2012.04201.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bronchiolitis obliterans syndrome (BOS) is a condition of progressive airflow obstruction that affects a majority of lung transplant recipients and limits long-term posttransplant survival. Although epithelial injury appears central to the development of BOS, little is known regarding the specific epithelial cell types that are affected in this condition. We hypothesized that BOS would involve preferential injury to the secretory Clara cells that function in innate defense and epithelial repair. To test this hypothesis, we assessed tissue transcript, tissue protein and lung fluid protein expression of Clara cell secretory protein (CCSP), a marker for Clara cells, in lung transplant recipients with BOS, BOS-free patients and in donor controls. Our results demonstrate that CCSP tissue transcript and protein expression are significantly reduced in lung transplant recipients with BOS compared to BOS-free or donor controls. In addition, we demonstrate that CCSP protein levels are significantly reduced in the lung fluid of patients with BOS compared to BOS-free controls, in cross-sectional and longitudinal analysis. Collectively, these complementary results illustrate that BOS involves a selective alteration in the distribution and function of bronchiolar Clara cells.
Collapse
Affiliation(s)
- F L Kelly
- Division of Pulmonary and Critical Care Medicine-Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|