1
|
Sabino EC, Franco LAM, Venturini G, Velho Rodrigues M, Marques E, de Oliveira-da Silva LC, Martins LNA, Ferreira AM, Almeida PEC, Silva FDD, Leite SF, Nunes MDCP, Haikal DS, Oliveira CDL, Cardoso CS, Seidman JG, Seidman CE, Casas JP, Ribeiro ALP, Krieger JE, Pereira AC. Genome-wide association study for Chagas Cardiomyopathy identify a new risk locus on chromosome 18 associated with an immune-related protein and transcriptional signature. PLoS Negl Trop Dis 2022; 16:e0010725. [PMID: 36215317 PMCID: PMC9550069 DOI: 10.1371/journal.pntd.0010725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic Chagas Cardiomyopathy (CCC) usually develops between 10 and 20 years after the first parasitic infection and is one of the leading causes of end-stage heart failure in Latin America. Despite the great inter-individual variability in CCC susceptibility (only 30% of infected individuals ever present CCC), there are no known predictors for disease development in those chronically infected. METHODOLOGY/PRINCIPAL FINDINGS We describe a new susceptibility locus for CCC through a GWAS analysis in the SaMi-Trop cohort, a population-based study conducted in a Chagas endemic region from Brazil. This locus was also associated with CCC in the REDS II Study. The newly identified locus (rs34238187, OR 0.73, p-value 2.03 x 10-9) spans a haplotype of approximately 30Kb on chromosome 18 (chr18: 5028302-5057621) and is also associated with 80 different traits, most of them blood protein traits significantly enriched for immune-related biological pathways. Hi-C data show that the newly associated locus is able to interact with chromatin sites as far as 10Mb on chromosome 18 in a number of different cell types and tissues. Finally, we were able to confirm, at the tissue transcriptional level, the immune-associated blood protein signature using a multi-tissue differential gene expression and enrichment analysis. CONCLUSIONS/SIGNIFICANCE We suggest that the newly identified locus impacts CCC risk among T cruzi infected individuals through the modulation of a downstream transcriptional and protein signature associated with host-parasite immune response. Functional characterization of the novel risk locus is warranted.
Collapse
Affiliation(s)
- Ester Cerdeira Sabino
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Lucas Augusto Moysés Franco
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Gabriela Venturini
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mariliza Velho Rodrigues
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
| | - Emanuelle Marques
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
| | - Lea Campos de Oliveira-da Silva
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Ariela Mota Ferreira
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Felipe Dias Da Silva
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | | | | | | | | | - Jonathan G. Seidman
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine E. Seidman
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Juan P. Casas
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonio Luiz Pinho Ribeiro
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jose E. Krieger
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
| | - Alexandre C. Pereira
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Ngarka L, Siewe Fodjo JN, Aly E, Masocha W, Njamnshi AK. The Interplay Between Neuroinfections, the Immune System and Neurological Disorders: A Focus on Africa. Front Immunol 2022; 12:803475. [PMID: 35095888 PMCID: PMC8792387 DOI: 10.3389/fimmu.2021.803475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
Neurological disorders related to neuroinfections are highly prevalent in Sub-Saharan Africa (SSA), constituting a major cause of disability and economic burden for patients and society. These include epilepsy, dementia, motor neuron diseases, headache disorders, sleep disorders, and peripheral neuropathy. The highest prevalence of human immunodeficiency virus (HIV) is in SSA. Consequently, there is a high prevalence of neurological disorders associated with HIV infection such as HIV-associated neurocognitive disorders, motor disorders, chronic headaches, and peripheral neuropathy in the region. The pathogenesis of these neurological disorders involves the direct role of the virus, some antiretroviral treatments, and the dysregulated immune system. Furthermore, the high prevalence of epilepsy in SSA (mainly due to perinatal causes) is exacerbated by infections such as toxoplasmosis, neurocysticercosis, onchocerciasis, malaria, bacterial meningitis, tuberculosis, and the immune reactions they elicit. Sleep disorders are another common problem in the region and have been associated with infectious diseases such as human African trypanosomiasis and HIV and involve the activation of the immune system. While most headache disorders are due to benign primary headaches, some secondary headaches are caused by infections (meningitis, encephalitis, brain abscess). HIV and neurosyphilis, both common in SSA, can trigger long-standing immune activation in the central nervous system (CNS) potentially resulting in dementia. Despite the progress achieved in preventing diseases from the poliovirus and retroviruses, these microbes may cause motor neuron diseases in SSA. The immune mechanisms involved in these neurological disorders include increased cytokine levels, immune cells infiltration into the CNS, and autoantibodies. This review focuses on the major neurological disorders relevant to Africa and neuroinfections highly prevalent in SSA, describes the interplay between neuroinfections, immune system, neuroinflammation, and neurological disorders, and how understanding this can be exploited for the development of novel diagnostics and therapeutics for improved patient care.
Collapse
Affiliation(s)
- Leonard Ngarka
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Joseph Nelson Siewe Fodjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Esraa Aly
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Alfred K. Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|