1
|
Awuah WA, Ben-Jaafar A, Karkhanis S, Nkrumah-Boateng PA, Kong JSH, Mannan KM, Shet V, Imran S, Bone M, Boye ANA, Ranganathan S, Shah MH, Abdul-Rahman T, Atallah O. Cancer stem cells in meningiomas: novel insights and therapeutic implications. Clin Transl Oncol 2025; 27:1438-1459. [PMID: 39316249 PMCID: PMC12000263 DOI: 10.1007/s12094-024-03728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Meningiomas (MGs), which arise from meningothelial cells of the dura mater, represent a significant proportion of primary tumours of the central nervous system (CNS). Despite advances in treatment, the management of malignant meningioma (MMG) remains challenging due to diagnostic, surgical, and resection limitations. Cancer stem cells (CSCs), a subpopulation within tumours capable of self-renewal and differentiation, are highlighted as key markers of tumour growth, metastasis, and treatment resistance. Identifying additional CSC-related markers enhances the precision of malignancy evaluations, enabling advancements in personalised medicine. The review discusses key CSC biomarkers that are associated with high levels of expression, aggressive tumour behaviour, and poor outcomes. Recent molecular research has identified CSC-related biomarkers, including Oct-4, Sox2, NANOG, and CD133, which help maintain cellular renewal, proliferation, and drug resistance in MGs. This study highlights new therapeutic strategies that could improve patient prognosis with more durable tumour regression. The use of combination therapies, such as hydroxyurea alongside diltiazem, suggests more efficient and effective MG management compared to monotherapy. Signalling pathways such as NOTCH and hedgehog also offer additional avenues for therapeutic development. CRISPR/Cas9 technology has also been employed to create meningioma models, uncovering pathways related to cell growth and proliferation. Since the efficacy of traditional therapies is limited in most cases due to resistance mechanisms in CSCs, further studies on the biology of CSCs are warranted to develop therapeutic interventions that are likely to be effective in MG. Consequently, improved diagnostic approaches may lead to personalised treatment plans tailored to the specific needs of each patient.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Vallabh Shet
- University of Connecticut New Britain Program, New Britain, Connecticut, USA
| | - Shahzeb Imran
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Matan Bone
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
2
|
Levi A, Blais E, Davelaar J, Ebia MI, Minasyan A, Nikravesh N, Gresham G, Zheng L, Chuy JW, Shroff RT, Wadlow RC, DeArbeloa P, Matrisian LM, Petricoin E, Pishvaian MJ, Gong J, Hendifar AE, Osipov A. Clinical outcomes and molecular characteristics of lung-only and liver-only metastatic pancreatic cancer: results from a real-world evidence database. Oncologist 2025; 30:oyaf007. [PMID: 40079530 PMCID: PMC11904785 DOI: 10.1093/oncolo/oyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/03/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Previous research demonstrates longer survival for patients with lung-only metastatic pancreatic adenocarcinoma (mPDAC) compared to liver-only mPDAC. The objective of this study is to understand the survival differences, impact of chemotherapy, and associated genomic features of mPDAC that is isolated to either the liver or lung. PATIENTS AND METHODS Longitudinal clinical outcomes and molecular sequencing data were retrospectively analyzed across 831 patients with PDAC across all stages whose tumors first metastasized to the liver or lung. Survival differences were evaluated using Cox regression. Mutational frequency differences were evaluated using Fisher's exact test. RESULTS Median overall survival (mOS) was shorter in patients with liver-only metastasis (1.3y [1.2-1.4], n = 689) compared to lung-only metastasis (2.1y [1.9-2.5], n = 142) (P = .000000588, HR = 2.00 [1.53-2.63]. Survival differences were observed regardless of choice of 1st-line standard-of-care therapy. For 5-fluorouracil-based therapies, mOS for liver-only mPDAC was 1.4y [1.3-1.6] (n = 211) compared to 2.1y [1.8-3.3] for lung-only mPDAC (n = 175) (P = .008113, HR = 1.75 [1.16-2.65]). For gemcitabine/nab-paclitaxel therapy, mOS for liver-only mPDAC was 1.2y [1.1-1.5] (n = 175) compared to 2.1y [1.6-3.4] for lung-only disease (n = 32) (P = .01863, HR = 1.84 [1.11-3.06]). PDAC tumors with liver-only metastases were modestly enriched (unadjustable P < .05) for: TP53 mutations, MYC amplifications, inactivating CDK2NA alterations, inactivating SMAD alterations, and SWI/SWF pathway mutations. PDAC tumors with lung-only metastases were enriched for: STK11 mutations, CCND1 amplifications, and GNAS alterations. CONCLUSION Patients with lung-only mPDAC demonstrate an improved prognosis relative to those with liver-only mPDAC. Responses to chemotherapy do not explain these differences. Organotropic metastatic tumor diversity is mirrored at the molecular level in PDAC.
Collapse
Affiliation(s)
- Abrahm Levi
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Edik Blais
- Perthera Inc., McLean, VA, United States
| | - John Davelaar
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Matthew I Ebia
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Nima Nikravesh
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Lei Zheng
- University of Texas Health Science Center San Antonio, Hematology and Oncology, San Antonio, TX, United States
| | | | - Rachna T Shroff
- University of Arizona College of Medicine, Hematology and Oncology, Tucson, AZ, United States
| | | | | | | | | | - Michael J Pishvaian
- University of Texas Health Science Center San Antonio, Hematology and Oncology, San Antonio, TX, United States
- Johns Hopkins Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jun Gong
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Arsen Osipov
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
3
|
Dinakaran D, Moore-Palhares D, Yang F, Hill JB. Precision radiotherapy with molecular-profiling of CNS tumours. J Neurooncol 2025; 172:51-75. [PMID: 39699761 DOI: 10.1007/s11060-024-04911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Diagnoses of CNS malignancies in the primary and metastatic setting have significantly advanced in the last decade with the advent of molecular pathology. Using a combination of immunohistochemistry, next-generation sequencing, and methylation profiling integrated with traditional histopathology, patient prognosis and disease characteristics can be understood to a much greater extent. This has recently manifested in predicting response to targeted drug therapies that are redefining management practices of CNS tumours. Radiotherapy, along with surgery, still remains an integral part of treating the majority of CNS tumours. However, the rapid advances in CNS molecular diagnostics have not yet been effectively translated into improving CNS radiotherapy. We explore several promising strategies under development to integrate molecular oncology into radiotherapy, and explore future directions that can serve to use molecular diagnostics to personalize radiotherapy. Evolving the management of CNS tumours with molecular profiling will be integral to supporting the future of precision radiotherapy.
Collapse
Affiliation(s)
- Deepak Dinakaran
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
- Department of Medical Biophysics and Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Suite 504, Toronto, ON, M5T 1P5, Canada.
| | - Daniel Moore-Palhares
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Fan Yang
- Radiation Oncology, Mayo Clinic Arizona, 5881 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jordan B Hill
- Banner MD Anderson Cancer Center, 925 E. McDowell Rd, Phoenix, AZ, 85006, USA
| |
Collapse
|
4
|
Tabouret E, Furtner J, Graillon T, Silvani A, Le Rhun E, Soffietti R, Lombardi G, Sepúlveda-Sánchez JM, Brandal P, Bendszus M, Golfinopoulos V, Gorlia T, Weller M, Sahm F, Wick W, Preusser M. 3D volume growth rate evaluation in the EORTC-BTG-1320 clinical trial for recurrent WHO grade 2 and 3 meningiomas. Neuro Oncol 2024; 26:1302-1309. [PMID: 38452246 PMCID: PMC11226865 DOI: 10.1093/neuonc/noae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND We previously reported that tumor 3D volume growth rate (3DVGR) classification could help in the assessment of drug activity in patients with meningioma using 3 main classes and a total of 5 subclasses: class 1: decrease; 2: stabilization or severe slowdown; 3: progression. The EORTC-BTG-1320 clinical trial was a randomized phase II trial evaluating the efficacy of trabectedin for recurrent WHO 2 or 3 meningioma. Our objective was to evaluate the discriminative value of 3DVGR classification in the EORTC-BTG-1320. METHODS All patients with at least 1 available MRI before trial inclusion were included. 3D volume was evaluated on consecutive MRI until progression. 2D imaging response was centrally assessed by MRI modified Macdonald criteria. Clinical benefit was defined as neurological or functional status improvement or steroid decrease or discontinuation. RESULTS Sixteen patients with a median age of 58.5 years were included. Best 3DVGR classes were: 1, 2A, 3A, and 3B in 2 (16.7%), 4 (33.3%), 2 (16.7%), and 4 (33.3%) patients, respectively. All patients with progression-free survival longer than 6 months had best 3DVGR class 1 or 2. 3DVGR classes 1 and 2 (combined) had a median overall survival of 34.7 months versus 7.2 months for class 3 (P = .061). All class 1 patients (2/2), 75% of class 2 patients (3/4), and only 10% of class 3 patients (1/10) had clinical benefit. CONCLUSIONS Tumor 3DVGR classification may be helpful to identify early signals of treatment activity in meningioma clinical trials.
Collapse
Affiliation(s)
- Emeline Tabouret
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - Julia Furtner
- Faculty of Medicine and Dentistry, Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Danube Private University, Krems, Austria
| | - Thomas Graillon
- Aix-Marseille Univ, APHM, CHU Timone, Service de Neuro-chirurgie, Marseille, France
| | - Antonio Silvani
- Department of Neuro-Oncology, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Juan Manuel Sepúlveda-Sánchez
- Hospital Universitario e Instituto de Investigación 12 de Octubre, Unidad Multidisciplinar de Neuro-Oncología, Madrid, Spain
| | - Petter Brandal
- Department of Oncology and Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Puranik AD, Dev ID, Rangarajan V, Kulkarni S, Shetty N, Gala K, Sahu A, Bhattacharya K, Dasgupta A, Chatterjee A, Gupta T, Sridhar E, Sahay A, Shetty P, Singh V, Moiyadi A, Menon N, Purandare NC, Agrawal A, Shah S, Choudhury S, Ghosh S, Jha AK. PRRT with Lu-177 DOTATATE in Treatment-Refractory Progressive Meningioma: Initial Experience from a Tertiary-Care Neuro-Oncology Center. Neurol India 2024; 72:278-284. [PMID: 38691470 DOI: 10.4103/ni.neurol-india-d-23-00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/15/2023] [Indexed: 05/03/2024]
Abstract
PURPOSE Refractory and/or recurrent meningiomas have poor outcomes, and the treatment options are limited. Peptide receptor radionuclide therapy (PRRT) has been used in this setting with promising results. We have documented our experience of using intravenous (IV) and intra-arterial (IA) approaches of Lu-177 DOTATATE PRRT. METHODS Eight patients with relapsed/refractory high-grade meningioma received PRRT with Lu-177 DOTATATE by IV and an IA route. At least 2 cycles were administered. Time to progression was calculated from the first PRRT session to progression. The response was assessed on MRI using RANO criteria, and visual analysis of uptake was done on Ga-68 DOTANOC PET/CT. Post-therapy dosimetry calculations for estimating the absorbed dose were performed. RESULTS Median time to progression was 8.9 months. One patient showed disease progression, whereas seven patients showed stable disease at 4 weeks following 2 cycles of PRRT. Dosimetric analysis showed higher dose and retention time by IA approach. No significant peri-procedural or PRRT associated toxicity was seen. CONCLUSION PRRT is a safe and effective therapeutic option for relapsed/refractory meningioma. The IA approach yields better dose delivery and should be routinely practised.
Collapse
Affiliation(s)
- Ameya D Puranik
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Indraja D Dev
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Suyash Kulkarni
- Department of Radiodiagnosis, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nitin Shetty
- Department of Radiodiagnosis, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Kunal Gala
- Department of Radiodiagnosis, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Arpita Sahu
- Department of Radiodiagnosis, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Kajari Bhattacharya
- Department of Radiodiagnosis, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Epari Sridhar
- Department of Pathology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vikas Singh
- Department of Neurosurgery, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nilendu C Purandare
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sayak Choudhury
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Suchismita Ghosh
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ashish Kumar Jha
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Sadagopan NS, Nandoliya KR, Youngblood MW, Horbinski CM, Ahrendsen JT, Magill ST. A novel BRAF::PTPRN2 fusion in meningioma: a case report. Acta Neuropathol Commun 2023; 11:194. [PMID: 38066633 PMCID: PMC10704634 DOI: 10.1186/s40478-023-01668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
Gene fusion events have been linked to oncogenesis in many cancers. However, gene fusions in meningioma are understudied compared to somatic mutations, chromosomal gains/losses, and epigenetic changes. Fusions involving B-raf proto-oncogene, serine/threonine kinase (BRAF) are subtypes of oncogenic BRAF genetic abnormalities that have been reported in certain cases of brain tumors, such as pilocytic astrocytomas. However, BRAF fusions have not been recognized in meningioma. We present the case of an adult female presenting with episodic partial seizures characterized by déjà vu, confusion, and cognitive changes. Brain imaging revealed a cavernous sinus and sphenoid wing mass and she underwent resection. Histopathology revealed a World Health Organization (WHO) grade 1 meningioma. Genetic profiling with next generation sequencing and microarray analysis revealed an in-frame BRAF::PTPRN2 fusion affecting the BRAF kinase domain as well as chromothripsis of chromosome 7q resulting in multiple segmental gains and losses including amplifications of cyclin dependent kinase 6 (CDK6), tyrosine protein-kinase Met (MET), and smoothened (SMO). Elevated pERK staining in tumor cells provided evidence of activated mitogen-activated protein kinase (MAPK) signaling. This report raises the possibility that gene fusion events may be involved in meningioma pathogenesis and warrant further investigation.
Collapse
Affiliation(s)
- Nishanth S Sadagopan
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Khizar R Nandoliya
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|
8
|
Zhou J, Du Z. Case Report: Recurrent meningioma with multiple metastases. Front Oncol 2023; 13:1192575. [PMID: 37529695 PMCID: PMC10388547 DOI: 10.3389/fonc.2023.1192575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Post-surgery recurrence of meningiomas with multiple extracranial metastases is rare. Currently, information on extracranial metastases is limited, and no clear predictors and standardized treatment protocols can be applied clinically. Herein, we report a case of meningioma that recurred after two surgeries and had multiple distant metastases. Computed tomography revealed multiple enlarged lymph nodes in the para-aortic arch, left lower lung region, retroperitoneum, and abdominopelvic region, as well as soft tissue mass-like lesions under the liver capsule in the right lobe of the liver. Magnetic resonance imaging showed space-occupying lesions under the cranial plate of the left parietal lobe. Tissue biopsy confirmed the diagnosis of recurrent meningioma with extracranial metastases. Immune checkpoint inhibitors and anti-angiogenic drugs were administered. After two treatment cycles, the patient's clinical symptoms were significantly relieved, and the imaging assessment confirmed a stable disease. Although it did not meet our expectations, this combination therapy still demonstrated a possible benefit in improving meningioma patients' survival and quality of life. In this report, along with the case, we also review the relevant literature on the subject and discuss the associated risk factors and treatment options.
Collapse
Affiliation(s)
- Juyue Zhou
- Graduate Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Zhonghai Du
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
9
|
Mitobe Y, Suzuki S, Nakagawa-Saito Y, Togashi K, Sugai A, Sonoda Y, Kitanaka C, Okada M. The Novel MDM4 Inhibitor CEP-1347 Activates the p53 Pathway and Blocks Malignant Meningioma Growth In Vitro and In Vivo. Biomedicines 2023; 11:1967. [PMID: 37509605 PMCID: PMC10377688 DOI: 10.3390/biomedicines11071967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
A significant proportion of meningiomas are clinically aggressive, but there is currently no effective chemotherapy for meningiomas. An increasing number of studies have been conducted to develop targeted therapies, yet none have focused on the p53 pathway as a potential target. In this study, we aimed to determine the in vitro and in vivo effects of CEP-1347, a small-molecule inhibitor of MDM4 with known safety in humans. The effects of CEP-1347 and MDM4 knockdown on the p53 pathway in human meningioma cell lines with and without p53 mutation were examined by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 were examined in vitro and in a mouse xenograft model of meningioma. In vitro, CEP-1347 at clinically relevant concentrations inhibited MDM4 expression, activated the p53 pathway in malignant meningioma cells with wild-type p53, and exhibited preferential growth inhibitory effects on cells expressing wild-type p53, which was mostly mimicked by MDM4 knockdown. CEP-1347 effectively inhibited the growth of malignant meningioma xenografts at a dose that was far lower than the maximum dose that could be safely given to humans. Our findings suggest targeting the p53 pathway with CEP-1347 represents a novel and viable approach to treating aggressive meningiomas.
Collapse
Affiliation(s)
- Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| |
Collapse
|
10
|
Li Y, Drappatz J. Advances in the systemic therapy for recurrent meningiomas and the challenges ahead. Expert Rev Neurother 2023; 23:995-1004. [PMID: 37695700 DOI: 10.1080/14737175.2023.2254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Meningiomas represent the most common primary neoplasms of the central nervous system (CNS). 20% present with atypical (WHO grade II) or malignant (grade III) meningiomas, which show aggressive biologic behavior and high recurrence. Although surgical resection and radiation therapy are the primary treatment options for these tumors, there is a subgroup of patients who do not respond well to or are poor candidates for these approaches, leading to the exploration of systemic therapies as an alternative. AREAS COVERED The literature on different therapeutic groups of systemic drugs for recurrent meningiomas is reviewed, with a focus on the different molecular targets. Past and current ongoing clinical trials are also discussed. EXPERT OPINION To date, there is no recognized treatment that has demonstrated a substantial increase in progression-free or overall survival rates. Nonetheless, therapies targeting anti-VEGF have exhibited more encouraging results in general. The examination of genomic and epigenomic traits of meningiomas, along with the integration of molecular markers into the latest WHO tumor grading system, has provided valuable insights. This has opened avenues for exploring numerous intracellular and extracellular pathways, as well as mutations, that have been targeted in ongoing clinical trials.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jan Drappatz
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Graillon T, Tabouret E, Salgues B, Horowitz T, Padovani L, Appay R, Farah K, Dufour H, Régis J, Guedj E, Barlier A, Chinot O. Innovative treatments for meningiomas. Rev Neurol (Paris) 2023; 179:449-463. [PMID: 36959063 DOI: 10.1016/j.neurol.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Multi-recurrent high-grade meningiomas remain an unmet medical need in neuro-oncology when iterative surgeries and radiation therapy sessions fail to control tumor growth. Nevertheless, the last 10years have been marked by multiple advances in the comprehension of meningioma tumorigenesis via the discovery of new driver mutations, the identification of activated intracellular signaling pathways, and DNA methylation analyses, providing multiple potential therapeutic targets. Today, Anti-VEGF and mTOR inhibitors are the most used and probably the most active drugs in aggressive meningiomas. Peptide radioactive radiation therapy aims to target SSTR2A receptors, which are strongly expressed in meningiomas, but have an insufficient effect in most aggressive meningiomas, requiring the development of new techniques to increase the dose applied to the tumor. Based on the multiple potential intracellular targets, multiple targeted therapy clinical trials targeting Pi3K-Akt-mTOR and MAP kinase pathways as well as cell cycle and particularly, cyclin D4-6 are ongoing. Recently discovered driver mutations, SMO, Akt, and PI3KCA, offer new targets but are mostly observed in benign meningiomas, limiting their clinical relevance mainly to rare aggressive skull base meningiomas. Therefore, NF2 mutation remains the most frequent mutation and main challenging target in high-grade meningioma. Recently, inhibitors of focal adhesion kinase (FAK), which is involved in tumor cell adhesion, were tested in a phase 2 clinical trial with interesting but insufficient activity. The Hippo pathway was demonstrated to interact with NF2/Merlin and could be a promising target in NF2-mutated meningiomas with ongoing multiple preclinical studies and a phase 1 clinical trial. Recent advances in immune landscape comprehension led to the proposal of the use of immunotherapy in meningiomas. Except in rare cases of MSH2/6 mutation or high tumor mass burden, the activity of PD-1 inhibitors remains limited; however, its combination with various radiation therapy modalities is particularly promising. On the whole, therapeutic management of high-grade meningiomas is still challenging even with multiple promising therapeutic targets and innovations.
Collapse
Affiliation(s)
- T Graillon
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France.
| | - E Tabouret
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - B Salgues
- Nuclear Medicine Department, Groupe Hospitalier Pitié-Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - T Horowitz
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - L Padovani
- AP-HM, Timone Hospital, Radiotherapy Department, Marseille, France
| | - R Appay
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France; Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - K Farah
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - H Dufour
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France
| | - J Régis
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - E Guedj
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - A Barlier
- Aix-Marseille University, AP-HM, Inserm, MMG, Laboratory of Molecular Biology Hospital La Conception, Marseille, France
| | - O Chinot
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| |
Collapse
|
12
|
Barden MM, Omuro AM. Top advances of the year: Neuro-oncology. Cancer 2023; 129:1467-1472. [PMID: 36825454 DOI: 10.1002/cncr.34711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Management of brain tumors has been challenging given the limited therapeutic options and disabling morbidities associated with central nervous system (CNS) dysfunction. This review focuses on recent developments in the field, with an emphasis on clinical management. The growing clinical trials landscape reflects advanced insights into cancer immunology and genomics and the need to address molecular and clinical heterogeneity. Recent phase 3 trials investigating anti-PD-1 immunotherapies, particularly nivolumab, have failed to demonstrate improved survival in glioblastoma, underscoring the need to better understand the complexity of CNS immunologic surveillance. Conversely, targeted therapies have accounted for several US Food and Drug Administration approvals extended to brain tumors, particularly therapies directed to BRAF V600E mutations and TRAK fusions, underscoring a need to routinely screen patients for these rare molecular abnormalities. In primary CNS lymphoma, attention has turned to long-term outcomes of consolidation therapies, and recent studies have highlighted the excellent disease control afforded by high-dose chemotherapy and stem cell transplantation. Meningiomas remain a focus of investigations, with preliminary promising results observed with octreotide combined with mTOR inhibition, and immunotherapy with single-agent pembrolizumab. Finally, proton radiotherapy has emerged as a novel alternative for leptomeningeal metastases from solid tumors, which can now be treated more safely with craniospinal irradiation and monitored by the enumeration of circulating tumor cells in the cerebrospinal fluid as a biomarker. Taken together, these incremental advances have improved outcomes in select brain tumor patient populations, whereas ongoing clinical trials hold the promise of meaningful advances and breakthroughs for larger proportions of patients with brain tumors.
Collapse
Affiliation(s)
- Mary M Barden
- Yale Cancer Center and Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Antonio M Omuro
- Yale Cancer Center and Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Drappatz J. How useful is chemotherapy for atypical and anaplastic meningiomas? Expert Opin Pharmacother 2022; 23:1559-1561. [PMID: 36189940 DOI: 10.1080/14656566.2022.2131394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jan Drappatz
- Departments of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Amadasu E, Panther E, Lucke-Wold B. Characterization and Treatment of Spinal Tumors. INTENSIVE CARE RESEARCH 2022; 2:76-95. [PMID: 36741203 PMCID: PMC9893847 DOI: 10.1007/s44231-022-00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023]
Abstract
AbstractThe prevalence of spinal tumors is rare in comparison to brain tumors which encompass most central nervous system tumors. Tumors of the spine can be divided into primary and metastatic tumors with the latter being the most common presentation. Primary tumors are subdivided based on their location on the spinal column and in the spinal cord into intramedullary, intradural extramedullary, and primary bone tumors. Back pain is a common presentation in spine cancer patients; however, other radicular pain may be present. Magnetic resonance imaging (MRI) is the imaging modality of choice for intradural extramedullary and intramedullary tumors. Plain radiographs are used in the initial diagnosis of primary bone tumors while Computed tomography (CT) and MRI may often be necessary for further characterization. Complete surgical resection is the treatment of choice for spinal tumors and may be curative for well circumscribed lesions. However, intralesional resection along with adjuvant radiation and chemotherapy can be indicated for patients that would experience increased morbidity from damage to nearby neurological structures caused by resection with wide margins. Even with the current treatment options, the prognosis for aggressive spinal cancer remains poor. Advances in novel treatments including molecular targeting, immunotherapy and stem cell therapy provide the potential for greater control of malignant and metastatic tumors of the spine.
Collapse
|
15
|
Okano A, Miyawaki S, Teranishi Y, Ohara K, Hongo H, Sakai Y, Ishigami D, Nakatomi H, Saito N. Advances in Molecular Biological and Translational Studies in World Health Organization Grades 2 and 3 Meningiomas: A Literature Review. Neurol Med Chir (Tokyo) 2022; 62:347-360. [PMID: 35871574 PMCID: PMC9464479 DOI: 10.2176/jns-nmc.2022-0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The treatment of World Health Organization (WHO) grades 2 and 3 meningiomas remains difficult and controversial. The pathogenesis of high-grade meningiomas was expected to be elucidated to improve treatment strategies. The molecular biology of meningiomas has been clarified in recent years. High-grade meningiomas have been linked to NF2 mutations and 22q deletion. CDKN2A/B homozygous deletion and TERT promoter mutations are independent prognostic factors for WHO grade 3 meningiomas. In addition to 22q loss, 1p, 14p, and 9q loss have been linked to high-grade meningiomas. Meningiomas enriched in copy number alterations may be biologically invasive. Furthermore, several new comprehensive classifications of meningiomas have been proposed based on these molecular biological features, including DNA methylation status. The new classifications may have implications for treatment strategies for refractory aggressive meningiomas because they provide a more accurate prognosis compared to the conventional WHO classification. Although several systemic therapies, including molecular targeted therapies, may be effective in treating refractory aggressive meningiomas, these drugs are being tested. Systemic drug therapy for meningioma is expected to be developed in the future. Thus, this review aims to discuss the distinct genomic alterations observed in WHO grade 2 and 3 meningiomas, as well as their diagnostic and therapeutic implications and systemic drug therapies for high-grade meningiomas.
Collapse
Affiliation(s)
- Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
- Department of Neurosurgery, Kyorin University
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| |
Collapse
|
16
|
Somatostatin Receptor Theranostics for Refractory Meningiomas. Curr Oncol 2022; 29:5550-5565. [PMID: 36005176 PMCID: PMC9406720 DOI: 10.3390/curroncol29080438] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Somatostatin receptor (SSTR)-targeted peptide receptor radionuclide therapy (PRRT) represents a promising approach for treatment-refractory meningiomas progressing after surgery and radiotherapy. The aim of this study was to provide outcomes of patients harboring refractory meningiomas treated by 177Lu-DOTATATE and an overall analysis of progression-free survival at 6 months (PFS-6) of the same relevant studies in the literature. Eight patients with recurrent and progressive WHO grade II meningiomas were treated after multimodal pretreatment with 177Lu-DOTATATE between 2019 and 2022. Primary and secondarily endpoints were progression-free survival at 6-months (PFS-6) and toxicity, respectively. PFS-6 analysis of our case series was compared with other similar relevant studies that included 86 patients treated with either 177Lu-DOTATATE or 90Y-DOTATOC. Our retrospective study showed a PFS-6 of 85.7% for WHO grade II progressive refractory meningiomas. Treatment was clinically and biologically well tolerated. The overall analysis of the previous relevant studies showed a PFS-6 of 89.7% for WHO grade I meningiomas (n = 29); 57.1% for WHO grade II (n = 21); and 0 % for WHO grade III (n = 12). For all grades (n = 86), including unknown grades, PFS-6 was 58.1%. SSTR-targeted PRRT allowed us to achieve prolonged PFS-6 in patients with WHO grade I and II progressive refractory meningiomas, except the most aggressive WHO grade II tumors. Large scale randomized trials are warranted for the better integration of PRRT in the treatment of refractory meningioma into clinical practice guidelines.
Collapse
|
17
|
Zhu YF, Wang SJ, Zhou J, Sun YH, Chen YM, Ma J, Huo XX, Song H. Effects of N6-Methyladenosine Modification on Cancer Progression: Molecular Mechanisms and Cancer Therapy. Front Oncol 2022; 12:897895. [PMID: 35707365 PMCID: PMC9189310 DOI: 10.3389/fonc.2022.897895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
N6-methyladenosine (m6A) is a major internal epigenetic modification in eukaryotic mRNA, which is dynamic and reversible. m6A is regulated by methylases (“writers”) and demethylases (“erasers”) and is recognized and processed by m6A-binding proteins (“readers”), which further regulate RNA transport, localization, translation, and degradation. It plays a role in promoting or suppressing tumors and has the potential to become a therapeutic target for malignant tumors. In this review, we focus on the mutual regulation of m6A and coding and non-coding RNAs and introduce the molecular mechanism of m6A methylation involved in regulation and its role in cancer treatment by taking common female malignant tumors as an example.
Collapse
Affiliation(s)
- Yong-fu Zhu
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- The Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shu-Jie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jie Zhou
- The Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye-han Sun
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - You-mou Chen
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jia Ma
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xing-xing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Hang Song, ; Xing-xing Huo,
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Hang Song, ; Xing-xing Huo,
| |
Collapse
|
18
|
Patel B, Desai R, Pugazenthi S, Butt OH, Huang J, Kim AH. Identification and Management of Aggressive Meningiomas. Front Oncol 2022; 12:851758. [PMID: 35402234 PMCID: PMC8984123 DOI: 10.3389/fonc.2022.851758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are common primary central nervous system tumors derived from the meninges, with management most frequently entailing serial monitoring or a combination of surgery and/or radiation therapy. Although often considered benign lesions, meningiomas can not only be surgically inaccessible but also exhibit aggressive growth and recurrence. In such cases, adjuvant radiation and systemic therapy may be required for tumor control. In this review, we briefly describe the current WHO grading scale for meningioma and provide demonstrative cases of treatment-resistant meningiomas. We also summarize frequently observed molecular abnormalities and their correlation with intracranial location and recurrence rate. We then describe how genetic and epigenetic features might supplement or even replace histopathologic features for improved identification of aggressive lesions. Finally, we describe the role of surgery, radiotherapy, and ongoing systemic therapy as well as precision medicine clinical trials for the treatment of recurrent meningioma.
Collapse
Affiliation(s)
- Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Sangami Pugazenthi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Omar H. Butt
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, United States,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Jiayi Huang
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States,Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States,*Correspondence: Albert H. Kim,
| |
Collapse
|