1
|
Shubar AG, Ramakrishnan K, Ho CK. Optimizing Machine Learning Models for Accessible Early Cognitive Impairment Prediction: A Novel Cost-effective Model Selection Algorithm. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:180792-180814. [PMID: 39902153 PMCID: PMC11790289 DOI: 10.1109/access.2024.3505038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Cognitive impairment and dementia-related diseases develop several years before moderate or severe deterioration in cognitive function occurs. Nevertheless, most dementia cases, especially in low- and middle-income countries, remain undiagnosed because of limited access to affordable diagnostic tools. Additionally, the development of accessible tools for diagnosing and predicting cognitive impairment has not been extensively discussed in the literature. The objective of this study is to develop a cost-effective and highly accessible machine learning model to predict the risk of cognitive impairment for up to five years before clinical insight. We utilized easily accessible data from the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS) to train and evaluate various machine learning and deep learning models. A novel algorithm was developed to facilitate the selection of cost-effective models that offer high performance while minimizing development and operational costs. We conducted various assessments, including feature selection, time-series analyses, and external validation of the selected model. Our findings indicated that the Support Vector Machine (SVM) model was preferred over other high-performing neural network models because of its computational efficiency, achieving F2-scores of 0.828 in cross-validation and 0.750 in a generalizability test. Additionally, we found that demographic and historical health data are valuable for early prediction of cognitive impairment. This study demonstrates the potential of developing accessible solutions to predict cognitive impairment early using accurate and efficient machine learning models. Future interventions should consider creating cost-effective assessment tools to support global action plans and reduce the risk of cognitive impairment.
Collapse
Affiliation(s)
- Abduelhakem G Shubar
- Faculty of Computing & Informatics, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia
| | - Kannan Ramakrishnan
- Faculty of Computing & Informatics, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia
| | - Chin-Kuan Ho
- Asia Pacific University of Technology and Innovation, Jalan Teknologi 5, Technology Park Malaysia, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Rodríguez Mallma MJ, Zuloaga-Rotta L, Borja-Rosales R, Rodríguez Mallma JR, Vilca-Aguilar M, Salas-Ojeda M, Mauricio D. Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review. Neurol Int 2024; 16:1285-1307. [PMID: 39585057 PMCID: PMC11587041 DOI: 10.3390/neurolint16060098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
In recent years, Artificial Intelligence (AI) methods, specifically Machine Learning (ML) models, have been providing outstanding results in different areas of knowledge, with the health area being one of its most impactful fields of application. However, to be applied reliably, these models must provide users with clear, simple, and transparent explanations about the medical decision-making process. This systematic review aims to investigate the use and application of explainability in ML models used in brain disease studies. A systematic search was conducted in three major bibliographic databases, Web of Science, Scopus, and PubMed, from January 2014 to December 2023. A total of 133 relevant studies were identified and analyzed out of a total of 682 found in the initial search, in which the explainability of ML models in the medical context was studied, identifying 11 ML models and 12 explainability techniques applied in the study of 20 brain diseases.
Collapse
Affiliation(s)
- Mirko Jerber Rodríguez Mallma
- Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería, Lima 15333, Peru; (M.J.R.M.); (L.Z.-R.)
| | - Luis Zuloaga-Rotta
- Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería, Lima 15333, Peru; (M.J.R.M.); (L.Z.-R.)
| | - Rubén Borja-Rosales
- Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería, Lima 15333, Peru; (M.J.R.M.); (L.Z.-R.)
| | - Josef Renato Rodríguez Mallma
- Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería, Lima 15333, Peru; (M.J.R.M.); (L.Z.-R.)
| | | | - María Salas-Ojeda
- Facultad de Artes y Humanidades, Universidad San Ignacio de Loyola, Lima 15024, Peru
| | - David Mauricio
- Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| |
Collapse
|
3
|
Xue C, Kowshik SS, Lteif D, Puducheri S, Jasodanand VH, Zhou OT, Walia AS, Guney OB, Zhang JD, Poésy S, Kaliaev A, Andreu-Arasa VC, Dwyer BC, Farris CW, Hao H, Kedar S, Mian AZ, Murman DL, O'Shea SA, Paul AB, Rohatgi S, Saint-Hilaire MH, Sartor EA, Setty BN, Small JE, Swaminathan A, Taraschenko O, Yuan J, Zhou Y, Zhu S, Karjadi C, Alvin Ang TF, Bargal SA, Plummer BA, Poston KL, Ahangaran M, Au R, Kolachalama VB. AI-based differential diagnosis of dementia etiologies on multimodal data. Nat Med 2024; 30:2977-2989. [PMID: 38965435 PMCID: PMC11485262 DOI: 10.1038/s41591-024-03118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an artificial intelligence (AI) model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51,269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a microaveraged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the microaveraged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two co-occurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in clinical settings and drug trials. Further prospective studies are needed to confirm its ability to improve patient care.
Collapse
Affiliation(s)
- Chonghua Xue
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Electrical & Computer Engineering, Boston University, Boston, MA, USA
| | - Sahana S Kowshik
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA
| | - Diala Lteif
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Computer Science, Boston University, Boston, MA, USA
| | - Shreyas Puducheri
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Varuna H Jasodanand
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Olivia T Zhou
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Anika S Walia
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Osman B Guney
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Electrical & Computer Engineering, Boston University, Boston, MA, USA
| | - J Diana Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Serena Poésy
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Artem Kaliaev
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - V Carlota Andreu-Arasa
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Brigid C Dwyer
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chad W Farris
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Honglin Hao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sachin Kedar
- Departments of Neurology & Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Asim Z Mian
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarah A O'Shea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron B Paul
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Saurabh Rohatgi
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Emmett A Sartor
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bindu N Setty
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Juan E Small
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | | | - Olga Taraschenko
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jing Yuan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Zhou
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuhan Zhu
- Department of Neurology, Brigham & Women's Hospital, Boston, MA, USA
| | - Cody Karjadi
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ting Fang Alvin Ang
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah A Bargal
- Department of Computer Science, Georgetown University, Washington, DC, USA
| | - Bryan A Plummer
- Department of Computer Science, Boston University, Boston, MA, USA
| | | | - Meysam Ahangaran
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Rhoda Au
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Vijaya B Kolachalama
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA.
- Department of Computer Science, Boston University, Boston, MA, USA.
- Boston University Alzheimer's Disease Research Center, Boston, MA, USA.
| |
Collapse
|
4
|
Malik I, Iqbal A, Gu YH, Al-antari MA. Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review. Diagnostics (Basel) 2024; 14:1281. [PMID: 38928696 PMCID: PMC11202897 DOI: 10.3390/diagnostics14121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer's disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.
Collapse
Affiliation(s)
- Isra Malik
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 44000, Pakistan
| | - Ahmed Iqbal
- Department of Computer Science, Sir Syed Case Institute of Technology, Islamabad 45230, Pakistan
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
5
|
Li J, Li J, Zhu H, Liu M, Li T, He Y, Xu Y, Huang F, Qin Q. Prediction of Cognitive Impairment Risk among Older Adults: A Machine Learning-Based Comparative Study and Model Development. Dement Geriatr Cogn Disord 2024; 53:169-179. [PMID: 38776891 DOI: 10.1159/000539334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION The prevalence of cognitive impairment and dementia in the older population is increasing, and thereby, early detection of cognitive decline is essential for effective intervention. METHODS This study included 2,288 participants with normal cognitive function from the Ma'anshan Healthy Aging Cohort Study. Forty-two potential predictors, including demographic characteristics, chronic diseases, lifestyle factors, anthropometric indices, physical function, and baseline cognitive function, were selected based on clinical importance and previous research. The dataset was partitioned into training, validation, and test sets in a proportion of 60% for training, 20% for validation, and 20% for testing, respectively. Recursive feature elimination was used for feature selection, followed by six machine learning algorithms that were employed for model development. The performance of the models was evaluated using area under the curve (AUC), specificity, sensitivity, and accuracy. Moreover, SHapley Additive exPlanations (SHAP) was conducted to access the interpretability of the final selected model and to gain insights into the impact of features on the prediction outcomes. SHAP force plots were established to vividly show the application of the prediction model at the individual level. RESULTS The final predictive model based on the Naive Bayes algorithm achieved an AUC of 0.820 (95% CI, 0.773-0.887) on the test set, outperforming other algorithms. The top ten influential features in the model included baseline Mini-Mental State Examination (MMSE), education, self-reported economic status, collective or social activities, Pittsburgh sleep quality index (PSQI), body mass index, systolic blood pressure, diastolic blood pressure, instrumental activities of daily living, and age. The model demonstrated the potential to identify individuals at a higher risk of cognitive impairment within 3 years from older adults. CONCLUSION The predictive model developed in this study contributes to the early detection of cognitive impairment in older adults by primary healthcare staff in community settings.
Collapse
Affiliation(s)
- Jianwei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jie Li
- The Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, Hefei, China
| | - Huafang Zhu
- Ma'anshan Center for Disease Control and Prevention, Ma'anshan, China
| | - Mengyu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tengfei Li
- The Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, Hefei, China
| | - Yeke He
- The Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, Hefei, China
| | - Yuan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Fen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Qirong Qin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Ma'anshan Center for Disease Control and Prevention, Ma'anshan, China
| |
Collapse
|
6
|
Xue C, Kowshik SS, Lteif D, Puducheri S, Jasodanand VH, Zhou OT, Walia AS, Guney OB, Zhang JD, Pham ST, Kaliaev A, Andreu-Arasa VC, Dwyer BC, Farris CW, Hao H, Kedar S, Mian AZ, Murman DL, O’Shea SA, Paul AB, Rohatgi S, Saint-Hilaire MH, Sartor EA, Setty BN, Small JE, Swaminathan A, Taraschenko O, Yuan J, Zhou Y, Zhu S, Karjadi C, Ang TFA, Bargal SA, Plummer BA, Poston KL, Ahangaran M, Au R, Kolachalama VB. AI-based differential diagnosis of dementia etiologies on multimodal data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.08.24302531. [PMID: 38585870 PMCID: PMC10996713 DOI: 10.1101/2024.02.08.24302531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an AI model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations, and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51,269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a micro-averaged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the micro-averaged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two co-occurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in various clinical settings and drug trials, with promising implications for person-level management.
Collapse
Affiliation(s)
- Chonghua Xue
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Electrical & Computer Engineering, Boston University, MA, USA
| | - Sahana S. Kowshik
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, MA, USA
| | - Diala Lteif
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Computer Science, Boston University, MA, USA
| | - Shreyas Puducheri
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Varuna H. Jasodanand
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Olivia T. Zhou
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Anika S. Walia
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Osman B. Guney
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Electrical & Computer Engineering, Boston University, MA, USA
| | - J. Diana Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Serena T. Pham
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Artem Kaliaev
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - V. Carlota Andreu-Arasa
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Brigid C. Dwyer
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chad W. Farris
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Honglin Hao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sachin Kedar
- Departments of Neurology & Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Asim Z. Mian
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Daniel L. Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarah A. O’Shea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron B. Paul
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Saurabh Rohatgi
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Emmett A. Sartor
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bindu N. Setty
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Juan E. Small
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | | | - Olga Taraschenko
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jing Yuan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Zhou
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuhan Zhu
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
| | - Cody Karjadi
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ting Fang Alvin Ang
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah A. Bargal
- Department of Computer Science, Georgetown University, Washington DC, USA
| | | | | | - Meysam Ahangaran
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Rhoda Au
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer’s Disease Research Center, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Vijaya B. Kolachalama
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, MA, USA
- Department of Computer Science, Boston University, MA, USA
- Boston University Alzheimer’s Disease Research Center, Boston, MA, USA
| |
Collapse
|
7
|
Liu JJ, Shen WB, Qin QR, Li JW, Li X, Liu MY, Hu WL, Wu YY, Huang F. Prediction of positive pulmonary nodules based on machine learning algorithm combined with central carbon metabolism data. J Cancer Res Clin Oncol 2024; 150:33. [PMID: 38270703 PMCID: PMC10811045 DOI: 10.1007/s00432-024-05610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Lung cancer causes a huge disease burden, and early detection of positive pulmonary nodules (PPNs) as an early sign of lung cancer is extremely important for effective intervention. It is necessary to develop PPNs risk recognizer based on machine learning algorithm combined with central carbon metabolomics. METHODS The study included 2248 participants at high risk for lung cancer from the Ma'anshan Community Lung Cancer Screening cohort. The Least Absolute Shrinkage and Selection Operator (LASSO) was used to screen 18 central carbon-related metabolites in plasma, recursive feature elimination (RFE) was used to select all 42 features, followed by five machine learning algorithms for model development. The performance of the model was evaluated using area under the receiver operator characteristic curve (AUC), accuracy, precision, recall, and F1 scores. In addition, SHapley Additive exPlanations (SHAP) was performed to assess the interpretability of the final selected model and to gain insight into the impact of features on the predicted results. RESULTS Finally, the two prediction models based on the random forest (RF) algorithm performed best, with AUC values of 0.87 and 0.83, respectively, better than other models. We found that homogentisic acid, fumaric acid, maleic acid, hippuric acid, gluconic acid, and succinic acid played a significant role in both PPNs prediction model and NPNs vs PPNs model, while 2-oxadipic acid only played a role in the former model and phosphopyruvate only played a role in the NPNs vs PPNs model. This model demonstrates the potential of central carbon metabolism for PPNs risk prediction and identification. CONCLUSION We developed a series of predictive models for PPNs, which can help in the early detection of PPNs and thus reduce the risk of lung cancer.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wen-Bin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qi-Rong Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Ma'anshan Center for Disease Control and Prevention, Ma'anshan, Anhui, China
| | - Jian-Wei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xue Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Yu Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wen-Lei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yue-Yang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
Bucholc M, James C, Khleifat AA, Badhwar A, Clarke N, Dehsarvi A, Madan CR, Marzi SJ, Shand C, Schilder BM, Tamburin S, Tantiangco HM, Lourida I, Llewellyn DJ, Ranson JM. Artificial intelligence for dementia research methods optimization. Alzheimers Dement 2023; 19:5934-5951. [PMID: 37639369 DOI: 10.1002/alz.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/31/2023]
Abstract
Artificial intelligence (AI) and machine learning (ML) approaches are increasingly being used in dementia research. However, several methodological challenges exist that may limit the insights we can obtain from high-dimensional data and our ability to translate these findings into improved patient outcomes. To improve reproducibility and replicability, researchers should make their well-documented code and modeling pipelines openly available. Data should also be shared where appropriate. To enhance the acceptability of models and AI-enabled systems to users, researchers should prioritize interpretable methods that provide insights into how decisions are generated. Models should be developed using multiple, diverse datasets to improve robustness, generalizability, and reduce potentially harmful bias. To improve clarity and reproducibility, researchers should adhere to reporting guidelines that are co-produced with multiple stakeholders. If these methodological challenges are overcome, AI and ML hold enormous promise for changing the landscape of dementia research and care. HIGHLIGHTS: Machine learning (ML) can improve diagnosis, prevention, and management of dementia. Inadequate reporting of ML procedures affects reproduction/replication of results. ML models built on unrepresentative datasets do not generalize to new datasets. Obligatory metrics for certain model structures and use cases have not been defined. Interpretability and trust in ML predictions are barriers to clinical translation.
Collapse
Affiliation(s)
- Magda Bucholc
- Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, UK
| | - Charlotte James
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - AmanPreet Badhwar
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Institut de génie biomédical, Université de Montréal, Montréal, Quebec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Natasha Clarke
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Amir Dehsarvi
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Cameron Shand
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Brian M Schilder
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| | | |
Collapse
|
9
|
Newby D, Orgeta V, Marshall CR, Lourida I, Albertyn CP, Tamburin S, Raymont V, Veldsman M, Koychev I, Bauermeister S, Weisman D, Foote IF, Bucholc M, Leist AK, Tang EYH, Tai XY, Llewellyn DJ, Ranson JM. Artificial intelligence for dementia prevention. Alzheimers Dement 2023; 19:5952-5969. [PMID: 37837420 PMCID: PMC10843720 DOI: 10.1002/alz.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION A wide range of modifiable risk factors for dementia have been identified. Considerable debate remains about these risk factors, possible interactions between them or with genetic risk, and causality, and how they can help in clinical trial recruitment and drug development. Artificial intelligence (AI) and machine learning (ML) may refine understanding. METHODS ML approaches are being developed in dementia prevention. We discuss exemplar uses and evaluate the current applications and limitations in the dementia prevention field. RESULTS Risk-profiling tools may help identify high-risk populations for clinical trials; however, their performance needs improvement. New risk-profiling and trial-recruitment tools underpinned by ML models may be effective in reducing costs and improving future trials. ML can inform drug-repurposing efforts and prioritization of disease-modifying therapeutics. DISCUSSION ML is not yet widely used but has considerable potential to enhance precision in dementia prevention. HIGHLIGHTS Artificial intelligence (AI) is not widely used in the dementia prevention field. Risk-profiling tools are not used in clinical practice. Causal insights are needed to understand risk factors over the lifespan. AI will help personalize risk-management tools for dementia prevention. AI could target specific patient groups that will benefit most for clinical trials.
Collapse
Affiliation(s)
- Danielle Newby
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Vasiliki Orgeta
- Division of Psychiatry, University College London, London, W1T 7BN, UK
| | - Charles R Marshall
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 4NS, UK
- Department of Neurology, Royal London Hospital, London, E1 1BB, UK
| | - Ilianna Lourida
- Population Health Sciences Institute, Newcastle University, Newcastle, NE2 4AX, UK
- University of Exeter Medical School, Exeter, EX1 2HZ, UK
| | - Christopher P Albertyn
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37129, Italy
| | - Vanessa Raymont
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Michele Veldsman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Ivan Koychev
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Sarah Bauermeister
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - David Weisman
- Abington Neurological Associates, Abington, PA 19001, USA
| | - Isabelle F Foote
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 4NS, UK
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Magda Bucholc
- Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, BT48 7JL, UK
| | - Anja K Leist
- Institute for Research on Socio-Economic Inequality (IRSEI), Department of Social Sciences, University of Luxembourg, L-4365, Luxembourg
| | - Eugene Y H Tang
- Population Health Sciences Institute, Newcastle University, Newcastle, NE2 4AX, UK
| | - Xin You Tai
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, OX3 9DU, UK
| | | | - David J. Llewellyn
- University of Exeter Medical School, Exeter, EX1 2HZ, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | | |
Collapse
|
10
|
Libertin CR, Kempaiah P, Gupta Y, Fair JM, van Regenmortel MHV, Antoniades A, Rivas AL, Hoogesteijn AL. Data structuring may prevent ambiguity and improve personalized medical prognosis. Mol Aspects Med 2023; 91:101142. [PMID: 36116999 DOI: 10.1016/j.mam.2022.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/17/2023]
Abstract
Topics expected to influence personalized medicine (PM), where medical decisions, practices, and treatments are tailored to the individual patient, are reviewed. Lack of discrimination due to different biological conditions that express similar values of numerical variables (ambiguity) is regarded to be a major potential barrier for PM. This material explores possible causes and sources of ambiguity and offers suggestions for mitigating the impacts of uncertainties. Three causes of ambiguity are identified: (1) delayed adoption of innovations, (2) inadequate emphases, and (3) inadequate processes used when new medical practices are developed and validated. One example of the first problem is the relative lack of medical research on "compositional data" -the type that characterizes leukocyte data. This omission results in erroneous use of data abundantly utilized in medicine, such as the blood cell differential. Emphasis on data output ‒not biomedical interpretation that facilitates the use of clinical data‒ exemplifies the second type of problems. Reliance on tools generated in other fields (but not validated within biomedical contexts) describes the last limitation. Because reductionism is associated with these problems, non-reductionist alternatives are reviewed as potential remedies. Data structuring (converting data into information) is considered a key element that may promote PM. To illustrate a process that includes data-information-knowledge and decision-making, previously published data on COVID-19 are utilized. It is suggested that ambiguity may be prevented or ameliorated. Provided that validations are grounded on biomedical knowledge, approaches that describe certain criteria - such as non-overlapping data intervals of patients that experience different outcomes, immunologically interpretable data, and distinct graphic patterns - can inform, at personalized bases, earlier and/or with fewer observations.
Collapse
Affiliation(s)
- Claudia R Libertin
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Prakasha Kempaiah
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yash Gupta
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jeanne M Fair
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Marc H V van Regenmortel
- School of Biotechnology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| | | | - Ariel L Rivas
- Center for Global Health-Division of Infectious Diseases, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Almira L Hoogesteijn
- Human Ecology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mérida, Yucatán, Mexico
| |
Collapse
|
11
|
Ling W, Zhao G, Wang W, Wang C, Zhang L, Zhang H, Lu D, Ruan S, Zhang A, Liu Q, Jiang J, Jiang G. Metallomic profiling and natural copper isotopic signatures of childhood autism in serum and red blood cells. CHEMOSPHERE 2023; 330:138700. [PMID: 37076087 DOI: 10.1016/j.chemosphere.2023.138700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Excessive exposure to metals directly threatens human health, including neurodeve lopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder, leaving great harms to children themselves, their families, and even society. In view of this, it is critical to develop reliable biomarkers for ASD in early childhood. Here we used inductively coupled plasma mass spectrometry (ICP-MS) to identify the abnormalities in ASD-associated metal elements in children blood. Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) was applied to detect isotopic differences in copper (Cu) for further assessment on account of its core role in the brain. We also developed a machine learning classification method for unknown samples based on a support vector machine (SVM) algorithm. The results indicated significant differences in the blood metallome (chromium (Cr), manganese (Mn), cobalt (Co), magnesium (Mg), and arsenic (As)) between cases and controls, and a significantly lower Zn/Cu ratio was observed in the ASD cases. Interestingly, we found a strong association of serum copper isotopic composition (δ65Cu) with autistic serum. SVM was successfully applied to discriminate cases and controls based on the two-dimensional Cu signatures (Cu concentration and δ65Cu) with a high accuracy (94.4%). Overall, our findings revealed a new biomarker for potential early diagnosis and screening of ASD, and the significant alterations in the blood metallome also helped to understand the potential pathogenesis of ASD in terms of metallomics.
Collapse
Affiliation(s)
- Weibo Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Zhao
- Department of Child Health Care, Maternity and Child Healthcare Hospital of Nanshan District, 1 Wanxia Road, Nanshan District, Shenzhen, 518067, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Luyao Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shasha Ruan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Taishan Institute for Ecology and Environment (TIEE), Jinan, 250100, China.
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Ghaffar Nia N, Kaplanoglu E, Nasab A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction. DISCOVER ARTIFICIAL INTELLIGENCE 2023. [PMCID: PMC9885935 DOI: 10.1007/s44163-023-00049-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractA broad range of medical diagnoses is based on analyzing disease images obtained through high-tech digital devices. The application of artificial intelligence (AI) in the assessment of medical images has led to accurate evaluations being performed automatically, which in turn has reduced the workload of physicians, decreased errors and times in diagnosis, and improved performance in the prediction and detection of various diseases. AI techniques based on medical image processing are an essential area of research that uses advanced computer algorithms for prediction, diagnosis, and treatment planning, leading to a remarkable impact on decision-making procedures. Machine Learning (ML) and Deep Learning (DL) as advanced AI techniques are two main subfields applied in the healthcare system to diagnose diseases, discover medication, and identify patient risk factors. The advancement of electronic medical records and big data technologies in recent years has accompanied the success of ML and DL algorithms. ML includes neural networks and fuzzy logic algorithms with various applications in automating forecasting and diagnosis processes. DL algorithm is an ML technique that does not rely on expert feature extraction, unlike classical neural network algorithms. DL algorithms with high-performance calculations give promising results in medical image analysis, such as fusion, segmentation, recording, and classification. Support Vector Machine (SVM) as an ML method and Convolutional Neural Network (CNN) as a DL method is usually the most widely used techniques for analyzing and diagnosing diseases. This review study aims to cover recent AI techniques in diagnosing and predicting numerous diseases such as cancers, heart, lung, skin, genetic, and neural disorders, which perform more precisely compared to specialists without human error. Also, AI's existing challenges and limitations in the medical area are discussed and highlighted.
Collapse
Affiliation(s)
- Nafiseh Ghaffar Nia
- College of Engineering and Computer Science, The University of Tennessee at Chattanooga, Chattanooga, TN 37403 USA
| | - Erkan Kaplanoglu
- College of Engineering and Computer Science, The University of Tennessee at Chattanooga, Chattanooga, TN 37403 USA
| | - Ahad Nasab
- College of Engineering and Computer Science, The University of Tennessee at Chattanooga, Chattanooga, TN 37403 USA
| |
Collapse
|
13
|
Jung K, Florin E, Patil KR, Caspers J, Rubbert C, Eickhoff SB, Popovych OV. Whole-brain dynamical modelling for classification of Parkinson's disease. Brain Commun 2022; 5:fcac331. [PMID: 36601625 PMCID: PMC9798283 DOI: 10.1093/braincomms/fcac331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Simulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and modelling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated whole-brain connectome-derived features can be utilized to classify patients with Parkinson's disease against healthy controls in light of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and controls. In addition to the widely used model validation via fitting the dynamical model to empirical neuroimaging data, we invented a model validation against behavioural data, such as subject classes, which we refer to as behavioural model fitting and show that it can be beneficial for Parkinsonian patient classification. Furthermore, the results of machine learning reported in this study also demonstrated that the performance of the patient classification can be improved when the empirical data are complemented by the simulation results. We also showed that the temporal filtering of blood oxygenation level-dependent signals influences the prediction results, where filtering in the low-frequency band is advisable for Parkinsonian patient classification. In addition, composing the feature space of empirical and simulated data from multiple brain parcellation schemes provided complementary features that improved prediction performance. Based on our findings, we suggest that combining the simulation results with empirical data is effective for inter-individual research and its clinical application.
Collapse
Affiliation(s)
- Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, 40225 Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, 40225 Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Oleksandr V Popovych
- Correspondence to: Oleksandr V. Popovych Institute of Neuroscience and Medicine Brain and Behaviour (INM-7) Research Centre Jülich, 52425 Jülich, Germany E-mail:
| |
Collapse
|
14
|
Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity. Sci Rep 2022; 12:18998. [PMID: 36348082 PMCID: PMC9643358 DOI: 10.1038/s41598-022-23656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic complexity in brain functional connectivity has hindered the effective use of signal processing or machine learning methods to diagnose neurological disorders such as epilepsy. This paper proposed a new graph-generative neural network (GGN) model for the dynamic discovery of brain functional connectivity via deep analysis of scalp electroencephalogram (EEG) signals recorded from various regions of a patient's scalp. Brain functional connectivity graphs are generated for the extraction of spatial-temporal resolution of various onset epilepsy seizure patterns. Our supervised GGN model was substantiated by seizure detection and classification experiments. We train the GGN model using a clinically proven dataset of over 3047 epileptic seizure cases. The GGN model achieved a 91% accuracy in classifying seven types of epileptic seizure attacks, which outperformed the 65%, 74%, and 82% accuracy in using the convolutional neural network (CNN), graph neural networks (GNN), and transformer models, respectively. We present the GGN model architecture and operational steps to assist neuroscientists or brain specialists in using dynamic functional connectivity information to detect neurological disorders. Furthermore, we suggest to merge our spatial-temporal graph generator design in upgrading the conventional CNN and GNN models with dynamic convolutional kernels for accuracy enhancement.
Collapse
|
15
|
Perovnik M, Vo A, Nguyen N, Jamšek J, Rus T, Tang CC, Trošt M, Eidelberg D. Automated differential diagnosis of dementia syndromes using FDG PET and machine learning. Front Aging Neurosci 2022; 14:1005731. [PMID: 36408106 PMCID: PMC9667048 DOI: 10.3389/fnagi.2022.1005731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Metabolic brain imaging with 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) is a supportive diagnostic and differential diagnostic tool for neurodegenerative dementias. In the clinic, scans are usually visually interpreted. However, computer-aided approaches can improve diagnostic accuracy. We aimed to build two machine learning classifiers, based on two sets of FDG PET-derived features, for differential diagnosis of common dementia syndromes. METHODS We analyzed FDG PET scans from three dementia cohorts [63 dementia due to Alzheimer's disease (AD), 79 dementia with Lewy bodies (DLB) and 23 frontotemporal dementia (FTD)], and 41 normal controls (NCs). Patients' clinical diagnosis at follow-up (25 ± 20 months after scanning) or cerebrospinal fluid biomarkers for Alzheimer's disease was considered a gold standard. FDG PET scans were first visually evaluated. Scans were pre-processed, and two sets of features extracted: (1) the expressions of previously identified metabolic brain patterns, and (2) the mean uptake value in 95 regions of interest (ROIs). Two multi-class support vector machine (SVM) classifiers were tested and their diagnostic performance assessed and compared to visual reading. Class-specific regional feature importance was assessed with Shapley Additive Explanations. RESULTS Pattern- and ROI-based classifier achieved higher overall accuracy than expert readers (78% and 80% respectively, vs. 71%). Both SVM classifiers performed similarly to one another and to expert readers in AD (F1 = 0.74, 0.78, and 0.78) and DLB (F1 = 0.81, 0.81, and 0.78). SVM classifiers outperformed expert readers in FTD (F1 = 0.87, 0.83, and 0.63), but not in NC (F1 = 0.71, 0.75, and 0.92). Visualization of the SVM model showed bilateral temporal cortices and cerebellum to be the most important features for AD; occipital cortices, hippocampi and parahippocampi, amygdala, and middle temporal lobes for DLB; bilateral frontal cortices, middle and anterior cingulum for FTD; and bilateral angular gyri, pons, and vermis for NC. CONCLUSION Multi-class SVM classifiers based on the expression of characteristic metabolic brain patterns or ROI glucose uptake, performed better than experts in the differential diagnosis of common dementias using FDG PET scans. Experts performed better in the recognition of normal scans and a combined approach may yield optimal results in the clinical setting.
Collapse
Affiliation(s)
- Matej Perovnik
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Center for Neurosciences, The Feinstein Institutes for Medical Research, New York, NY, United States,*Correspondence: Matej Perovnik,
| | - An Vo
- Center for Neurosciences, The Feinstein Institutes for Medical Research, New York, NY, United States
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Jan Jamšek
- Department of Nuclear Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tomaž Rus
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Chris C. Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, New York, NY, United States
| | - Maja Trošt
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Department of Nuclear Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
16
|
Gaurav R, Valabrègue R, Yahia-Chérif L, Mangone G, Narayanan S, Arnulf I, Vidailhet M, Corvol JC, Lehéricy S. NigraNet: An automatic framework to assess nigral neuromelanin content in early Parkinson's disease using convolutional neural network. Neuroimage Clin 2022; 36:103250. [PMID: 36451356 PMCID: PMC9668659 DOI: 10.1016/j.nicl.2022.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Parkinson's disease (PD) demonstrates neurodegenerative changes in the substantia nigra pars compacta (SNc) using neuromelanin-sensitive (NM)-MRI. As SNc manual segmentation is prone to substantial inter-individual variability across raters, development of a robust automatic segmentation framework is necessary to facilitate nigral neuromelanin quantification. Artificial intelligence (AI) is gaining traction in the neuroimaging community for automated brain region segmentation tasks using MRI. OBJECTIVE Developing and validating AI-based NigraNet, a fully automatic SNc segmentation framework allowing nigral neuromelanin quantification in patients with PD using NM-MRI. METHODS We prospectively included 199 participants comprising 144 early-stage idiopathic PD patients (disease duration = 1.5 ± 1.0 years) and 55 healthy volunteers (HV) scanned using a 3 Tesla MRI including whole brain T1-weighted anatomical imaging and NM-MRI. The regions of interest (ROI) were delineated in all participants automatically using NigraNet, a modified U-net, and compared to manual segmentations performed by two experienced raters. The SNc volumes (Vol), volumes corrected by total intracranial volume (Cvol), normalized signal intensity (NSI) and contrast-to-noise ratio (CNR) were computed. One-way GLM-ANCOVA was performed while adjusting for age and sex as covariates. Diagnostic performance measurement was assessed using the receiver operating characteristic (ROC) analysis. Inter and intra-observer variability were estimated using Dice similarity coefficient (DSC). The agreements between methods were tested using intraclass correlation coefficient (ICC) based on a mean-rating, two-way, mixed-effects model estimates for absolute agreement. Cronbach's alpha and Bland-Altman plots were estimated to assess inter-method consistency. RESULTS Using both methods, Vol, Cvol, NSI and CNR measurements differed between PD and HV with an effect of sex for Cvol and CNR. ICC values between the methods demonstrated optimal agreement for Cvol and CNR (ICC > 0.9) and high reproducibility (DSC: 0.80) was also obtained. The SNc measurements also showed good to excellent consistency values (Cronbach's alpha > 0.87). Bland-Altman plots of agreement demonstrated no association of SNc ROI measurement differences between the methods and ROI average measurements while confirming that 95 % of the data points were ranging between the limits of mean difference (d ± 1.96xSD). Percentage changes between PD and HV were -27.4 % and -17.7 % for Vol, -30.0 % and -22.2 % for Cvol, -15.8 % and -14.4 % for NSI, -17.1 % and -16.0 % for CNR for automatic and manual measurements respectively. Using automatic method, in the entire dataset, we obtained the areas under the ROC curve (AUC) of 0.83 for Vol, 0.85 for Cvol, 0.79 for NSI and 0.77 for CNR whereas in the training dataset of 0.96 for Vol, 0.95 for Cvol, 0.85 for NSI and 0.85 for CNR. Disease duration correlated negatively with NSI of the patients for both the automatic and manual measurements. CONCLUSIONS We presented an AI-based NigraNet framework that utilizes a small MRI training dataset to fully automatize the SNc segmentation procedure with an increased precision and more reproducible results. Considering the consistency, accuracy and speed of our approach, this study could be a crucial step towards the implementation of a time-saving non-rater dependent fully automatic method for studying neuromelanin changes in clinical settings and large-scale neuroimaging studies.
Collapse
Affiliation(s)
- Rahul Gaurav
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France.
| | - Romain Valabrègue
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France
| | - Lydia Yahia-Chérif
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France
| | - Graziella Mangone
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; INSERM, Clinical Investigation Center for Neurosciences (CIC), Pitié-Salpêtrière Hospital, Paris, France
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Isabelle Arnulf
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Sleep Disorders Unit, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Marie Vidailhet
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Jean-Christophe Corvol
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; INSERM, Clinical Investigation Center for Neurosciences (CIC), Pitié-Salpêtrière Hospital, Paris, France; Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Stéphane Lehéricy
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France; Department of Neuroradiology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
17
|
Fusar-Poli P, Manchia M, Koutsouleris N, Leslie D, Woopen C, Calkins ME, Dunn M, Tourneau CL, Mannikko M, Mollema T, Oliver D, Rietschel M, Reininghaus EZ, Squassina A, Valmaggia L, Kessing LV, Vieta E, Correll CU, Arango C, Andreassen OA. Ethical considerations for precision psychiatry: A roadmap for research and clinical practice. Eur Neuropsychopharmacol 2022; 63:17-34. [PMID: 36041245 DOI: 10.1016/j.euroneuro.2022.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
Precision psychiatry is an emerging field with transformative opportunities for mental health. However, the use of clinical prediction models carries unprecedented ethical challenges, which must be addressed before accessing the potential benefits of precision psychiatry. This critical review covers multidisciplinary areas, including psychiatry, ethics, statistics and machine-learning, healthcare and academia, as well as input from people with lived experience of mental disorders, their family, and carers. We aimed to identify core ethical considerations for precision psychiatry and mitigate concerns by designing a roadmap for research and clinical practice. We identified priorities: learning from somatic medicine; identifying precision psychiatry use cases; enhancing transparency and generalizability; fostering implementation; promoting mental health literacy; communicating risk estimates; data protection and privacy; and fostering the equitable distribution of mental health care. We hope this blueprint will advance research and practice and enable people with mental health problems to benefit from precision psychiatry.
Collapse
Affiliation(s)
- Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | - Monica E Calkins
- Neurodevelopment and Psychosis Section and Lifespan Brain Institute of Penn/CHOP, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, USA
| | - Michael Dunn
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Christophe Le Tourneau
- Institut Curie, Department of Drug Development and Innovation (D3i), INSERM U900 Research unit, Paris-Saclay University, France
| | - Miia Mannikko
- European Federation of Associations of Families of People with Mental Illness (EUFAMI), Leuven, Belgium
| | - Tineke Mollema
- Global Alliance of Mental Illness Advocacy Networks-Europe (GAMIAN), Brussels, Belgium
| | - Dominic Oliver
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Italy
| | - Lucia Valmaggia
- South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, KU Leuven, Belgium
| | - Lars Vedel Kessing
- Copenhagen Affective disorder Research Center (CADIC), Psychiatric Center Copenhagen, Denmark; Department of clinical Medicine, University of Copenhagen, Denmark
| | - Eduard Vieta
- Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Center for Psychiatric Neuroscience; The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Gregorio Marañón; Health Research Institute (IiGSM), School of Medicine, Universidad Complutense de Madrid; Biomedical Research Center for Mental Health (CIBERSAM), Madrid, Spain
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
18
|
Santos Febles E, Ontivero Ortega M, Valdés Sosa M, Sahli H. Machine Learning Techniques for the Diagnosis of Schizophrenia Based on Event-Related Potentials. Front Neuroinform 2022; 16:893788. [PMID: 35873276 PMCID: PMC9305700 DOI: 10.3389/fninf.2022.893788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
AntecedentThe event-related potential (ERP) components P300 and mismatch negativity (MMN) have been linked to cognitive deficits in patients with schizophrenia. The diagnosis of schizophrenia could be improved by applying machine learning procedures to these objective neurophysiological biomarkers. Several studies have attempted to achieve this goal, but no study has examined Multiple Kernel Learning (MKL) classifiers. This algorithm finds optimally a combination of kernel functions, integrating them in a meaningful manner, and thus could improve diagnosis.ObjectiveThis study aimed to examine the efficacy of the MKL classifier and the Boruta feature selection method for schizophrenia patients (SZ) and healthy controls (HC) single-subject classification.MethodsA cohort of 54 SZ and 54 HC participants were studied. Three sets of features related to ERP signals were calculated as follows: peak related features, peak to peak related features, and signal related features. The Boruta algorithm was used to evaluate the impact of feature selection on classification performance. An MKL algorithm was applied to address schizophrenia detection.ResultsA classification accuracy of 83% using the whole dataset, and 86% after applying Boruta feature selection was obtained. The variables that contributed most to the classification were mainly related to the latency and amplitude of the auditory P300 paradigm.ConclusionThis study showed that MKL can be useful in distinguishing between schizophrenic patients and controls when using ERP measures. Moreover, the use of the Boruta algorithm provides an improvement in classification accuracy and computational cost.
Collapse
Affiliation(s)
- Elsa Santos Febles
- Cuban Neuroscience Center, Havana, Cuba
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Elsa Santos Febles
| | - Marlis Ontivero Ortega
- Cuban Neuroscience Center, Havana, Cuba
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | | | - Hichem Sahli
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| |
Collapse
|
19
|
Diagnosis of middle cerebral artery stenosis using the transcranial Doppler images based on convolutional neural network. World Neurosurg 2022; 161:e118-e125. [PMID: 35077885 DOI: 10.1016/j.wneu.2022.01.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The purpose of this study was to explore the diagnostic value of convolutional neural networks (CNNs) in middle cerebral artery (MCA) stenosis by analyzing the transcranial Doppler (TCD) images. METHODS Overall 278 patients who underwent cerebral vascular TCD and cerebral angiography were enrolled and classified into stenosis and non-stenosis groups based on cerebral angiography findings. Manual measurements were performed on TCD images. The patients were divided into a training set and a test set, and the CNNs architecture was used to classify TCD images. The diagnostic accuracies of manual measurements, CNNs, and TCD parameters for MCA stenosis were calculated and compared. RESULTS Overall, 203 patients without stenosis and 75 patients with stenosis were evaluated. The sensitivity, specificity, and area under the curve (AUC) for manual measurements of MCA stenosis were 0.80, 0.83, and 0.81, respectively. After 24 iterations of the running model in the training set, the sensitivity, specificity, and AUC of the CNNs in the test set were 0.84, 0.86, and 0.80, respectively. The diagnostic value of CNNs differed minimally from that of manual measurements. Two parameters of TCD, peak systolic velocity and mean flow velocity, were higher in patients with stenosis than in those without stenosis; however, their diagnostic values were significantly lower than those of CNNs (P < 0.05). CONCLUSIONS The diagnostic value of CNNs for MCA stenosis based on TCD images paralleled that of manual measurements. CNNs could be used as an auxiliary diagnostic tool to improve the diagnosis of MCA stenosis.
Collapse
|
20
|
A Survey on EEG Signal Processing Techniques and Machine Learning: Applications to the Neurofeedback of Autobiographical Memory Deficits in Schizophrenia. ELECTRONICS 2021. [DOI: 10.3390/electronics10233037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this paper, a general overview regarding neural recording, classical signal processing techniques and machine learning classification algorithms applied to monitor brain activity is presented. Currently, several approaches classified as electrical, magnetic, neuroimaging recordings and brain stimulations are available to obtain neural activity of the human brain. Among them, non-invasive methods like electroencephalography (EEG) are commonly employed, as they can provide a high degree of temporal resolution (on the order of milliseconds) and acceptable space resolution. In addition, it is simple, quick, and does not create any physical harm or stress to patients. Concerning signal processing, once the neural signals are acquired, different procedures can be applied for feature extraction. In particular, brain signals are normally processed in time, frequency, and/or space domains. The features extracted are then used for signal classification depending on its characteristics such us the mean, variance or band power. The role of machine learning in this regard has become of key importance during the last years due to its high capacity to analyze complex amounts of data. The algorithms employed are generally classified in supervised, unsupervised and reinforcement techniques. A deep review of the most used machine learning algorithms and the advantages/drawbacks of most used methods is presented. Finally, a study of these procedures utilized in a very specific and novel research field of electroencephalography, i.e., autobiographical memory deficits in schizophrenia, is outlined.
Collapse
|
21
|
James C, Ranson JM, Everson R, Llewellyn DJ. Performance of Machine Learning Algorithms for Predicting Progression to Dementia in Memory Clinic Patients. JAMA Netw Open 2021; 4:e2136553. [PMID: 34913981 PMCID: PMC8678688 DOI: 10.1001/jamanetworkopen.2021.36553] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IMPORTANCE Machine learning algorithms could be used as the basis for clinical decision-making aids to enhance clinical practice. OBJECTIVE To assess the ability of machine learning algorithms to predict dementia incidence within 2 years compared with existing models and determine the optimal analytic approach and number of variables required. DESIGN, SETTING, AND PARTICIPANTS This prognostic study used data from a prospective cohort of 15 307 participants without dementia at baseline to perform a secondary analysis of factors that could be used to predict dementia incidence. Participants attended National Alzheimer Coordinating Center memory clinics across the United States between 2005 and 2015. Analyses were conducted from March to May 2021. EXPOSURES 258 variables spanning domains of dementia-related clinical measures and risk factors. MAIN OUTCOMES AND MEASURES The main outcome was incident all-cause dementia diagnosed within 2 years of baseline assessment. RESULTS In a sample of 15 307 participants (mean [SD] age, 72.3 [9.8] years; 9129 [60%] women and 6178 [40%] men) without dementia at baseline, 1568 (10%) received a diagnosis of dementia within 2 years of their initial assessment. Compared with 2 existing models for dementia risk prediction (ie, Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score, and the Brief Dementia Screening Indicator), machine learning algorithms were superior in predicting incident all-cause dementia within 2 years. The gradient-boosted trees algorithm had a mean (SD) overall accuracy of 92% (1%), sensitivity of 0.45 (0.05), specificity of 0.97 (0.01), and area under the curve of 0.92 (0.01) using all 258 variables. Analysis of variable importance showed that only 6 variables were required for machine learning algorithms to achieve an accuracy of 91% and area under the curve of at least 0.89. Machine learning algorithms also identified up to 84% of participants who received an initial dementia diagnosis that was subsequently reversed to mild cognitive impairment or cognitively unimpaired, suggesting possible misdiagnosis. CONCLUSIONS AND RELEVANCE These findings suggest that machine learning algorithms could accurately predict incident dementia within 2 years in patients receiving care at memory clinics using only 6 variables. These findings could be used to inform the development and validation of decision-making aids in memory clinics.
Collapse
Affiliation(s)
- Charlotte James
- University of Exeter Medical School, Exeter, United Kingdom
- Deep Dementia Phenotyping Network, United Kingdom
| | - Janice M. Ranson
- University of Exeter Medical School, Exeter, United Kingdom
- Deep Dementia Phenotyping Network, United Kingdom
| | - Richard Everson
- Deep Dementia Phenotyping Network, United Kingdom
- Department of Computer Science, University of Exeter, Exeter, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - David J. Llewellyn
- University of Exeter Medical School, Exeter, United Kingdom
- Deep Dementia Phenotyping Network, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
22
|
Bottani S, Burgos N, Maire A, Wild A, Ströer S, Dormont D, Colliot O. Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse. Med Image Anal 2021; 75:102219. [PMID: 34773767 DOI: 10.1016/j.media.2021.102219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Many studies on machine learning (ML) for computer-aided diagnosis have so far been mostly restricted to high-quality research data. Clinical data warehouses, gathering routine examinations from hospitals, offer great promises for training and validation of ML models in a realistic setting. However, the use of such clinical data warehouses requires quality control (QC) tools. Visual QC by experts is time-consuming and does not scale to large datasets. In this paper, we propose a convolutional neural network (CNN) for the automatic QC of 3D T1-weighted brain MRI for a large heterogeneous clinical data warehouse. To that purpose, we used the data warehouse of the hospitals of the Greater Paris area (Assistance Publique-Hôpitaux de Paris [AP-HP]). Specifically, the objectives were: 1) to identify images which are not proper T1-weighted brain MRIs; 2) to identify acquisitions for which gadolinium was injected; 3) to rate the overall image quality. We used 5000 images for training and validation and a separate set of 500 images for testing. In order to train/validate the CNN, the data were annotated by two trained raters according to a visual QC protocol that we specifically designed for application in the setting of a data warehouse. For objectives 1 and 2, our approach achieved excellent accuracy (balanced accuracy and F1-score >90%), similar to the human raters. For objective 3, the performance was good but substantially lower than that of human raters. Nevertheless, the automatic approach accurately identified (balanced accuracy and F1-score >80%) low quality images, which would typically need to be excluded. Overall, our approach shall be useful for exploiting hospital data warehouses in medical image computing.
Collapse
Affiliation(s)
- Simona Bottani
- Inria, Aramis project-team, Paris, 75013, France; Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Ninon Burgos
- Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France; Inria, Aramis project-team, Paris, 75013, France
| | | | - Adam Wild
- Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France; Inria, Aramis project-team, Paris, 75013, France
| | - Sebastian Ströer
- AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France
| | - Didier Dormont
- Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France; Inria, Aramis project-team, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France
| | - Olivier Colliot
- Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France; Inria, Aramis project-team, Paris, 75013, France.
| | | |
Collapse
|
23
|
Update on neuroimaging for categorization of Parkinson's disease and atypical parkinsonism. Curr Opin Neurol 2021; 34:514-524. [PMID: 34010220 DOI: 10.1097/wco.0000000000000957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Differential diagnosis of Parkinsonism may be difficult. The objective of this review is to present the work of the last three years in the field of imaging for diagnostic categorization of parkinsonian syndromes focusing on progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). RECENT FINDINGS Two main complementary approaches are being pursued. The first seeks to develop and validate manual qualitative or semi-quantitative imaging markers that can be easily used in clinical practice. The second is based on quantitative measurements of magnetic resonance imaging abnormalities integrated in a multimodal approach and in automatic categorization machine learning tools. SUMMARY These two complementary approaches obtained high diagnostic around 90% and above in the classical Richardson form of PSP and probable MSA. Future work will determine if these techniques can improve diagnosis in other PSP variants and early forms of the diseases when all clinical criteria are not fully met.
Collapse
|
24
|
Hu J, Qing Z, Liu R, Zhang X, Lv P, Wang M, Wang Y, He K, Gao Y, Zhang B. Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease. Front Neurosci 2021; 14:626154. [PMID: 33551735 PMCID: PMC7858673 DOI: 10.3389/fnins.2020.626154] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) have overlapping symptoms, and accurate differential diagnosis is important for targeted intervention and treatment. Previous studies suggest that the deep learning (DL) techniques have the potential to solve the differential diagnosis problem of FTD, AD and normal controls (NCs), but its performance is still unclear. In addition, existing DL-assisted diagnostic studies still rely on hypothesis-based expert-level preprocessing. On the one hand, it imposes high requirements on clinicians and data themselves; On the other hand, it hinders the backtracking of classification results to the original image data, resulting in the classification results cannot be interpreted intuitively. In the current study, a large cohort of 3D T1-weighted structural magnetic resonance imaging (MRI) volumes (n = 4,099) was collected from two publicly available databases, i.e., the ADNI and the NIFD. We trained a DL-based network directly based on raw T1 images to classify FTD, AD and corresponding NCs. And we evaluated the convergence speed, differential diagnosis ability, robustness and generalizability under nine scenarios. The proposed network yielded an accuracy of 91.83% based on the most common T1-weighted sequence [magnetization-prepared rapid acquisition with gradient echo (MPRAGE)]. The knowledge learned by the DL network through multiple classification tasks can also be used to solve subproblems, and the knowledge is generalizable and not limited to a specified dataset. Furthermore, we applied a gradient visualization algorithm based on guided backpropagation to calculate the contribution graph, which tells us intuitively why the DL-based networks make each decision. The regions making valuable contributions to FTD were more widespread in the right frontal white matter regions, while the left temporal, bilateral inferior frontal and parahippocampal regions were contributors to the classification of AD. Our results demonstrated that DL-based networks have the ability to solve the enigma of differential diagnosis of diseases without any hypothesis-based preprocessing. Moreover, they may mine the potential patterns that may be different from human clinicians, which may provide new insight into the understanding of FTD and AD.
Collapse
Affiliation(s)
- Jingjing Hu
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Zhao Qing
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pin Lv
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Maoxue Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Kelei He
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| | - Yang Gao
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Bing Zhang
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China.,Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Burgos N, Bottani S, Faouzi J, Thibeau-Sutre E, Colliot O. Deep learning for brain disorders: from data processing to disease treatment. Brief Bioinform 2020; 22:1560-1576. [PMID: 33316030 DOI: 10.1093/bib/bbaa310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
In order to reach precision medicine and improve patients' quality of life, machine learning is increasingly used in medicine. Brain disorders are often complex and heterogeneous, and several modalities such as demographic, clinical, imaging, genetics and environmental data have been studied to improve their understanding. Deep learning, a subpart of machine learning, provides complex algorithms that can learn from such various data. It has become state of the art in numerous fields, including computer vision and natural language processing, and is also growingly applied in medicine. In this article, we review the use of deep learning for brain disorders. More specifically, we identify the main applications, the concerned disorders and the types of architectures and data used. Finally, we provide guidelines to bridge the gap between research studies and clinical routine.
Collapse
|
26
|
Home-Based Functional Electrical Stimulation of Human Permanent Denervated Muscles: A Narrative Review on Diagnostics, Managements, Results and Byproducts Revisited 2020. Diagnostics (Basel) 2020; 10:diagnostics10080529. [PMID: 32751308 PMCID: PMC7460102 DOI: 10.3390/diagnostics10080529] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) produces muscle wasting that is especially severe after complete and permanent damage of lower motor neurons, as can occur in complete conus and cauda equina syndrome. Even in this worst-case scenario, mass and function of permanently denervated quadriceps muscle can be rescued by surface functional electrical stimulation using a purpose designed home-based rehabilitation strategy. Early diagnostics is a key factor in the long-term success of this management. Function of quadriceps muscle was quantitated by force measurements. Muscle gross cross-sections were evaluated by quantitative color computed tomography (CT) and muscle and skin biopsies by quantitative histology, electron microscopy, and immunohistochemistry. Two years of treatment that started earlier than 5 years from SCI produced: (a) an increase in cross-sectional area of stimulated muscles; (b) an increase in muscle fiber mean diameter; (c) improvements in ultrastructural organization; and (d) increased force output during electrical stimulation. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that new trials start soon, providing patients the benefits they need.
Collapse
|