1
|
Vlegels N, van den Brink H, Kopczak A, Arts T, Pham SD, Siero JC, Gesierich B, De Luca A, Duering M, Zwanenburg JJ, Dichgans M, Biessels GJ. The relation between cerebral small vessel function and white matter microstructure in monogenic and sporadic small vessel disease - the ZOOM@SVDs study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2025; 8:100383. [PMID: 40230817 PMCID: PMC11994352 DOI: 10.1016/j.cccb.2025.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
In cerebral small vessel disease (cSVD), vascular dysfunction has been associated with cSVD-lesions across the brain. Here we further explore the relation between vascular dysfunction and cSVD-related brain injury. We tested two hypotheses: (1) that complementary measures of abnormal small vessel function relate to decreased white matter integrity, and (2) that local variance in vascular dysfunction relates to local variance in white matter integrity within individual patients. We included 23 patients with monogenic cSVD (i.e. CADASIL) and 46 patients with sporadic cSVD. With whole-brain analyses, we tested if small vessel flow velocity and reactivity measures from 7T-MRI were associated with global peak-width-of-skeletonized-mean-diffusivity (PSMD). We also tested voxel-wise correlations between reactivity to hypercapnia and mean diffusivity (MD) in white matter. Whole-brain analyses showed a negative association between blood flow velocity and PSMD for the perforating arteries in the centrum semiovale in CADASIL (p = 0.04) and in the basal ganglia in sporadic cSVD (p = 0.002). Global white matter reactivity to hypercapnia was not associated with PSMD. Within patients, both in CADASIL and sporadic cSVD, we observed significant voxel-wise negative correlations for endothelial-independent vascular reactivity and MD in the white matter. These findings confirm our hypothesis that small vessel dysfunction in patients with cSVD is associated with microstructural white matter alterations, also at voxel level. The latter may reflect a direct relationship between local small vessel dysfunction and tissue injury.
Collapse
Affiliation(s)
- Naomi Vlegels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hilde van den Brink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna Kopczak
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Tine Arts
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stanley D.T. Pham
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C.W. Siero
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, The Netherlands
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Alberto De Luca
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Image Sciences Institute, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jaco J.M. Zwanenburg
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Yang Y, Deng C, Aldali F, Huang Y, Luo H, Liu Y, Huang D, Cao X, Zhou Q, Xu J, Li Y, Chen H. Therapeutic Approaches and Potential Mechanisms of Small Extracellular Vesicles in Treating Vascular Dementia. Cells 2025; 14:409. [PMID: 40136659 PMCID: PMC11941715 DOI: 10.3390/cells14060409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Small extracellular vesicles (sEVs), including exosomes as a subtype, with a diameter typically less than 200 nm and originating from the endosomal system, are capable of transporting a diverse array of bioactive molecules, including proteins, nucleic acids, and lipids, thereby facilitating intercellular communication and modulating cellular functions. Vascular dementia (VaD) represents a form of cognitive impairment attributed to cerebrovascular disease, characterized by a complex and multifaceted pathophysiological mechanism. Currently, the therapeutic approach to VaD predominantly emphasizes symptom management, as no specific pharmacological treatment exists to cure the condition. Recent investigations have illuminated the significant role of sEVs in the pathogenesis of vascular dementia. This review seeks to provide a comprehensive analysis of the characteristics and functions of sEVs, with a particular focus on their involvement in vascular dementia and its underlying mechanisms. The objective is to advance the understanding of the interplays between sEVs and vascular dementia, thereby offering novel insights for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Yujie Yang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Fatima Aldali
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Yunjie Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Hongmei Luo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Yizhou Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Danxia Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Xiaojian Cao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Qiuzhi Zhou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Hoshide S, Nishizawa M, Kanegae H, Kario K. Association of Longitudinal Change in Ambulatory Blood Pressure With Cognitive Decline in Older Adults. JACC. ADVANCES 2025; 4:101560. [PMID: 39898343 PMCID: PMC11782814 DOI: 10.1016/j.jacadv.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025]
Abstract
Background There has been no study about the association of longitudinal change in ambulatory blood pressure (BP) variability and level with cognitive decline. Objectives The purpose of the study was to evaluate whether BP changes via ambulatory BP monitoring predict cognitive decline progression. Methods Twice-annual ambulatory BP readings were examined during 5 years and their relationship with changes in the Japanese version of the Montreal Cognitive Assessment (MoCA-J) scores. BP variability was assessed using SD, coefficient of variation, and average real variability (ARV). Cognitive decline, defined as a change in the MoCA-J score, was assessed, with the threshold set at the quartile showing the greatest decrease, which we categorized as cognitive dysfunction (-4 points or less). Results Among 206 participants (mean age 79.9 [± 7.5] years), baseline 24-hour systolic blood pressure (SBP)/diastolic blood pressure (DBP) averaged 115.2/67.0 mm Hg. Over 4.98 years (IQR: 4.94-5.04 years), MoCA-J scores showed a nonsignificant decline from 20.2 (± 0.4) to 19.9 (± 0.4). A generalized linear mixed model showed that increased SD of daytime SBP (-0.064 [95% CI: -0.121 to -0.007]; P < 0.029) and DBP (-0.125 [95% CI: -0.213 to -0.037]; P = 0.005) were significantly linked to MoCA-J score decline, with similar trends for most measures except nighttime ARV. Logistic regression revealed higher ORs for cognitive decline with increased SD of daytime SBP (1.52 [95% CI: 1.18-1.96]; P = 0.001) and DBP (1.36 [95% CI: 1.09-1.71]; P = 0.007), consistent across coefficient of variation and ARV. No association was found between changes in BP level and MoCA-J score decline. Conclusions In older adults with controlled BP, increased BP variability was linked to cognitive decline, warranting further study as a prevention target.
Collapse
Affiliation(s)
- Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masafumi Nishizawa
- Department of Medicine, Minamisanriku Public Medical Clinic, Miyagi, Japan
| | - Hiroshi Kanegae
- Office of Research and Analysis, Genki Plaza Medical Center for Health Care, Tokyo, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
4
|
Chen JL, Wang R, Ma PQ, Wang YM, Tang QQ. Association between intercellular adhesion molecule-1 to depression and blood-brain barrier penetration in cerebellar vascular disease. World J Psychiatry 2024; 14:1661-1670. [PMID: 39564172 PMCID: PMC11572681 DOI: 10.5498/wjp.v14.i11.1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a prevalent cerebrovascular disease in clinical practice that is often associated with macrovascular disease. A clear understanding of the underlying causes of CSVD remains elusive. AIM To explore the association between intercellular adhesion molecule-1 (ICAM-1) and blood-brain barrier (BBB) penetration in CSVD. METHODS This study included patients admitted to Fuyang People's Hospital and Fuyang Community (Anhui, China) between December 2021 and March 2022. The study population comprised 142 patients, including 80 in the CSVD group and 62 in the control group. Depression was present in 53 out of 80 patients with CSVD. Multisequence magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI were applied in patients to determine the brain volume, cortical thickness, and cortical area of each brain region. Moreover, neuropsychological tests including the Hamilton depression scale, mini-mental state examination, and Montreal cognitive assessment basic scores were performed. RESULTS The multivariable analysis showed that age [P = 0.011; odds ratio (OR) = 0.930, 95% confidence interval (CI): 0.880-0.983] and ICAM-1 levels (P = 0.023; OR = 1.007, 95%CI: 1.001-1.013) were associated with CSVD. Two regions of interest (ROIs; ROI3 and ROI4) in the white matter showed significant (both P < 0.001; 95%CI: 0.419-0.837 and 0.366-0.878) differences between the two groups, whereas only ROI1 in the gray matter showed significant difference (P = 0.046; 95%CI: 0.007-0.680) between the two groups. ICAM-1 was significantly correlated (all P < 0.05) with cortical thickness in multiple brain regions in the CSVD group. CONCLUSION This study revealed that ICAM-1 levels were independently associated with CSVD. ICAM-1 may be associated with cortical thickness in the brain, predominantly in the white matter, and a significant increase in BBB permeability, proposing the involvement of ICAM-1 in BBB destruction.
Collapse
Affiliation(s)
- Ju-Luo Chen
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Rui Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Pei-Qi Ma
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - You-Meng Wang
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Qi-Qiang Tang
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| |
Collapse
|
5
|
Song Y, Lai Z, Ding K, Sun Y, Zeng L. Peripapillary vessels density is closely related to cerebral white matter hyperintensities: An OCTA study. PLoS One 2024; 19:e0312534. [PMID: 39480861 PMCID: PMC11527194 DOI: 10.1371/journal.pone.0312534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion triggers the development of white matter hyperintensities (WMHs), common in cerebral small vessel disease (CSVD). However, conventional imaging techniques cannot visualize cerebral small vessels. The retina, a direct extension of the central nervous system, has an unclear correlation with WMHs. This study employs Optical coherence tomographic angiography (OCTA) to investigate vascular changes in the retina and explore its correlation with WMHs, aiming to provide a new method for assessing perfusion in early ischemic brain WMHs. METHODS Forty-nine patients with WMHs were stratified into mild and moderate/severe WMHs groups based on MRI findings, utilizing the Fazekas and Scheltens scales. OCTA assessed fundus vessel microcirculation. Logistic regression analyzed the correlation between ocular fundus microcirculation and WMH severity and location. Additionally, ROC curves evaluated the diagnostic efficacy of each fundus vascular microcirculation index in determining WMH severity. RESULTS After adjusting for multiple confounders, finding consistently indicated that the moderate/ severe WMHs group exhibited lower vessel density (VD) in the superior quadrant of the inner peripapillary region compared to the mild group [OR = 0.487, CI (0.255,0.929), p < 0.05]. ROC curves revealed that when combined with age, diabetes, and superior quadrant VD of the inner peripapillary region, specificity could be increased to 94.1%. CONCLUSION Peripapillary vessel density correlates closely with the severity of cerebral WMHs. Early morphological changes due to chronic hypoperfusion may initiate from the inner layer of the optic disc, and OCTA could offer a novel method for evaluating blood perfusion in ischemic WMHs.
Collapse
Affiliation(s)
- Yuanyue Song
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zehua Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiqi Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Li H, Li Y, Zhong Q, Chen F, Wang H, Li X, Xie Y, Wang X. Dysfunction of neurovascular coupling in patients with cerebral small vessel disease: A combined resting-state fMRI and arterial spin labeling study. Exp Gerontol 2024; 194:112478. [PMID: 38866193 DOI: 10.1016/j.exger.2024.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) closely correlates to cognitive impairment, but its pathophysiology and the neurovascular mechanisms of cognitive deficits were unclear. We aimed to explore the dysfunctional patterns of neurovascular coupling (NVC) in patients with CSVD and further investigate the neurovascular mechanisms of CSVD-related cognitive impairment. METHODS Forty-three patients with CSVD and twenty-four healthy controls were recruited. We adopted resting-state functional magnetic resonance imaging combined with arterial spin labeling to investigate the NVC dysfunctional patterns in patients with CSVD. The Human Brain Atlas with 246 brain regions was applied to extract the NVC coefficients for each brain region. Partial correlation analysis and mediation analysis were used to explore the relationship between CSVD pathological features, NVC dysfunctional patterns, and cognitive decline. RESULTS 8 brain regions with NVC dysfunction were found in patients with CSVD (p < 0.025, Bonferroni correction). The NVC dysfunctional patterns in regions of the default mode network and subcortical nuclei were negatively associated with lacunes, white matter hyperintensities burden, and the severity of CSVD (FDR correction, q < 0.05). The NVC decoupling in regions located in the default mode network positively correlated with delayed recall deficits (FDR correction, q < 0.05). Mediation analysis suggested that the decreased NVC pattern of the left superior frontal gyrus partially mediated the impact of white matter hyperintensities on delayed recall (Mediation effect: -0.119; 95%CI: -11.604,-0.458; p < 0.05). CONCLUSION The findings of this study reveal the NVC dysfunctional pattern in patients with CSVD and illustrate the neurovascular mechanism of CSVD-related cognitive impairment. The NVC function in the left superior frontal gyrus may serve as a promising biomarker and therapeutic target for memory deficits in patients with CSVD.
Collapse
Affiliation(s)
- Hui Li
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - You Li
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Qin Zhong
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Faxiang Chen
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Hui Wang
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Xiang Li
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China
| | - Yuanliang Xie
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China.
| | - Xiang Wang
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430014, China.
| |
Collapse
|
7
|
Zhu F, Yao J, Feng M, Sun Z. Establishment and evaluation of a clinical prediction model for cognitive impairment in patients with cerebral small vessel disease. BMC Neurosci 2024; 25:35. [PMID: 39095700 PMCID: PMC11295716 DOI: 10.1186/s12868-024-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND There are currently no effective prediction methods for evaluating the occurrence of cognitive impairment in patients with cerebral small vessel disease (CSVD). AIMS To investigate the risk factors for cognitive dysfunction in patients with CSVD and to construct a risk prediction model. METHODS A retrospective study was conducted on 227 patients with CSVD. All patients were assessed by brain magnetic resonance imaging (MRI), and the Montreal Cognitive Assessment (MoCA) was used to assess cognitive status. In addition, the patient's medical records were also recorded. The clinical data were divided into a normal cognitive function group and a cognitive impairment group. A MoCA score < 26 (an additional 1 point for education < 12 years) is defined as cognitive dysfunction. RESULTS A total of 227 patients (mean age 66.7 ± 6.99 years) with CSVD were included in this study, of whom 68.7% were male and 100 patients (44.1%) developed cognitive impairment. Age (OR = 1.070; 95% CI = 1.015 ~ 1.128, p < 0.05), hypertension (OR = 2.863; 95% CI = 1.438 ~ 5.699, p < 0.05), homocysteine(HCY) (OR = 1.065; 95% CI = 1.005 ~ 1.127, p < 0.05), lacunar infarct score(Lac_score) (OR = 2.732; 95% CI = 1.094 ~ 6.825, P < 0.05), and CSVD total burden (CSVD_score) (OR = 3.823; 95% CI = 1.496 ~ 9.768, P < 0.05) were found to be independent risk factors for cognitive decline in the present study. The above 5 variables were used to construct a nomogram, and the model was internally validated by using bootstrapping with a C-index of 0.839. The external model validation C-index was 0.867. CONCLUSIONS The nomogram model based on brain MR images and clinical data helps in individualizing the probability of cognitive impairment progression in patients with CSVD.
Collapse
Affiliation(s)
- Fangfang Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
- Department of Neurology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Jie Yao
- Department of Neurology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Min Feng
- Department of Neurology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
8
|
Luo Y, Wang D, Jia Y, Gu X, Zang Y, Zhu Z, Zheng J, Huang L, Zhao J. White matter hyperintensity, parent artery steno-occlusion, and neurological deterioration in anterior circulation single subcortical infarction patients. Brain Behav 2024; 14:e3523. [PMID: 38747752 PMCID: PMC11095297 DOI: 10.1002/brb3.3523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The evidence for the association between white matter hyperintensity (WMH) severity and neurological deterioration (ND) in patients with single subcortical infarction (SSI) remains unclear and whether the association between them is modified by anterior circulation parent artery steno-occlusion (PAS) is unknown. Herein, we aimed to prospectively investigate the internal relevance. METHODS In this prospective study, the severity of WMH and PAS were assessed in 288 consecutive patients with anterior circulation SSI arriving at our hospital, a tertiary teaching hospital affiliated with Fudan University, 24 h after onset from January 2017 to December 2018. The multivariable logistic regression model was used to estimate the association between WMH severity and the risk of ND within 7 days after stroke onset as well as the interactive effect between WMH severity and PAS on ND among patients with SSI. RESULTS PAS modified the association between WMH severity and ND among patients with SSI (pinteraction = .029). After multivariate adjustment, the odds ratios of moderate-severe WMH associated with ND were 1.61 (95% CI, 0.50-5.19; ptrend = .428) for patients with PAS, and 0.37 (95% CI, 0.14-0.97; ptrend = .043) for those without PAS. Adding WMH severity to conventional risk factors improved risk prediction for ND in patients without PAS (net reclassification improvement: 48.2%, p = .005; integrated discrimination index: 2.5%, p = .004) but not in those with PAS. CONCLUSION There was a modified effect of PAS on the association between WMH severity and ND within 7 days after stroke onset among patients with anterior circulation SSI, which deserves more research attention. WMH was negatively associated with ND in anterior circulation SSI patients without PAS.
Collapse
Affiliation(s)
- Yunhe Luo
- Department of NeurologyMinhang HospitalFudan UniversityShanghaiChina
| | - Daosheng Wang
- Department of NeurosurgeryMinhang HospitalFudan UniversityShanghaiChina
| | - Yiming Jia
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesMedical College of Soochow UniversitySuzhouChina
| | - Xin Gu
- Department of NeurologyMinhang HospitalFudan UniversityShanghaiChina
| | - Yuhan Zang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesMedical College of Soochow UniversitySuzhouChina
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesMedical College of Soochow UniversitySuzhouChina
| | - Jin Zheng
- Department of NeurologyMinhang HospitalFudan UniversityShanghaiChina
| | - Ligang Huang
- Department of NeurologyShanghai Sixth People's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service PlatformShanghaiChina
| | - Jing Zhao
- Department of NeurologyMinhang HospitalFudan UniversityShanghaiChina
| |
Collapse
|
9
|
Sun M, Chen Z, Li G, Weng Y, Hou Y. Correlation between risk factors of cognitive dysfunction and blood pressure variability after acute ischemic stroke in northwest Shanghai. Int J Neurosci 2024:1-11. [PMID: 38652638 DOI: 10.1080/00207454.2024.2347558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Abstract:Objective: To explore the relationship between risk factors of cognitive dysfunction and blood pressure variability after acute ischemic stroke in northwest Shanghai to establish a model for early identification of high-risk groups of cognitive dysfunction and formulation of more targeted prevention and treatment measures. Methods: Spearman test was used to evaluate the correlation between blood pressure variability and Montreal Cognitive Assessment (MoCA) score in patients with acute ischemic stroke and the partial regression coefficient model was constructed based on the above independent risk factors, and the receiver operating characteristic (ROC) curve was described to analyze the relevant independent risk factors. Results: ROC curve analysis results showed that the clinical prediction model was significantly more effective than a single factor in predicting the risk of cognitive impairment after acute ischemic stroke in northwest Shanghai(P < 0.05). Conclusion: Cognitive dysfunction after acute ischemic stroke was closely related to high Homocysteine (Hcy) levels, high standard deviation of systolic blood pressure, previous infarction history and infarction of cognitive function area in northwest Shanghai. The prediction model based on the above factors showed satisfactory value in predicting of cognitive dysfunction risk after acute ischemic stroke and there was also the correlation between cognitive function and blood pressure variability.
Collapse
Affiliation(s)
- Meng Sun
- Shanghai Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zhibin Chen
- Shanghai Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Guoyi Li
- Shanghai Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yingfeng Weng
- Shanghai Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yangbo Hou
- Shanghai Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
10
|
Van Den Brink H, Pham S, Siero JC, Arts T, Onkenhout L, Kuijf H, Hendrikse J, Wardlaw JM, Dichgans M, Zwanenburg JJ, Biessels GJ. Assessment of Small Vessel Function Using 7T MRI in Patients With Sporadic Cerebral Small Vessel Disease: The ZOOM@SVDs Study. Neurology 2024; 102:e209136. [PMID: 38497722 PMCID: PMC11067699 DOI: 10.1212/wnl.0000000000209136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/07/2023] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia, but little is known about disease mechanisms at the level of the small vessels. 7T-MRI allows assessing small vessel function in vivo in different vessel populations. We hypothesized that multiple aspects of small vessel function are altered in patients with cSVD and that these abnormalities relate to disease burden. METHODS Patients and controls participated in a prospective observational cohort study, the ZOOM@SVDs study. Small vessel function measures on 7T-MRI included perforating artery blood flow velocity and pulsatility index in the basal ganglia and centrum semiovale, vascular reactivity to visual stimulation in the occipital cortex, and reactivity to hypercapnia in the gray and white matter. Lesion load on 3T-MRI and cognitive function were used to assess disease burden. RESULTS Forty-six patients with sporadic cSVD (mean age ± SD 65 ± 9 years) and 22 matched controls (64 ± 7 years) participated in the ZOOM@SVDs study. Compared with controls, patients had increased pulsatility index (mean difference 0.09, p = 0.01) but similar blood flow velocity in basal ganglia perforating arteries and similar flow velocity and pulsatility index in centrum semiovale perforating arteries. The duration of the vascular response to brief visual stimulation in the occipital cortex was shorter in patients than in controls (mean difference -0.63 seconds, p = 0.02), whereas reactivity to hypercapnia was not significantly affected in the gray and total white matter. Among patients, reactivity to hypercapnia was lower in white matter hyperintensities compared with normal-appearing white matter (blood-oxygen-level dependent mean difference 0.35%, p = 0.001). Blood flow velocity and pulsatility index in basal ganglia perforating arteries and reactivity to brief visual stimulation correlated with disease burden. DISCUSSION We observed abnormalities in several aspects of small vessel function in patients with cSVD indicative of regionally increased arteriolar stiffness and decreased reactivity. Worse small vessel function also correlated with increased disease burden. These functional measures provide new mechanistic markers of sporadic cSVD.
Collapse
Affiliation(s)
- Hilde Van Den Brink
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Stanley Pham
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Jeroen C Siero
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Tine Arts
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Laurien Onkenhout
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Hugo Kuijf
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Jeroen Hendrikse
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Joanna M Wardlaw
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Martin Dichgans
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Jaco J Zwanenburg
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Geert Jan Biessels
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| |
Collapse
|
11
|
Dobrynina LA, Novikova ES, Dobrushina OR, Gnedovskaya EV, Korepina OS, Byrochkina AA. [Neurofeedback in the treatment of cognitive impairment in patients with early cerebral small vessel disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:54-61. [PMID: 39269297 DOI: 10.17116/jnevro202412408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
OBJECTIVE To compare the effectiveness of neurofeedback (NFB) at infra-low and alpha frequencies in the treatment of cognitive impairment in patients with early cerebral small vessel disease (cSVD). MATERIAL AND METHODS The study included 71 patients (average age 52.8±6.3 years, men 15%, women 85%) with early cSVD and 21 healthy volunteers (average age 53.2±4.8 years, men 29%, women 71%). All participants were assessed for clinical manifestations and cognitive functions, brain MRI, and EEG. cSVD patients were randomized by an envelope method with double-blind placebo control. Three groups of neurofeedback were formed: infra-low waves (n=25), alpha waves (n=22), simulated neurofeedback using EEG (placebo) (n=24). Fifteen sessions of 30 minutes were conducted 2-5 times a week. The cognitive profile and EEG were assessed immediately and 6-8 weeks after completion of the neurofeedback course. RESULTS Patients with early cSVD had subjective (65%) and moderate (35%) cognitive impairment with predominant deviations in the components of executive brain functions (EBF). Neurofeedback using infra-low waves significantly improved EBF in the components of productivity, switching and inhibition, non-verbal delayed memory immediately after the course, maintaining the effect for at least 6-8 weeks, which was accompanied by an increase in the power (μB2) of the alpha rhythm in the occipital regions. Neurofeedback using alpha waves showed improvement in the Stroop test (interference index) in the delayed period. CONCLUSION In patients with early cSVD and deterioration of EBF, it is preferable to conduct biofeedback neurotraining at infra-low frequencies to treat cognitive impairment and create a cognitive reserve. An increase in the power of the alpha rhythm in the occipital regions during the course can be considered a prognostic marker of its effectiveness.
Collapse
|
12
|
Huang P, Chen K, Liu C, Zhen Z, Zhang R. Visualizing Cerebral Small Vessel Degeneration During Aging and Diseases Using Magnetic Resonance Imaging. J Magn Reson Imaging 2023; 58:1323-1337. [PMID: 37052571 DOI: 10.1002/jmri.28736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Cerebral small vessel disease is a major contributor to brain disorders in older adults. It is associated with a much higher risk of stroke and dementia. Due to a lack of clinical and fluid biomarkers, diagnosing and grading small vessel disease are highly dependent on magnetic resonance imaging. In the past, researchers mostly used brain parenchymal imaging markers to represent small vessel damage, but the relationships between these surrogate markers and small vessel pathologies are complex. Recent progress in high-resolution magnetic resonance imaging methods, including time-of-flight MR angiography, phase-contrast MR angiography, black blood vessel wall imaging, susceptibility-weighted imaging, and contrast-enhanced methods, allow for direct visualization of cerebral small vessel structures. They could be powerful tools for understanding aging-related small vessel degeneration and improving disease diagnosis and treatment. This article will review progress in these imaging techniques and their application in aging and disease studies. Some challenges and future directions are also discussed. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: 3.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kang Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiming Zhen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Plummer AM, Matos YL, Lin HC, Ryman SG, Birg A, Quinn DK, Parada AN, Vakhtin AA. Gut-brain pathogenesis of post-acute COVID-19 neurocognitive symptoms. Front Neurosci 2023; 17:1232480. [PMID: 37841680 PMCID: PMC10568482 DOI: 10.3389/fnins.2023.1232480] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Approximately one third of non-hospitalized coronavirus disease of 2019 (COVID-19) patients report chronic symptoms after recovering from the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some of the most persistent and common complaints of this post-acute COVID-19 syndrome (PACS) are cognitive in nature, described subjectively as "brain fog" and also objectively measured as deficits in executive function, working memory, attention, and processing speed. The mechanisms of these chronic cognitive sequelae are currently not understood. SARS-CoV-2 inflicts damage to cerebral blood vessels and the intestinal wall by binding to angiotensin-converting enzyme 2 (ACE2) receptors and also by evoking production of high levels of systemic cytokines, compromising the brain's neurovascular unit, degrading the intestinal barrier, and potentially increasing the permeability of both to harmful substances. Such substances are hypothesized to be produced in the gut by pathogenic microbiota that, given the profound effects COVID-19 has on the gastrointestinal system, may fourish as a result of intestinal post-COVID-19 dysbiosis. COVID-19 may therefore create a scenario in which neurotoxic and neuroinflammatory substances readily proliferate from the gut lumen and encounter a weakened neurovascular unit, gaining access to the brain and subsequently producing cognitive deficits. Here, we review this proposed PACS pathogenesis along the gut-brain axis, while also identifying specific methodologies that are currently available to experimentally measure each individual component of the model.
Collapse
Affiliation(s)
- Allison M. Plummer
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Yvette L. Matos
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Sephira G. Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Aleksandr Birg
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Alisha N. Parada
- Division of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrei A. Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| |
Collapse
|
14
|
Yang X, Chen C, Wang A, Li C, Cheng G. Imaging, Genetic, and Pathological Features of Vascular Dementia. Eur Neurol 2023; 86:277-284. [PMID: 37271126 DOI: 10.1159/000531088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Over the past decades, marked progress has been made in detecting vascular dementia (VD) both through maturation of diagnostic concepts and advances in brain imaging, especially MRI. We summarized the imaging, genetic, and pathological features of VD in this review. SUMMARY It is a challenge for the diagnosis and treatment of VD, particularly in patients where there is no evident temporal relation between cerebrovascular events and cognitive dysfunction. In patients with cognitive dysfunction with poststroke onset, the etiological classification is still complicated. KEY MESSAGES In this review, we summarized the clinical, imaging, and genetic as well as pathological features of VD. We hope to offer a framework to translate diagnostic criteria to daily practice, address treatment, and highlight some future perspectives.
Collapse
Affiliation(s)
- Xiaoni Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chao Chen
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Aishuai Wang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Changsheng Li
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangqing Cheng
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
15
|
Zhang Q, Yan X, Du J, Chen Z, Chang C. Diffusion Tensor Imaging as a Tool to Evaluate the Cognitive Function of Patients With Vascular Dementia: A Meta-Analysis. Neurologist 2023; 28:143-149. [PMID: 35986673 PMCID: PMC10158599 DOI: 10.1097/nrl.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND Vascular dementia (VaD) is the most common type of dementia secondary to Alzheimer's disease. The pathologic mechanism of VaD is complex, and VaD still lacks a more objective diagnosis and evaluation method. Diffusion tensor imaging (DTI) can better detect the organizational structure and functional characteristics compared with any other diagnosis methods. Therefore, DTI has broad application in evaluating the severity and prognosis of VaD. This study aimed to assess the value of DTI in evaluating the cognitive function of patients with VaD. METHODS Authors searched Pubmed, Embase, and Cochrane Library, using the search terms, such as "diffusion tensor imaging," "DTI," "Vascular Dementia," "Arteriosclerotic Dementia," "Cognition," and "Cognitive." A voxel-based meta-analysis combined with quality statistics was performed, using the anisotropic effect-size version of the signed differential mapping method. RESULTS A total of 8 case-control studies were included in this meta-analysis. The sample size of patients ranged from 35 to 60, including 166 patients in the VaD group and 177 healthy individuals. The DTI imaging of the brain tissue of VaD patients was significantly different from that of healthy individuals. CONCLUSIONS DTI imaging of the brain tissue of VaD patients was clearly different from that of healthy controls. Therefore it may be feasible to use DTI imaging as a diagnostic method for VaD.
Collapse
Affiliation(s)
- Qiuchi Zhang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Xiwu Yan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Jun Du
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Zhaoyao Chen
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine
| | - Cheng Chang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
16
|
Dintica CS, Habes M, Erus G, Vittinghoff E, Davatzikos C, Nasrallah IM, Launer LJ, Sidney S, Yaffe K. Elevated blood pressure is associated with advanced brain aging in mid-life: A 30-year follow-up of The CARDIA Study. Alzheimers Dement 2023; 19:924-932. [PMID: 35779250 PMCID: PMC9806185 DOI: 10.1002/alz.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND High blood pressure (BP) is a risk factor for late-life brain health; however, the association of elevated BP with brain health in mid-life is unclear. METHODS We identified 661 participants from the Coronary Artery Risk Development in Young Adults Study (age 18-30 at baseline) with 30 years of follow-up and brain magnetic resonance imaging at year 30. Cumulative exposure of BP was estimated by time-weighted averages (TWA). Ideal cardiovascular health was defined as systolic BP < 120 mm Hg, diastolic BP < 80 mm Hg. Brain age was calculated using previously validated high dimensional machine learning pattern analyses. RESULTS Every 5 mmHg increment in TWA systolic BP was associated with approximately 1-year greater brain age (95% confidence interval [CI]: 0.50-1.36) Participants with TWA systolic or diastolic BP over the recommended guidelines for ideal cardiovascular health, had on average 3-year greater brain age (95% CI: 1.00-4.67; 95% CI: 1.45-5.13, respectively). CONCLUSION Elevated BP from early to mid adulthood, even below clinical cut-offs, is associated with advanced brain aging in mid-life.
Collapse
Affiliation(s)
| | - Mohamad Habes
- University of Pennsylvania, Philadelphia, PA
- Neuroimage Analytics Laboratory (NAL) and the Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, TX, USA
| | - Guray Erus
- University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | |
Collapse
|
17
|
Guo H, Tan Y, Yao Z, Zhang Z, Yan J, Meng X. Effect of visit-to-visit blood pressure variability on mild cognitive impairment and probable dementia in hypertensive patients receiving standard and intensive blood pressure treatment. Front Cardiovasc Med 2023; 10:1166554. [PMID: 37139135 PMCID: PMC10150011 DOI: 10.3389/fcvm.2023.1166554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background High visit-to-visit blood pressure variability (BPV) and hypertension are risk factors for mild cognitive impairment (MCI) and probable dementia (PD). Few articles assessed the effect of BPV on the MCI and PD in intensive blood pressure treatment and the different functions of three types of visit-to-visit BPV: systolic blood pressure variability (SBPV), diastolic blood pressure variability (DBPV) and pulse pressure variability (PPV). Methods We performed a post hoc analysis of the SPRINT MIND trial. The primary outcomes were MCI and PD. BPV was measured by average real variability (ARV). The Kaplan-Meier curves were used to clarify the difference in tertiles of BPV. We fit Cox proportional hazards models to our outcome. We also did an interaction analysis between the intensive and standard groups. Results We enrolled 8,346 patients in the SPRINT MIND trial. The incidence of MCI and PD in the intensive group was lower than that in the standard group. 353 patients had MCI and 101 patients had PD in the standard group while 285 patients had MCI and 75 patients had PD in the intensive group. Tertiles with higher SBPV, DBPV and PPV in the standard group had a higher risk of MCI and PD (all p < 0.05). Meanwhile, higher SBPV and PPV in the intensive group were associated with an increased risk of PD (SBPV: HR(95%) = 2.1 (1.1-3.9), p = 0.026; PPV: HR(95%) = 2.0 (1.1-3.8), p = 0.025 in model 3) and higher SBPV in the intensive group was associated with an increased risk of MCI(HR(95%) = 1.4 (1.2-1.8), p < 0.001 in model 3). The difference between intensive and standard blood pressure treatment was not statistically significant when we considered the effect of the higher BPV on the risk of MCI and PD (all p for interaction >0.05). Conclusion In this post hoc analysis of the SPRINT MIND trial, we found that higher SBPV and PPV were associated with an increased risk of PD in the intensive group, and higher SBPV was associated with an increased risk of MCI in the intensive group. The effect of higher BPV on the risk of MCI and PD was not significantly different in intensive and standard blood pressure treatment. These findings emphasized the need for clinical work to monitor BPV in intensive blood pressure treatment.
Collapse
Affiliation(s)
- Hang Guo
- Department of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yi Tan
- Department of Education, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhizheng Yao
- Department of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zilu Zhang
- Department of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiafu Yan
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaofeng Meng
- Department of Cardiology, Aviation General Hospital, Beijing, China
- Correspondence: Xiaofeng Meng
| |
Collapse
|
18
|
Abstract
Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia. This review summarizes recent developments in advanced neuroimaging of cSVD with a focus on clinical and research applications. In the first section, we highlight how advanced structural imaging techniques, including diffusion magnetic resonance imaging (MRI), enable improved detection of tissue damage, including characterization of tissue appearing normal on conventional MRI. These techniques enable progression to be monitored and may be useful as surrogate endpoint in clinical trials. Quantitative MRI, including iron and myelin imaging, provides insights into tissue composition on the molecular level. In the second section, we cover how advanced MRI techniques can demonstrate functional or dynamic abnormalities of the blood vessels, which could be targeted in mechanistic research and early-stage intervention trials. Such techniques include the use of dynamic contrast enhanced MRI to measure blood-brain barrier permeability, and MRI methods to assess cerebrovascular reactivity. In the third section, we discuss how the increased spatial resolution provided by ultrahigh field MRI at 7 T allows imaging of perforating arteries, and flow velocity and pulsatility within them. The advanced MRI techniques we describe are providing novel pathophysiological insights in cSVD and allow improved quantification of disease burden and progression. They have application in clinical trials, both in assessing novel therapeutic mechanisms, and as a sensitive endpoint to assess efficacy of interventions on parenchymal tissue damage. We also discuss challenges of these advanced techniques and suggest future directions for research.
Collapse
Affiliation(s)
- Hilde van den Brink
- Department of Neurology and
Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University,
Utrecht, The Netherlands
| | - Fergus N Doubal
- Centre for Clinical Brain Sciences, UK
Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG)
and qbig, Department of Biomedical Engineering, University of Basel, Basel,
Switzerland,Marco Duering, Medical Image Analysis
Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of
Basel, Marktgasse 8, Basel, CH-4051, Switzerland.
; @MarcoDuering
| |
Collapse
|
19
|
Wang H, Xia H, Wang D, Guo Y, Wang X, Yu Y, Zhang C, Liu, Z. Serum lipoprotein phospholipase A2 level has diagnostic value for cognitive impairment in type II diabetes patients with white matter hyperintensity. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Haipeng Wang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Haimiao Xia
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Dongxia Wang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Yu Guo
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Xiaoyu Wang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Yue Yu
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Chengshi Zhang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Zhongjin Liu,
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| |
Collapse
|
20
|
Xia X, Qin Q, Peng Y, Wang M, Yin Y, Tang Y. Retinal Examinations Provides Early Warning of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1341-1357. [PMID: 36245377 DOI: 10.3233/jad-220596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with Alzheimer's disease have difficulty maintaining independent living abilities as the disease progresses, causing an increased burden of care on family caregivers and the healthcare system and related financial strain. This patient group is expected to continue to expand as life expectancy climbs. Current diagnostics for Alzheimer's disease are complex, unaffordable, and invasive without regard to diagnosis quality at early stages, which urgently calls for more technical improvements for diagnosis specificity. Optical coherence tomography or tomographic angiography has been shown to identify retinal thickness loss and lower vascular density present earlier than symptom onset in these patients. The retina is an extension of the central nervous system and shares anatomic and functional similarities with the brain. Ophthalmological examinations can be an efficient tool to offer a window into cerebral pathology with the merit of easy operation. In this review, we summarized the latest observations on retinal pathology in Alzheimer's disease and discussed the feasibility of retinal imaging in diagnostic prediction, as well as limitations in current retinal examinations for Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Xinyi Xia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yankun Peng
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Zanon Zotin MC, Schoemaker D, Raposo N, Perosa V, Bretzner M, Sveikata L, Li Q, van Veluw SJ, Horn MJ, Etherton MR, Charidimou A, Gurol ME, Greenberg SM, Duering M, dos Santos AC, Pontes-Neto OM, Viswanathan A. Peak width of skeletonized mean diffusivity in cerebral amyloid angiopathy: Spatial signature, cognitive, and neuroimaging associations. Front Neurosci 2022; 16:1051038. [PMID: 36440281 PMCID: PMC9693722 DOI: 10.3389/fnins.2022.1051038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Peak width of skeletonized mean diffusivity (PSMD) is a promising diffusion tensor imaging (DTI) marker that shows consistent and strong cognitive associations in the context of different cerebral small vessel diseases (cSVD). Purpose Investigate whether PSMD (1) is higher in patients with Cerebral Amyloid Angiopathy (CAA) than those with arteriolosclerosis; (2) can capture the anteroposterior distribution of CAA-related abnormalities; (3) shows similar neuroimaging and cognitive associations in comparison to other classical DTI markers, such as average mean diffusivity (MD) and fractional anisotropy (FA). Materials and methods We analyzed cross-sectional neuroimaging and neuropsychological data from 90 non-demented memory-clinic subjects from a single center. Based on MRI findings, we classified them into probable-CAA (those that fulfilled the modified Boston criteria), subjects with MRI markers of cSVD not attributable to CAA (presumed arteriolosclerosis; cSVD), and subjects without evidence of cSVD on MRI (non-cSVD). We compared total and lobe-specific (frontal and occipital) DTI metrics values across the groups. We used linear regression models to investigate how PSMD, MD, and FA correlate with conventional neuroimaging markers of cSVD and cognitive scores in CAA. Results PSMD was comparable in probable-CAA (median 4.06 × 10–4 mm2/s) and cSVD (4.07 × 10–4 mm2/s) patients, but higher than in non-cSVD (3.30 × 10–4 mm2/s; p < 0.001) subjects. Occipital-frontal PSMD gradients were higher in probable-CAA patients, and we observed a significant interaction between diagnosis and region on PSMD values [F(2, 87) = 3.887, p = 0.024]. PSMD was mainly associated with white matter hyperintensity volume, whereas MD and FA were also associated with other markers, especially with the burden of perivascular spaces. PSMD correlated with worse executive function (β = −0.581, p < 0.001) and processing speed (β = −0.463, p = 0.003), explaining more variance than other MRI markers. MD and FA were not associated with performance in any cognitive domain. Conclusion PSMD is a promising biomarker of cognitive impairment in CAA that outperforms other conventional and DTI-based neuroimaging markers. Although global PSMD is similarly increased in different forms of cSVD, PSMD’s spatial variations could potentially provide insights into the predominant type of underlying microvascular pathology.
Collapse
Affiliation(s)
- Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Imaging Sciences and Medical Physics, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Maria Clara Zanon Zotin, ,
| | - Dorothee Schoemaker
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Nicolas Raposo
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | - Martin Bretzner
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog (JPARC) - Lille Neurosciences & Cognition, Lille, France
| | - Lukas Sveikata
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Qi Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Susanne J. van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mitchell J. Horn
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark R. Etherton
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andreas Charidimou
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston University Medical Center, Boston, MA, United States
| | - M. Edip Gurol
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marco Duering
- Department of Biomedical Engineering, Medical Imaging Analysis Center (MIAC), University of Basel, Basel, Switzerland
| | - Antonio Carlos dos Santos
- Center for Imaging Sciences and Medical Physics, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Octavio M. Pontes-Neto
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Littau JL, Velilla L, Hase Y, Villalba‐Moreno ND, Hagel C, Drexler D, Osorio Restrepo S, Villegas A, Lopera F, Vargas S, Glatzel M, Krasemann S, Quiroz YT, Arboleda‐Velasquez JF, Kalaria R, Sepulveda‐Falla D. Evidence of beta amyloid independent small vessel disease in familial Alzheimer's disease. Brain Pathol 2022; 32:e13097. [PMID: 35695802 PMCID: PMC9616091 DOI: 10.1111/bpa.13097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
We studied small vessel disease (SVD) pathology in Familial Alzheimer's disease (FAD) subjects carrying the presenilin 1 (PSEN1) p.Glu280Ala mutation in comparison to those with sporadic Alzheimer's disease (SAD) as a positive control for Alzheimer's pathology and Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) bearing different NOTCH3 mutations, as positive controls for SVD pathology. Upon magnetic resonance imaging (MRI) in life, some FAD showed mild white matter hyperintensities and no further radiologic evidence of SVD. In post-mortem studies, total SVD pathology in cortical areas and basal ganglia was similar in PSEN1 FAD and CADASIL subjects, except for the feature of arteriosclerosis which was higher in CADASIL subjects than in PSEN1 FAD subjects. Further only a few SAD subjects showed a similar degree of SVD pathology as observed in CADASIL. Furthermore, we found significantly enlarged perivascular spaces in vessels devoid of cerebral amyloid angiopathy in FAD compared with SAD and CADASIL subjects. As expected, there was greater fibrinogen-positive perivascular reactivity in CADASIL but similar reactivity in PSEN1 FAD and SAD groups. Fibrinogen immunoreactivity correlated with onset age in the PSEN1 FAD cases, suggesting increased vascular permeability may contribute to cognitive decline. Additionally, we found reduced perivascular expression of PDGFRβ AQP4 in microvessels with enlarged PVS in PSEN1 FAD cases. We demonstrate that there is Aβ-independent SVD pathology in PSEN1 FAD, that was marginally lower than that in CADASIL subjects although not evident by MRI. These observations suggest presence of covert SVD even in PSEN1, contributing to disease progression. As is the case in SAD, these consequences may be preventable by early recognition and actively controlling vascular disease risk, even in familial forms of dementia.
Collapse
Affiliation(s)
- Jessica Lisa Littau
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Lina Velilla
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| | - Yoshiki Hase
- Neurovascular Research GroupTranslational and Clinical Research Institute, Newcastle UniversityNewcastle upon Tyne
| | | | - Christian Hagel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Drexler
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Andres Villegas
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| | | | - Sergio Vargas
- Department of Radiology, Neuroradiology SectionUniversidad de AntioquiaMedellínColombia
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Susanne Krasemann
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Yakeel T. Quiroz
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph F. Arboleda‐Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical SchoolBostonMassachusetts
| | - Rajesh Kalaria
- Neurovascular Research GroupTranslational and Clinical Research Institute, Newcastle UniversityNewcastle upon Tyne
| | - Diego Sepulveda‐Falla
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Neuroscience Group of AntioquiaUniversity of AntioquiaMedellín
| |
Collapse
|
23
|
Xia MH, Li A, Gao RX, Li XL, Zhang Q, Tong X, Zhao WW, Cao DN, Wei ZY, Yue J. Research hotspots and trends of multimodality MRI on vascular cognitive impairment in recent 12 years: A bibliometric analysis. Medicine (Baltimore) 2022; 101:e30172. [PMID: 36042608 PMCID: PMC9410608 DOI: 10.1097/md.0000000000030172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Multimodality magnetic resonance imaging (MRI) is widely used to detect vascular cognitive impairment (VCI). However, a bibliometric analysis of this issue remains unknown. Therefore, this study aimed to explore the research hotspots and trends of multimodality MRI on VCI over the past 12 years based on the Web of Science core collection using CiteSpace Software (6.1R2). METHODS Literature related to multimodality MRI for VCI from 2010 to 2021 was identified and analyzed from the Web of Science core collection database. We analyzed the countries, institutions, authors, cited journals, references, keyword bursts, and clusters using CiteSpace. RESULTS In total, 587 peer-reviewed documents were retrieved, and the annual number of publications showed an exponential growth trend over the past 12 years. The most productive country was the USA, with 182 articles, followed by China with 134 papers. The top 3 active academic institutions were Capital Medical University, Radboud UNIV Nijmegen, and UNIV Toronto. The most productive journal was the Journal of Alzheimer's Disease (33 articles). The most co-cited journal was Neurology, with the highest citations (492) and the highest intermediary centrality (0.14). The top-ranked publishing author was De Leeuw FE (17 articles) with the highest intermediary centrality of 0.04. Ward Law JM was the most cited author (123 citations) and Salat Dh was the most centrally cited author (0.24). The research hotspots of multimodal MRI for VCI include Alzheimer disease, vascular cognitive impairment, white matter intensity, cerebrovascular disease, dementia, mild cognitive impairment, neurovascular coupling, acute ischemic stroke, depression, and cerebral ischemic stroke. The main frontiers in the keywords are fMRI, vascular coupling, and cerebral ischemic stroke, and current research trends include impact, decline, and classification. CONCLUSIONS The findings from this bibliometric study provide research hotspots and trends for multimodality MRI for VCI over the past 12 years, which may help researchers identify hotspots and explore cutting-edge trends in this field.
Collapse
Affiliation(s)
- Mei-Hui Xia
- Department of Endocrinology and Geriatrics, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ang Li
- Sanofi-Aventis China Investment Co., Ltd, Beijing, China
| | - Rui-Xue Gao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Ling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qinhong Zhang
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Xin Tong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | | | - Dan-Na Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ze-Yi Wei
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhuan Yue
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
- *Correspondence: Jinhuan Yue, Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen 518000, China (e-mail: )
| |
Collapse
|
24
|
The Value of Brain Structural Magnetic Resonance Imaging Combined with APOE-- ε4 Genotype in Early Diagnosis and Disease Progression of Senile Vascular Cognitive Impairment No Dementia. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8613024. [PMID: 35317127 PMCID: PMC8917948 DOI: 10.1155/2022/8613024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the value of brain structure magnetic resonance imaging combined with APOE-ε4 genotype in the early diagnosis and disease progression of elderly patients with vascular cognitive impairment no dementia (VCIND). Methods The first stroke patients admitted to our hospital from March 2017 to December 2018 were collected, including 130 cases of vascular cognitive impairment no dementia (VCIND group) and 50 cases of the control group (NC group). The basic information of all subjects was recorded, and APOE-ε4 alleles of all subjects were detected. The neuropsychological test scale evaluated the cognitive psychology of the subjects, and they were scanned by multi-parameter MRI. After follow-up, VCIND patients were divided into the dementia group and the nondementia group. MRI scans were again performed, and the risk factors of VCIND patients developing dementia were analyzed. Results Compared with the NC group, patients in the VCIND group had shorter years of education, more patients with hypertension, higher levels of homocysteine (Hcy), and lower cognitive ability. Patients with White Matter Volume (WMV), White Matter Hyperintensity (WMH), Lacunar Infarction (LI), elevated Fazekas scores, and APOE-ε4 gene carriers are more likely to develop VCIND. After 12 months of follow-up, compared with the nondementia group, the number of WMV, WMH, Fazekas scores, and APOE-ε4 gene carriers in the dementia group was significantly increased. In addition, the progression-free survival rate of APOE-ε4 gene carriers was significantly lower than that of nonAPOE-ε4 gene carriers. Conclusion Years of education, hypertension, high levels of Hcy, elevated WMV, WMH, LI, and Fazekas scores, and carrying the APOE-ε4 gene are risk factors for VCIND in stroke patients. Craniocerebral structural MRI combined with APOE-ε4 genotype has a diagnostic role in the early diagnosis and disease progression of elderly patients with VCIND.
Collapse
|
25
|
Vidyashree M, Deepeshwar S, Nagarathna R, Manjunath NK, Kaligal C, Kanthi A, Nagendra HR, Bathala L, Sharma VK. Transcranial Doppler studies in Type 2 diabetes mellitus: A systematic review. Diabetes Res Clin Pract 2022; 186:109808. [PMID: 35247526 DOI: 10.1016/j.diabres.2022.109808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type II Diabetes mellitus (T2DM) patients are at the risk of developing cerebrovascular diseases, often contributed by altered cerebral haemodynamics. We present a systematic review of studies on cerebral haemodynamics assessment using transcranial Doppler (TCD) in T2DM. REVIEW METHOD A systematic review of the published articles in the English language between 1991 to 2021. DATA SOURCES Articles were retrieved via Pubmed and Cochrane library. We included Cross-sectional, prospective, retrospective, randomized controlled, and cross-over studies for this review. RESULTS A total of 25 articles met the inclusion criteria, which provided data for 3212 patients. CONCLUSION Cerebral autoregulation is often impaired among patients with T2DM. The risk increased with the duration of T2DM, related complications and presence of comorbidities.
Collapse
Affiliation(s)
- Mahadevappa Vidyashree
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India.
| | - Singh Deepeshwar
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India.
| | - Raghuram Nagarathna
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India
| | | | - Chidananda Kaligal
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India
| | - Amit Kanthi
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandana Samsthana(S-VYASA), Bangalore, India
| | | | | | - Vijay K Sharma
- Yong Loo Lin School of Medicine, National University of Singapore and Division of Neurology, National University Hospital, Singapore
| |
Collapse
|
26
|
Zhang L, Li Y, Bian L, Luo Q, Zhang X, Zhao B. Cognitive Impairment of Patient With Neurological Cerebrovascular Disease Using the Artificial Intelligence Technology Guided by MRI. Front Public Health 2022; 9:813641. [PMID: 35310781 PMCID: PMC8927700 DOI: 10.3389/fpubh.2021.813641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
This study was to explore the application of MRI based on artificial intelligence technology combined with neuropsychological assessment to the cognitive impairment of patients with neurological cerebrovascular diseases. A total of 176 patients were divided into a control group, a vascular cognitive impairment non-dementia (VCIND) group, a vascular dementia (VD) group, and an Alzheimer's disease (AD) group. All patients underwent MRI and neuropsychological evaluation and examination, and an improved fuzzy C-means (FCM) clustering algorithm was proposed for MRI processing. It was found that the segmentation accuracy (SA) and similarity (KI) data of the improved FCM algorithm used in this study were higher than those of the standard FCM algorithm, bias-corrected FCM (BCFCM) algorithm, and rough FCM (RFCM) algorithm (p < 0.05). In the activities of daily living (ADL), the values in the VCIND group (23.55 ± 6.12) and the VD group (28.56 ± 3.1) were higher than that in the control group (19.17 ± 3.67), so the hippocampal volume was negatively correlated with the ADL (r = −0.872, p < 0.01). In the VCIND group (52.4%), VD group (31%), and AD group (26.1%), the proportion of patients with the lacunar infarction distributed on both sides of the brain and the number of multiple cerebral infarction lesions (76.2, 71.4, and 71.7%, respectively) were significantly higher than those in the control group (23.9 and 50%). In short, the improved FCM algorithm showed a higher segmentation effect and SA for MRI of neurological cerebrovascular disease. In addition, the distribution, number, white matter lesions, and hippocampal volume of lacunar cerebral infarction were related to the cognitive impairment of patients with cerebrovascular diseases.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
- Department of Mental Health, Changzhi Medical College, Changzhi, China
- *Correspondence: Lifang Zhang
| | - Yanran Li
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Lin Bian
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| | - Qingrong Luo
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| | - Xiaoxi Zhang
- Department of Mental Health, Changzhi Medical College, Changzhi, China
| | - Bing Zhao
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| |
Collapse
|
27
|
Lansberg MG, Wintermark M, Kidwell CS, Albers GW. Magnetic Resonance Imaging of Cerebrovascular Diseases. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Rundek T, Tolea M, Ariko T, Fagerli EA, Camargo CJ. Vascular Cognitive Impairment (VCI). Neurotherapeutics 2022; 19:68-88. [PMID: 34939171 PMCID: PMC9130444 DOI: 10.1007/s13311-021-01170-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular cognitive impairment (VCI) is predominately caused by vascular risk factors and cerebrovascular disease. VCI includes a broad spectrum of cognitive disorders, from mild cognitive impairment to vascular dementia caused by ischemic or hemorrhagic stroke, and vascular factors alone or in a combination with neurodegeneration including Alzheimer's disease (AD) and AD-related dementia. VCI accounts for at least 20-40% of all dementia diagnosis. Growing evidence indicates that cerebrovascular pathology is the most important contributor to dementia, with additive or synergistic interactions with neurodegenerative pathology. The most common underlying mechanism of VCI is chronic age-related dysregulation of CBF, although other factors such as inflammation and cardiovascular dysfunction play a role. Vascular risk factors are prevalent in VCI and if measured in midlife they predict cognitive impairment and dementia in later life. Particularly, hypertension, high cholesterol, diabetes, and smoking at midlife are each associated with a 20 to 40% increased risk of dementia. Control of these risk factors including multimodality strategies with an inclusion of lifestyle modification is the most promising strategy for treatment and prevention of VCI. In this review, we present recent developments in age-related VCI, its mechanisms, diagnostic criteria, neuroimaging correlates, vascular risk determinants, and current intervention strategies for prevention and treatment of VCI. We have also summarized the most recent and relevant literature in the field of VCI.
Collapse
Affiliation(s)
- Tatjana Rundek
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Magdalena Tolea
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Taylor Ariko
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric A Fagerli
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian J Camargo
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Wang Z, Chen Q, Chen J, Yang N, Zheng K. Risk factors of cerebral small vessel disease: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e28229. [PMID: 34941088 PMCID: PMC8702220 DOI: 10.1097/md.0000000000028229] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a common neurological disease under the effect of multiple factors. Although some literature analyzes and summarizes the risk factors of CSVD, the conclusions are controversial. To determine the risk factors of CSVD, we conducted this meta-analysis. METHODS Five authoritative databases of PubMed, Embase, Cochrane Library, CNKI, and Wan Fang were searched to find related studies published before November 30, 2020. The literature was screened according to the inclusion and exclusion criteria. We used RevMan 5.4 software to analyze the data after extraction. RESULTS A total of 29 studies involving 16,587 participants were included. The meta-analysis showed that hypertension (odds ratio [OR] 3.16, 95% confidence interval [CI] 2.22-4.49), diabetes (OR 2.15, 95% CI 1.59-2.90), hyperlipidemia (OR 1.64, 95% CI 1.11-2.40), smoking (OR 1.47, 95% CI 1.15-1.89) were significantly related to the risk of lacune, while drinking (OR 1.03, 95% CI 0.87-1.23) was not. And hypertension (OR 3.31, 95% CI 2.65-4.14), diabetes (OR 1.66, 95% CI 2.65-1.84), hyperlipidemia (OR 1.88, 95% CI 1.08-3.25), smoking (OR 1.48, 95% CI 1.07-2.04) were significantly related to the risk of white matter hyperintensity, while drinking (OR 1.41, 95% CI 0.97-2.05) was not. CONCLUSIONS This study suggested that hypertension, diabetes, hyperlipidemia, and smoking are risk factors of CSVD, and we should take measures to control these risk factors for the purpose of preventing CSVD.
Collapse
|
30
|
Wu WW, Wang Y, Xu J, Lu LX, Chen L, Wu G, Yu H. Explore the correlation between cerebral vessel characteristics with cognitive impairment among elder individuals: a community study from China. BMC Neurol 2021; 21:484. [PMID: 34893030 PMCID: PMC8665547 DOI: 10.1186/s12883-021-02492-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Brain Magnetic Resonance Imaging (MRI) examination of cerebral small vessel disease (CSVD) may help screen vascular cognitive impairment. A recently estimated CSVD score system was suggested to capture the overall CSVD burden. The study aimed to detect the association between systemic evaluation score of cerebral vascular imaging parameters with cognitive functions. Methods This was a cross-sectional study in community settings. From October 2017 to September 2018, elder (≧60) residents were recruited through on-site visit in 6 communities from Shanghai, China. The participants underwent brain MRI, carotid ultrasound, laboratory tests of blood and urine samples. Cognitive function was evaluated using Mini-Mental State Examination (MMSE). MRI score of CSVD was calculated according to the 2012 standard for the evaluation of statistical changes in imaging. Results Total 171 subjects completed survey and examinations. There were 55 participants diagnosed with cognitive impairment, with a total percentage of 32.2%. Participants with and without cognitive impairment showed significant differences in age, BMI and education level. Cognitive impaired participant had more disease history/comorbidity of hypertension and chronic renal insufficiency, higher level of creatinine, as well as lower level of full blood count (FBC) and alanine aminotransferase (ALT). A significant difference was detected in CSVD score between participants with and without cognitive impairment. Results of linear regression analysis showed significant negative correlations between MMSE score and both left and right carotid artery peak systolic velocity (PSV), however the CSVD score was only borderline (P = 0.0566) positively correlated with MMSE. Multivariate linear correlation analysis including all collected risk factor data showed that left carotid artery PSV score was among the independent negative correlated factors of MMSE. Multivariate binary logistic analysis showed that age, education and history of hypertension were the only statistically associated factors of cognitive impairment. Conclusions The current study identified high prevalence of cognitive impairment in a Chinese community. In addition, correlations between cerebral vascular disease imaging status and cognitive functions were confirmed although the sample size limited the possibility of screening cognitive impairment with imaging technique.
Collapse
Affiliation(s)
- Wei-Wen Wu
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu Town, Qingpu District, Shanghai, 201700, China.
| | - Yang Wang
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu Town, Qingpu District, Shanghai, 201700, China
| | - Jun Xu
- Department of Radiology, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu Town, Qingpu District, Shanghai, 201700, China
| | - Li-Xia Lu
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu Town, Qingpu District, Shanghai, 201700, China
| | - Lin Chen
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu Town, Qingpu District, Shanghai, 201700, China
| | - Gang Wu
- Department of Radiology, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu Town, Qingpu District, Shanghai, 201700, China
| | - Hui Yu
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Qingpu Town, Qingpu District, Shanghai, 201700, China
| |
Collapse
|
31
|
van Dinther M, Schram MT, Jansen JFA, Backes WH, Houben AJHM, Berendschot TTJM, Schalkwijk CG, Stehouwer CDA, van Oostenbrugge RJ, Staals J. Extracerebral microvascular dysfunction is related to brain MRI markers of cerebral small vessel disease: The Maastricht Study. GeroScience 2021; 44:147-157. [PMID: 34816376 PMCID: PMC8811003 DOI: 10.1007/s11357-021-00493-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cerebral small vessel disease (cSVD) is a late consequence of cerebral microvascular dysfunction (MVD). MVD is hard to measure in the brain due to its limited accessibility. Extracerebral MVD (eMVD) measures can give insights in the etiology of cerebral MVD, as MVD may be a systemic process. We aim to investigate whether a compound score consisting of several eMVD measures is associated with structural cSVD MRI markers. METHODS Cross-sectional data of the population-based Maastricht Study was used (n = 1872, mean age 59 ± 8 years, 49% women). Measures of eMVD included flicker light-induced retinal arteriolar and venular dilation response (retina), albuminuria and glomerular filtration rate (kidney), heat-induced skin hyperemia (skin), and plasma biomarkers of endothelial dysfunction (sICAM-1, sVCAM-1, sE-selectin, and von Willebrand factor). These measures were standardized into z scores and summarized into a compound score. Linear and logistic regression analyses were used to investigate the associations between the compound score and white matter hyperintensity (WMH) volume, and the presence of lacunes and microbleeds, as measured by brain MRI. RESULTS The eMVD compound score was associated with WMH volume independent of age, sex, and cardiovascular risk factors (St β 0.057 [95% CI 0.010-0.081], p value 0.01), but not with the presence of lacunes (OR 1.011 [95% CI 0.803-1.273], p value 0.92) or microbleeds (OR 1.055 [95% CI 0.896-1.242], p value 0.52). CONCLUSION A compound score of eMVD is associated with WMH volume. Further research is needed to expand the knowledge about the role of systemic MVD in the pathophysiology of cSVD.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands. .,CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Miranda T Schram
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alfons J H M Houben
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Ophthalmology, Maastricht University Medical Center, Maastricht, The Netherlands.,NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
32
|
Magnetic Resonance Image Feature Analysis under Deep Learning in Diagnosis of Neurological Rehabilitation in Patients with Cerebrovascular Diseases. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6051009. [PMID: 34785991 PMCID: PMC8560267 DOI: 10.1155/2021/6051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
To explore the impact of magnetic resonance imaging (MRI) image features based on deep learning algorithms on the neurological rehabilitation of patients with cerebrovascular diseases, eighty patients with acute cerebrovascular disease were selected as the research objects. According to whether the patients were with vascular cognitive impairment (VCI), they were divided into VCI group (34 cases) and non-VCI group (46 cases). In addition, based on the convolutional neural network (CNN), a new multimodal CNN image segmentation algorithm was proposed. The algorithm was applied to the segmentation of MRI images of patients with vascular cognitive impairment (VCI) and compared with the segmentation results of CNN and fully CNN (FCN). As a result, the segmentation results of the three different algorithms showed that the Dice coefficient, accuracy, and recall of the multimodal CNN algorithm were 0.78 ± 0.24, 0.81 ± 0.28, and 0.88 ± 0.32, respectively, which were significantly increased compared to those of other two algorithms (P < 0.05). The neurological evaluation results showed that the MMSE and MoCA scores of VCI patients were 15.4 and 14.6 ± 5.31, respectively, which were significantly lower than those of the non-VCI group (P < 0.05). The TMT-a and TMT-b scores of VCI patients were 221.7 and 385.9, respectively, which were significantly higher than those of the non-VCI group (P < 0.05). The FA and MD values of nerve function-related fibers shown in the MRI images of the VCI group were significantly different from those of the non-VCI group (P < 0.05). Therefore, the neurological recovery process of VCI patients was affected by multiple neurocognitive-related fiber structures. To sum up, the multimodal CNN algorithm can sensitively and accurately reflect the degree of neurological impairment in patients with cerebrovascular disease and can be applied to disease diagnosis and neurological evaluation of VCI patients.
Collapse
|
33
|
Qin Y, Ai D, Jordan AE, Guo X, Li T, Diao S, Zhao H, Liu Y, Xue Q, Wang Y, Fang Q. Better Screening Value of Sylvian Fissure Ratio on Cognitive Decline Among Female Compared to Male: An Observational Study in Elderly Patients With Cerebral Small Vessel Disease in Soochow. Front Neurosci 2021; 15:729782. [PMID: 34675766 PMCID: PMC8524438 DOI: 10.3389/fnins.2021.729782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Cognitive decline (CD) occurs frequently in elderly patients with cerebral small vessel disease (CSVD). In China, elderly patients are more likely to enter healthcare in community hospitals where no magnetic resonance imaging (MRI) is available. This study aimed to explore the screening value of Sylvian fissure ratio (SFR) on CD and compare its gender difference from community-transferred patients. Methods: We performed a single-center, observational study (collected between April 1, 2016, and March 1, 2019) to evaluate the association between Montreal Cognitive Assessment (MoCA) and SFR in 203 eligible community-transferred patients. Baseline characteristics of patients were collected during hospitalization. Multiple linear regression analyses were used to estimate the effect of variables on MoCA, and interactions between select variables were analyzed in different models. Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative effect of SFR to severe CD. Results: We identified that a meaningful SFR cutoff of 0.05 had important screening value (likelihood ratio test, p = 0.067) on CD. The ratio had a lower screen value in males when compared to females (adjusted β, −5.54; 95% CI, −8.78 to −2.30 vs. adjusted β, −1.01; 95% CI, −2.84 to 0.82). The gender difference was further verified by ROC curve analysis, in which this discriminative effect was more potent in females (from 0.878 to 0.948) compared to males (from 0.838 to 0.837). Conclusion: An SFR of 0.05 may be more useful to distinguish CD in female patients with CSVD than male patients in whom the syndrome is suspected clinically.
Collapse
Affiliation(s)
- Yiren Qin
- The Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dannan Ai
- The Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Xiaoning Guo
- The Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tan Li
- The Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shanshan Diao
- The Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongru Zhao
- The Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany
| | - Qun Xue
- The Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yueju Wang
- The Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Fang
- The Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
34
|
Lim JS, Lee JJ, Woo CW. Post-Stroke Cognitive Impairment: Pathophysiological Insights into Brain Disconnectome from Advanced Neuroimaging Analysis Techniques. J Stroke 2021; 23:297-311. [PMID: 34649376 PMCID: PMC8521255 DOI: 10.5853/jos.2021.02376] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
The neurological symptoms of stroke have traditionally provided the foundation for functional mapping of the brain. However, there are many unresolved aspects in our understanding of cerebral activity, especially regarding high-level cognitive functions. This review provides a comprehensive look at the pathophysiology of post-stroke cognitive impairment in light of recent findings from advanced imaging techniques. Combining network neuroscience and clinical neurology, our research focuses on how changes in brain networks correlate with post-stroke cognitive prognosis. More specifically, we first discuss the general consequences of stroke lesions due to damage of canonical resting-state large-scale networks or changes in the composition of the entire brain. We also review emerging methods, such as lesion-network mapping and gradient analysis, used to study the aforementioned events caused by stroke lesions. Lastly, we examine other patient vulnerabilities, such as superimposed amyloid pathology and blood-brain barrier leakage, which potentially lead to different outcomes for the brain network compositions even in the presence of similar stroke lesions. This knowledge will allow a better understanding of the pathophysiology of post-stroke cognitive impairment and provide a theoretical basis for the development of new treatments, such as neuromodulation.
Collapse
Affiliation(s)
- Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Joong Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Choong-Wan Woo
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
35
|
Bauer CE, Zachariou V, Seago E, Gold BT. White Matter Hyperintensity Volume and Location: Associations With WM Microstructure, Brain Iron, and Cerebral Perfusion. Front Aging Neurosci 2021; 13:617947. [PMID: 34290597 PMCID: PMC8287527 DOI: 10.3389/fnagi.2021.617947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Cerebral white matter hyperintensities (WMHs) represent macrostructural brain damage associated with various etiologies. However, the relative contributions of various etiologies to WMH volume, as assessed via different neuroimaging measures, is not well-understood. Here, we explored associations between three potential early markers of white matter hyperintensity volume. Specifically, the unique variance in total and regional WMH volumes accounted for by white matter microstructure, brain iron concentration and cerebral blood flow (CBF) was assessed. Regional volumes explored were periventricular and deep regions. Eighty healthy older adults (ages 60–86) were scanned at 3 Tesla MRI using fluid-attenuated inversion recovery, diffusion tensor imaging (DTI), multi-echo gradient-recalled echo and pseudo-continuous arterial spin labeling sequences. In a stepwise regression model, DTI-based radial diffusivity accounted for significant variance in total WMH volume (adjusted R2 change = 0.136). In contrast, iron concentration (adjusted R2 change = 0.043) and CBF (adjusted R2 change = 0.027) made more modest improvements to the variance accounted for in total WMH volume. However, there was an interaction between iron concentration and location on WMH volume such that iron concentration predicted deep (p = 0.034) but not periventricular (p = 0.414) WMH volume. Our results suggest that WM microstructure may be a better predictor of WMH volume than either brain iron or CBF but also draws attention to the possibility that some early WMH markers may be location-specific.
Collapse
Affiliation(s)
- Christopher E Bauer
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Valentinos Zachariou
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Elayna Seago
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Brian T Gold
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
36
|
Jin Q, Lei Y, Wang R, Wu H, Ji K, Ling L. A Systematic Review and Meta-Analysis of Retinal Microvascular Features in Alzheimer's Disease. Front Aging Neurosci 2021; 13:683824. [PMID: 34267645 PMCID: PMC8275836 DOI: 10.3389/fnagi.2021.683824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Objective: The aim of this meta-analysis was to investigate retinal microvascular features in patients with Alzheimer's disease (AD) using optical coherence tomography angiography (OCTA). Methods: PubMed, Cochrane Library, Embase, and Web of Science databases were systematically searched for published articles comparing retinal microvascular characteristics in subjects with AD and controls. The mean difference (MD) with a 95% confidence interval (CI) was used to assess continuous variables. Review Manager Version (RevMan) 5.30, was employed to analyze the data. Results: Nine studies were included in the meta-analysis. The analysis revealed that the macular whole enface superficial and deep vessel density (VD) values measured by OCTA were significantly lower in patients with AD than in controls (MD = −1.10, P < 0.0001; MD = −1.61, P = 0.0001, respectively). The value measured by OCTA for parafoveal superficial VD in patients with AD was also remarkably lower than that in the control group (MD = −1.42, P = 0.001), whereas there was no significant difference in the value for parafoveal deep VD (MD = −3.67, P = 0.19), compared to the controls. In addition, the foveal avascular zone (FAZ) was larger in patients with AD than in the control group (MD = 0.08, P = 0.07), although it did not reach statistical significance. Conclusions: The present meta-analysis indicated that the macular whole enface and parafoveal vessel densities were reduced in patients with AD. Moreover, our pooled data revealed that FAZ is larger in patients with AD. Consequently, OCTA may be utilized as a diagnostic tool to identify and monitor patients with AD.
Collapse
Affiliation(s)
- Qifang Jin
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiming Lei
- Department of School of Ophthalmology and Optometry, Nanchang University, Nanchang, China
| | - Ruoxin Wang
- Department of Ophthalmology, The First Hospital of Xi'an, Xi'an, China
| | - Huiying Wu
- Nanchang Bright Eye Hospital, Nanchang, China
| | - Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Ling
- Affiliated Eye Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Jiang H, Wang J, Levin BE, Baumel BS, Camargo CJ, Signorile JF, Rundek T. Retinal Microvascular Alterations as the Biomarkers for Alzheimer Disease: Are We There Yet? J Neuroophthalmol 2021; 41:251-260. [PMID: 33136677 PMCID: PMC8079547 DOI: 10.1097/wno.0000000000001140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alzheimer disease (AD) is a heterogeneous and multifactorial disorder with an insidious onset and slowly progressive disease course. To date, there are no effective treatments, but biomarkers for early diagnosis and monitoring of disease progression offer a promising first step in developing and testing potential interventions. Cerebral vascular imaging biomarkers to assess the contributions of vascular dysfunction to AD are strongly recommended to be integrated into the current amyloid-β (Aβ) [A], tau [T], and neurodegeneration [(N)]-the "AT(N)" biomarker system for clinical research. However, the methodology is expensive and often requires invasive procedures to document cerebral vascular dysfunction. The retina has been used as a surrogate to study cerebral vascular changes. There is growing interest in the identification of retinal microvascular changes as a safe, easily accessible, low cost, and time-efficient approach to enhancing our understanding of the vascular pathogenesis associated with AD. EVIDENCE ACQUISITION A systemic review of the literature was performed regarding retinal vascular changes in AD and its prodromal stages, focusing on functional and structural changes of large retinal vessels (vessels visible on fundus photographs) and microvasculature (precapillary arterioles, capillary, and postcapillary venules) that are invisible on fundus photographs. RESULTS Static and dynamic retinal microvascular alterations such as retinal arterial wall motion, blood flow rate, and microvascular network density were reported in AD, mild cognitive impairment, and even in the preclinical stages of the disease. The data are somewhat controversial and inconsistent among the articles reviewed and were obtained based on cross-sectional studies that used different patient cohorts, equipment, techniques, and analysis methods. CONCLUSIONS Retinal microvascular alterations exist across the AD spectrum. Further large scale, within-subject longitudinal studies using standardized imaging and analytical methods may advance our knowledge concerning vascular contributions to the pathogenesis of AD.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie E. Levin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard S. Baumel
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian J. Camargo
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Tania Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
38
|
Bir SC, Khan MW, Javalkar V, Toledo EG, Kelley RE. Emerging Concepts in Vascular Dementia: A Review. J Stroke Cerebrovasc Dis 2021; 30:105864. [PMID: 34062312 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105864] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Vascular dementia (VaD) is the second most common cause of dementia and a major health concern worldwide. A comprehensive review on VaD is warranted for better understanding and guidance for the practitioner. We provide an updated overview of the epidemiology, pathophysiological mechanisms, neuroimaging patterns as well as current diagnostic and therapeutic approaches. MATERIALS AND METHODS A narrative review of current literature in VaD was performed based on publications from the database of PubMed, Scopus and Google Scholar up to January, 2021. RESULTS VaD can be the result of ischemic or hemorrhagic tissue injury in a particular region of the brain which translates into clinically significant cognitive impairment. For example, a cerebral infarct in the speech area of the dominant hemisphere would translate into clinically significant impairment as would involvement of projection pathways such as the arcuate fasciculus. Specific involvement of the angular gyrus of the dominant hemisphere, with resultant Gerstman's syndrome, could have a pronounced effect on functional ability despite being termed a "minor stroke". Small vessel cerebrovascular disease can have a cumulate effect on cognitive function over time. It is unfortunately well recognized that "good" functional recovery in acute ischemic or haemorrhagic stroke, including subarachnoid haemorrhage, does not necessarily translate into good cognitive recovery. The victim may often be left unable to have gainful employment, drive a car safely or handle their affairs independently. CONCLUSIONS This review should serve as a compendium of updated information on VaD and provide guidance in terms of newer diagnostic and potential therapeutic approaches.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA
| | - Muhammad W Khan
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA
| | - Vijayakumar Javalkar
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA
| | | | - Roger E Kelley
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA.
| |
Collapse
|
39
|
Li M, Li Y, Zuo L, Hu W, Jiang T. Increase of blood-brain barrier leakage is related to cognitive decline in vascular mild cognitive impairment. BMC Neurol 2021; 21:159. [PMID: 33858381 PMCID: PMC8048027 DOI: 10.1186/s12883-021-02189-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) breakdown, as an early biomarker for vascular mild cognitive impairment (vMCI), has only been validated by a few studies. The aim of this study was to investigate whether compromised BBB integrity is involved in vMCI patients, and detect the relationship between BBB breakdown and cognitive function. BBB leakage in vMCI was explored, and the relationship between BBB leakage and cognitive function was discussed in this study. METHODS This is a cross-sectional study involving 26 vMCI patients and 21 sex- and age-matched healthy controls. Dynamic contrast-enhanced-magnetic resonance imaging was performed for all participants, to determine BBB leakage. Leakage volume, leakage rate, and fractional blood plasma volume (Vp) in the grey and white matter were evaluated. Neuropsychological tests were used to determine cognitive function. Leakage rate, leakage volume, and Vp in different brain locations, including deep grey matter, cortical grey matter, white matter hyperintensity, and normal-appearing white matter were compared between the two groups. RESULTS Multivariable linear regression analyses revealed that in all regions of interest, the leakage rate was significantly higher in vMCI patients relative to controls. Leakage volume in normal-appearing white matter and white matter hyperintensity were significantly higher, while Vp in normal-appearing white matter, deep grey matter, and cortical grey matter were significantly lower in vMCI patients. Moreover, Montreal Cognitive Assessment scores decreased with the increase of leakage rate in white matter hyperintensity. CONCLUSION Increased BBB permeability was detected in vMCI patients and was related to cognitive decline, which suggested that BBB breakdown might be involved in cognitive dysfunction pathogenesis.
Collapse
Affiliation(s)
- Man Li
- Radiology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, 100020, P.R. China.
| | - Yue Li
- Neurology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, P.R. China
| | - Long Zuo
- Radiology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, 100020, P.R. China
| | - Wenli Hu
- Neurology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, P.R. China
| | - Tao Jiang
- Radiology Department, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, Chaoyang District, Beijing, 100020, P.R. China
| |
Collapse
|
40
|
Limoncu H, Boz HE, Zygouris S, Tsolaki M, Giakoumis D, Votis K, Tzovaras D, Öztürk V, Yener GG. A Virtual Reality-Based Screening Test for Cognitive Impairment in Small Vessel Disease. J Alzheimers Dis Rep 2021; 5:161-169. [PMID: 33981953 PMCID: PMC8075552 DOI: 10.3233/adr-200257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: There is a need for new practical tools to assess the cognitive impairment of small vessel disease (SVD) patients in the clinic. Objective: This study aimed to examine cognitive functioning by administering the Virtual Supermarket (VST) in patients with SVD with cognitive impairment (SVD-CI, N = 32), cognitively normal SVD (SVD-CN, N = 37), and age-and education-matched healthy controls (HC, N = 30). Methods: The tablet-based VST application and comprehensive traditional pencil-and-paper neuropsychological tests assessing memory, attention, executive function, visuospatial function, and language were administered to all participants. Results: A moderate correlation was found between the “Duration” and “Correct Quantities” variables of VST and visuospatial function and general cognitive status composite Z scores across SVD-CI patients. “Duration” and “Correct Money” variables were moderately related to memory, executive functions, and visuospatial function composite Z scores across SVD-CN patients. A combination of all VST variables discriminated SVD-CI and HC with a correct classification rate of 81%, a sensitivity of 78%, and a specificity of 84%. Conclusion: This study is the first to evaluate cognitive functions employing the VST in SVD with and without cognitive impairment. It provides encouraging preliminary findings of the utility of the VST as a screening tool in the assessment of cognitive impairment and the differentiation of SVD patients from HC. In the future, validation studies of the VST with larger samples are needed.
Collapse
Affiliation(s)
- Hatice Limoncu
- Department of Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hatice Eraslan Boz
- Department of Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.,Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Stelios Zygouris
- Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, Greece.,Network Aging Research, Heidelberg University, Germany
| | - Magda Tsolaki
- Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
| | - Dimitrios Giakoumis
- Center for Research & Technology Hellas/Information Technologies Institute (CERTH/ITI), Thessaloniki, Greece
| | - Konstantinos Votis
- Center for Research & Technology Hellas/Information Technologies Institute (CERTH/ITI), Thessaloniki, Greece
| | - Dimitrios Tzovaras
- Center for Research & Technology Hellas/Information Technologies Institute (CERTH/ITI), Thessaloniki, Greece
| | - Vesile Öztürk
- Department of Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Görsev Gülmen Yener
- Department of Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.,Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
41
|
Abstract
OBJECTIVE To describe the neuroimaging and other methods for assessing vascular contributions to neurodegeneration in the Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) study, a Canadian multi-center, prospective longitudinal cohort study, including reliability and feasibility in the first 200 participants. METHODS COMPASS-ND includes persons with Alzheimer's disease (AD; n = 150), Parkinson's disease (PD) and Lewy body dementias (LBDs) (200), mixed dementia (200), mild cognitive impairment (MCI; 400), subcortical ischemic vascular MCI (V-MCI; 200), subjective cognitive impairment (SCI; 300), and cognitively intact elderly controls (660). Magnetic resonance imaging (MRI) was acquired according to the validated Canadian Dementia Imaging Protocol and visually reviewed by either of two experienced readers blinded to clinical characteristics. Other relevant assessments include history of vascular disease and risk factors, blood pressure, height and weight, cholesterol, glucose, and hemoglobin A1c. RESULTS Analyzable data were obtained in 197/200 of whom 18 of whom were clinically diagnosed with V-MCI or mixed dementia. The overall prevalence of infarcts was 24.9%, microbleeds was 24.6%, and high white matter hyperintensity (WMH) was 31.0%. MRI evidence of a potential vascular contribution to neurodegeneration was seen in 12.9%-40.0% of participants clinically diagnosed with another condition such as AD. Inter-rater reliability was good to excellent. CONCLUSION COMPASS-ND will be a useful platform to study vascular brain injury and its association with risk factors, biomarkers, and cognitive and functional decline across multiple age-related neurodegenerative diseases. Initial findings show that MRI-defined vascular brain injury is common in all cognitive syndromes and is under-recognized clinically.
Collapse
|
42
|
Wang X, Zhao Q, Tao R, Lu H, Xiao Z, Zheng L, Ding D, Ding S, Ma Y, Lu Z, Xiao Y. Decreased Retinal Vascular Density in Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI): An Optical Coherence Tomography Angiography (OCTA) Study. Front Aging Neurosci 2021; 12:572484. [PMID: 33519415 PMCID: PMC7843508 DOI: 10.3389/fnagi.2020.572484] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To explore the retinal vascular density changes in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients using optical coherence tomography angiography (OCTA). METHODS We recruit 62 AD patients, 47 MCI patients, and 49 cognitively healthy controls (HC) in this study. All participants in the study received a comprehensive ophthalmological and neurological evaluation, including global cognitive screening, as well as the Mini-Mental State Examination (MMSE), and completed the following eye examinations: visual acuity (VA), intraocular pressure (IOP), examination with slit-lamp, fundus photography (Version 1.5.0.0, NIDEK CO, LTD) and Optical coherence tomography imaging (software ReVue version 2017.1.0.155, Optovue Inc., Fremont, CA, United States). The visual rating scales for atrophy and white matter lesion in MRI was evaluated for all the patients with AD and MCI. RESULTS In the AD patient group, the superficial vascular density in the superior, inferior and whole retina was 44.64 ± 3.34, 44.65 ± 3.55, and 44.66 ± 3.36, respectively. These values were 44.24 ± 3.15, 43.72 ± 3.16, and 44 ± 3.07, respectively, in the MCI patient group. After multivariate analysis of the generalized linear model, adjustments for the confounding factors of sex, age, hypertension, diabetes and the quality index of OCTA image, the superficial vascular density in the AD and MCI patient groups was significantly lower than that in the HC group (P < 0.05): 46.94 ± 2.04, 46.67 ± 2.26, and 46.82 ± 2.08, respectively. No difference in the area of the FAZ among the three groups was observed (AD group: 0.34 ± 0.11 mm2; MCI group: 0.36 ± 0.12 mm2; control group: 0.33 ± 0.12 mm2, p > 0.05). The ganglion cell complex (GCC) thickness, inner parafovea thickness, and peripapillary retinal nerve fiber layer (p-RNFL) thickness were associated with the superficial vascular density. We found no significant correlation between the global cognition (MMSE scores) or between the Fazekas score and retinal OCT angiogram flow density. CONCLUSION The superficial vascular density in the AD and MCI patient groups was significantly lower than that in the HC group. Our findings suggest the retinal microvascular dysfunction occurred in MCI and AD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui Tao
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huimeng Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenxu Xiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ding Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Saineng Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yichen Ma
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaozeng Lu
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiqin Xiao
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Heldt NA, Reichenbach N, McGary HM, Persidsky Y. Effects of Electronic Nicotine Delivery Systems and Cigarettes on Systemic Circulation and Blood-Brain Barrier: Implications for Cognitive Decline. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:243-255. [PMID: 33285126 DOI: 10.1016/j.ajpath.2020.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Electronic nicotine delivery systems (often known as e-cigarettes) are a novel tobacco product with growing popularity, particularly among younger demographics. The implications for public health are twofold, as these products may represent a novel source of tobacco-associated disease but may also provide a harm reduction strategy for current tobacco users. There is increasing recognition that e-cigarettes impact vascular function across multiple organ systems. Herein, we provide a comparison of evidence regarding the role of e-cigarettes versus combustible tobacco in vascular disease and implications for blood-brain barrier dysfunction and cognitive decline. Multiple non-nicotinic components of tobacco smoke have been identified in e-cigarette aerosol, and their involvement in vascular disease is discussed. In addition, nicotine and nicotinic signaling may modulate peripheral immune and endothelial cell populations in a highly context-dependent manner. Direct preclinical evidence for electronic nicotine delivery system-associated neurovascular impairment is provided, and a model is proposed in which non-nicotinic elements exert a proinflammatory effect that is functionally antagonized by the presence of nicotine.
Collapse
Affiliation(s)
- Nathan A Heldt
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| | - Nancy Reichenbach
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Hannah M McGary
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
44
|
Pasi M, Sugita L, Xiong L, Charidimou A, Boulouis G, Pongpitakmetha T, Singh S, Kourkoulis C, Schwab K, Greenberg SM, Anderson CD, Gurol ME, Rosand J, Viswanathan A, Biffi A. Association of Cerebral Small Vessel Disease and Cognitive Decline After Intracerebral Hemorrhage. Neurology 2020; 96:e182-e192. [PMID: 33067403 DOI: 10.1212/wnl.0000000000011050] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To determine whether MRI-based cerebral small vessel disease (CSVD) burden assessment, in addition to clinical and CT data, improved prediction of cognitive impairment after spontaneous intracerebral hemorrhage (ICH). METHODS We analyzed data from ICH survivors enrolled in a single-center prospective study. We employed 3 validated CSVD burden scores: global, cerebral amyloid angiopathy (CAA)-specific, and hypertensive arteriopathy (HTNA)-specific. We quantified cognitive performance by administering the modified Telephone Interview for Cognitive Status test. We utilized linear mixed models to model cognitive decline rates, and survival models for new-onset dementia. We calculated CSVD scores' cutoffs to maximize predictive performance for dementia diagnosis. RESULTS We enrolled 612 ICH survivors, and followed them for a median of 46.3 months (interquartile range 35.5-58.7). A total of 214/612 (35%) participants developed dementia. Higher global CSVD scores at baseline were associated with faster cognitive decline (coefficient -0.25, standard error [SE] 0.02) and dementia risk (sub-hazard ratio 1.35, 95% confidence interval 1.10-1.65). The global score outperformed the CAA and HTNA scores in predicting post-ICH dementia (all p < 0.05). Compared to a model including readily available clinical and CT data, inclusion of the global CSVD score resulted in improved prediction of post-ICH dementia (area under the curve [AUC] 0.89, SE 0.02 vs AUC 0.81, SE 0.03, p = 0.008 for comparison). Global CSVD scores ≥2 had highest sensitivity (83%) and specificity (91%) for dementia diagnosis. CONCLUSIONS A validated MRI-based CSVD score is associated with cognitive performance after ICH and improved diagnostic accuracy for predicting new onset of dementia.
Collapse
Affiliation(s)
- Marco Pasi
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Lansing Sugita
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Li Xiong
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Andreas Charidimou
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Gregoire Boulouis
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Thanakit Pongpitakmetha
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sanjula Singh
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Christina Kourkoulis
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Kristin Schwab
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Steven M Greenberg
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Christopher D Anderson
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - M Edip Gurol
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Jonathan Rosand
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Anand Viswanathan
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Alessandro Biffi
- From U 1172-LilNCog-Lille Neuroscience and Cognition (M.P.), Université de Lille, Inserm, CHU Lille, France; Department of Neurology (M.P., L.S., L.X., A.C., T.P., S.S., C.K., K.S., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), Hemorrhagic Stroke Research Program (L.S., A.C., S.M.G., C.D.A., M.E.G., J.R., A.V., A.B.), and Henry and Allison McCance Center for Brain Health (C.K., C.D.A., J.R., A.B.), Massachusetts General Hospital, Boston; Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, INSERM UMR 894, Paris, France; Department of Pharmacology, Faculty of Medicine (T.P.), Chulalongkorn University; and Chulalongkorn Stroke Center (T.P.), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
45
|
Benedict RHB, Amato MP, DeLuca J, Geurts JJG. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol 2020; 19:860-871. [PMID: 32949546 PMCID: PMC10011205 DOI: 10.1016/s1474-4422(20)30277-5] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis is a chronic, demyelinating disease of the CNS. Cognitive impairment is a sometimes neglected, yet common, sign and symptom with a profound effect on instrumental activities of daily living. The prevalence of cognitive impairment in multiple sclerosis varies across the lifespan and might be difficult to distinguish from other causes in older age. MRI studies show that widespread changes to brain networks contribute to cognitive dysfunction, and grey matter atrophy is an early sign of potential future cognitive decline. Neuropsychological research suggests that cognitive processing speed and episodic memory are the most frequently affected cognitive domains. Narrowing evaluation to these core areas permits brief, routine assessment in the clinical setting. Owing to its brevity, reliability, and sensitivity, the Symbol Digit Modalities Test, or its computer-based analogues, can be used to monitor episodes of acute disease activity. The Symbol Digit Modalities Test can also be used in clinical trials, and data increasingly show that cognitive processing speed and memory are amenable to cognitive training interventions.
Collapse
Affiliation(s)
- Ralph H B Benedict
- Department of Neurology and Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Maria Pia Amato
- Department of Neurology, University of Florence, IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Section Clinical Neuroscience, Amsterdam UMC, Location VUmc, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
46
|
Dobrynina LA, Gadzhieva ZS, Shamtieva KV, Kremneva EI, Akhmetzyanov BM, Kalashnikova LA, Krotenkova MV. Microstructural Predictors of Cognitive Impairment in Cerebral Small Vessel Disease and the Conditions of Their Formation. Diagnostics (Basel) 2020; 10:diagnostics10090720. [PMID: 32961692 PMCID: PMC7554972 DOI: 10.3390/diagnostics10090720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction: Cerebral small vessel disease (CSVD) is the leading cause of vascular and mixed degenerative cognitive impairment (CI). The variability in the rate of progression of CSVD justifies the search for sensitive predictors of CI. Materials: A total of 74 patients (48 women, average age 60.6 ± 6.9 years) with CSVD and CI of varying severity were examined using 3T MRI. The results of diffusion tensor imaging with a region of interest (ROI) analysis were used to construct a predictive model of CI using binary logistic regression, while phase-contrast magnetic resonance imaging and voxel-based morphometry were used to clarify the conditions for the formation of CI predictors. Results: According to the constructed model, the predictors of CI are axial diffusivity (AD) of the posterior frontal periventricular normal-appearing white matter (pvNAWM), right middle cingulum bundle (CB), and mid-posterior corpus callosum (CC). These predictors showed a significant correlation with the volume of white matter hyperintensity; arterial and venous blood flow, pulsatility index, and aqueduct cerebrospinal fluid (CSF) flow; and surface area of the aqueduct, volume of the lateral ventricles and CSF, and gray matter volume. Conclusion: Disturbances in the AD of pvNAWM, CB, and CC, associated with axonal damage, are a predominant factor in the development of CI in CSVD. The relationship between AD predictors and both blood flow and CSF flow indicates a disturbance in their relationship, while their location near the floor of the lateral ventricle and their link with indicators of internal atrophy, CSF volume, and aqueduct CSF flow suggest the importance of transependymal CSF transudation when these regions are damaged.
Collapse
|
47
|
Osborn KE, Alverio JM, Dumitrescu L, Pechman KR, Gifford KA, Hohman TJ, Blennow K, Zetterberg H, Jefferson AL. Adverse Vascular Risk Relates to Cerebrospinal Fluid Biomarker Evidence of Axonal Injury in the Presence of Alzheimer's Disease Pathology. J Alzheimers Dis 2020; 71:281-290. [PMID: 31381510 DOI: 10.3233/jad-190077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vascular risk factors promote cerebral small vessel disease and neuropathological changes, particularly in white matter where large-caliber axons are located. How Alzheimer's disease pathology influences the brain's vulnerability in this regard is not well understood. OBJECTIVE Systemic vascular risk was assessed in relation to cerebrospinal fluid concentrations of neurofilament light, a biomarker of large-caliber axonal injury, evaluating for interactions by clinical and protein markers of Alzheimer's disease. METHODS Among Alzheimer's Disease Neuroimaging Initiative participants with normal cognition (n = 117), mild cognitive impairment (n = 190), and Alzheimer's disease (n = 95), linear regression related vascular risk (as measured by the modified Framingham Stroke Risk Profile) to neurofilament light, adjusting for age, sex, education, and cognitive diagnosis. Interactions were assessed by cognitive diagnosis, and by cerebrospinal fluid markers of Aβ42, hyperphosphorylated tau, and total tau. RESULTS Vascular risk and neurofilament light were not related in the main effect model (p = 0.08). However, interactions emerged for total tau (p = 0.01) and hyperphosphorylated tau (p = 0.002) reflecting vascular risk becoming more associated with cerebrospinal fluid neurofilament light in the context of greater concentrations of tau biomarkers. An interaction also emerged for the Alzheimer's disease biomarker profiles (p = 0.046) where in comparison to the referent 'normal' biomarker group, individuals with abnormal levels of both Aβ42 and total tau showed stronger associations between vascular risk and neurofilament light. CONCLUSION Older adults may be more vulnerable to axonal injury in response to higher vascular risk burdens in the context of concomitant Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Katie E Osborn
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Logan Dumitrescu
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Katherine A Gifford
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Angela L Jefferson
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
48
|
Kellar D, Craft S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 2020; 19:758-766. [PMID: 32730766 DOI: 10.1016/s1474-4422(20)30231-3] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
|
49
|
Sun D, Thomas EA, Launer LJ, Sidney S, Yaffe K, Fornage M. Association of blood pressure with cognitive function at midlife: a Mendelian randomization study. BMC Med Genomics 2020; 13:121. [PMID: 32847530 PMCID: PMC7448985 DOI: 10.1186/s12920-020-00769-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Whether high blood pressure has a causal effect on cognitive function as early as middle age is unclear. We investigated whether high blood pressure (BP) causally impairs cognitive function at midlife using Mendelian Randomization (MR). METHODS We applied a two-sample MR approach to investigate the causal relationship between BP and midlife cognitive performance measured by the Digit Symbol Substitution Test (DSST), Rey Auditory Verbal Learning Test (RAVLT), and Stroop Interference test. We used a total of 109 genetic polymorphisms with established associations with BP as instrumental variables and estimated gene-cognitive function association in 1369 middle-aged adults (Mean age (SD): 50.8 (3.3), 54.0% women) from the CARDIA study. RESULTS A 10 mmHg increment in genetically-predicted systolic, diastolic, or pulse pressure was associated with a 4.9 to 7.7-point lower DSST score (P = 0.002, SBP; P = 0.005, DBP and P = 0.008, PP), while a 10 mmHg increment in genetically-predicted SBP was associated with a 0.7 point lower RAVLT and a 2.3 point higher Stroop (P = 0.046 and 0.011, respectively). CONCLUSIONS This MR analysis shows that high BP, especially SBP, is causally associated with poorer processing speed, verbal memory, and executive function during midlife. These findings emphasize the need for further investigation of the role and mechanisms of BP dysregulation on cognitive health in middle age and perhaps, more broadly, across the lifespan.
Collapse
Affiliation(s)
- Daokun Sun
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX, 77030, USA
| | - Emy A Thomas
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX, 77030, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Sidney
- Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Kristine Yaffe
- Departments of Psychiatry and Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX, 77030, USA.
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
50
|
Joutel A. Prospects for Diminishing the Impact of Nonamyloid Small-Vessel Diseases of the Brain. Annu Rev Pharmacol Toxicol 2020; 60:437-456. [PMID: 31425001 DOI: 10.1146/annurev-pharmtox-010818-021712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-vessel diseases (SVDs) of the brain are involved in about one-fourth of ischemic strokes and a vast majority of intracerebral hemorrhages and are responsible for nearly half of dementia cases in the elderly. SVDs are a heavy burden for society, a burden that is expected to increase further in the absence of significant therapeutic advances, given the aging population. Here, we provide a critical appraisal of currently available therapeutic approaches for nonamyloid sporadic SVDs that are largely based on targeting modifiable risk factors. We review what is known about the pathogenic mechanisms of vascular risk factor-related SVDs and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most frequent hereditary SVD, and elaborate on two mechanism-based therapeutic approaches worth exploring in sporadic SVD and CADASIL. We conclude by discussing opportunities and challenges that need to be tackled if efforts to achieve significant therapeutic advances for these diseases are to be successful.
Collapse
Affiliation(s)
- Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, INSERM UMR1266, Paris Descartes University, 75014 Paris, France; .,DHU NeuroVasc, Sorbonne Paris Cité, 75010 Paris, France.,Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|