1
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
2
|
Xu H, Kim D, Zhao YY, Kim C, Song G, Hu Q, Kang H, Yoon J. Remote Control of Energy Transformation-Based Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402806. [PMID: 38552256 DOI: 10.1002/adma.202402806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Cancer treatment requires precise tumor-specific targeting at specific sites that allows for high-resolution diagnostic imaging and long-term patient-tailorable cancer therapy; while, minimizing side effects largely arising from non-targetability. This can be realized by harnessing exogenous remote stimuli, such as tissue-penetrative ultrasound, magnetic field, light, and radiation, that enable local activation for cancer imaging and therapy in deep tumors. A myriad of nanomedicines can be efficiently activated when the energy of such remote stimuli can be transformed into another type of energy. This review discusses the remote control of energy transformation for targetable, efficient, and long-term cancer imaging and therapy. Such ultrasonic, magnetic, photonic, radiative, and radioactive energy can be transformed into mechanical, thermal, chemical, and radiative energy to enable a variety of cancer imaging and treatment modalities. The current review article describes multimodal energy transformation where a serial cascade or multiple types of energy transformation occur. This review includes not only mechanical, chemical, hyperthermia, and radiation therapy but also emerging thermoelectric, pyroelectric, and piezoelectric therapies for cancer treatment. It also illustrates ultrasound, magnetic resonance, fluorescence, computed tomography, photoluminescence, and photoacoustic imaging-guided cancer therapies. It highlights afterglow imaging that can eliminate autofluorescence for sustained signal emission after the excitation.
Collapse
Affiliation(s)
- Hai Xu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yuan-Yuan Zhao
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
3
|
Pineda-Pardo JA, Martínez-Fernández R, Natera-Villalba E, Ruiz-Yanzi A, Rodríguez-Rojas R, Del Alamo M, Jiménez-Castellanos T, Matarazzo M, Gasca-Salas C, Rascol O, Obeso JA. Skull Density Ratio as Arm-Allocation Parameter for a Controlled Focused Ultrasound Trial in Parkinson's Disease. Mov Disord Clin Pract 2024; 11:825-829. [PMID: 38741245 PMCID: PMC11233930 DOI: 10.1002/mdc3.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/17/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND MR-guided focused ultrasound (FUS) thermoablation is an established therapy for movement disorders. FUS candidates must meet a predefined threshold of skull density ratio (SDR), a parameter that accounts for the efficiency in reaching ablative temperatures. Randomized sham-controlled trials to provide definitive therapeutic evidence employ pure randomization of subjects into active treatment or control arms. The latter design has several general limitations. OBJECTIVE To demonstrate that SDR values are not associated with clinically and demographically relevant variables in patients with Parkinson's disease (PD). This in turn would allow using SDR as an arm-allocation parameter, separating patients who will receive active FUS treatment and best medical management treatment (BMT). METHODS We studied a cohort of 215 PD patients who were candidates for FUS subthalamotomy to determine if the SDR was correlated with demographic or clinical variables that could introduce bias for group allocation in a controlled trial. RESULTS SDR was unassociated with age, gender, and clinical motor features nor with levodopa daily dose in our cohort of PD patients. A negative association with age was found for the female subgroup. CONCLUSIONS Our results show that in a PD population considered for FUS subthalamotomy treatment, the SDR may be a valid group-allocation parameter. This could be considered as the basis for a controlled study comparing FUS subthalamotomy vs BMT.
Collapse
Affiliation(s)
- José Angel Pineda-Pardo
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Raul Martínez-Fernández
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Elena Natera-Villalba
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- PhD Medicine Program, Universidad Autonoma de Madrid, Madrid, Spain
| | - Agustina Ruiz-Yanzi
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Rafael Rodríguez-Rojas
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - Marta Del Alamo
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Tamara Jiménez-Castellanos
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Michele Matarazzo
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Carmen Gasca-Salas
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Universidad San Pablo-CEU, Madrid, Spain
| | - Olivier Rascol
- Clinical Investigation Center CIC 1436, NS-Park/F-CRIN Network and NeuroToul COEN Center; Inserm, University of Toulouse 3 and CHU of Toulouse, F-31000, Toulouse, France
| | - José A Obeso
- HM CINAC MADRID (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
4
|
Ciocca M, Jameel A, Yousif N, Patel N, Smith J, Akgun S, Jones B, Gedroyc W, Nandi D, Tai Y, Seemungal BM, Bain P. Illusions of Self-Motion during Magnetic Resonance-Guided Focused Ultrasound Thalamotomy for Tremor. Ann Neurol 2024; 96:121-132. [PMID: 38709569 DOI: 10.1002/ana.26945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Brain networks mediating vestibular perception of self-motion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. METHODS Here, we systematically report how magnetic resonance-guided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patient-reported illusions of self-motion. In 46 consecutive patients, we linked the descriptions of self-motion to sonication power and 3-dimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. RESULTS A total of 63% of patients reported illusions of self-motion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of self-motion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). INTERPRETATION The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of self-motion. Temporary unilateral modulation of vestibular pathways (via magnetic resonance-guided focused ultrasound) unveils the central adaptation to the magnetic field-induced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonance-guided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024;96:121-132.
Collapse
Affiliation(s)
- Matteo Ciocca
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Ayesha Jameel
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Nada Yousif
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Neekhil Patel
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Joely Smith
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sena Akgun
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Brynmor Jones
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wlayslaw Gedroyc
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Dipankar Nandi
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Yen Tai
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Barry M Seemungal
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Peter Bain
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Mohamed AA, Faragalla S, Khan A, Flynn G, Rainone G, Johansen PM, Lucke-Wold B. Neurosurgical and pharmacological management of dystonia. World J Psychiatry 2024; 14:624-634. [PMID: 38808085 PMCID: PMC11129150 DOI: 10.5498/wjp.v14.i5.624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Dystonia characterizes a group of neurological movement disorders characterized by abnormal muscle movements, often with repetitive or sustained contraction resulting in abnormal posturing. Different types of dystonia present based on the affected body regions and play a prominent role in determining the potential efficacy of a given intervention. For most patients afflicted with these disorders, an exact cause is rarely identified, so treatment mainly focuses on symptomatic alleviation. Pharmacological agents, such as oral anticholinergic administration and botulinum toxin injection, play a major role in the initial treatment of patients. In more severe and/or refractory cases, focal areas for neurosurgical intervention are identified and targeted to improve quality of life. Deep brain stimulation (DBS) targets these anatomical locations to minimize dystonia symptoms. Surgical ablation procedures and peripheral denervation surgeries also offer potential treatment to patients who do not respond to DBS. These management options grant providers and patients the ability to weigh the benefits and risks for each individual patient profile. This review article explores these pharmacological and neurosurgical management modalities for dystonia, providing a comprehensive assessment of each of their benefits and shortcomings.
Collapse
Affiliation(s)
- Ali Ahmed Mohamed
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Steven Faragalla
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Asad Khan
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Garrett Flynn
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Gersham Rainone
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606, United States
| | - Phillip Mitchell Johansen
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
6
|
Muksuris K, Scarisbrick DM, Mahoney JJ, Cherkasova MV. Noninvasive Neuromodulation in Parkinson's Disease: Insights from Animal Models. J Clin Med 2023; 12:5448. [PMID: 37685514 PMCID: PMC10487610 DOI: 10.3390/jcm12175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The mainstay treatments for Parkinson's Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroconvulsive therapy (ECT), and focused ultrasound (FUS). While these methods are being tested in PD patients, investigations in animal models of PD have sought to elucidate their therapeutic mechanisms. In this rapid review, we assess the available animal literature on these noninvasive techniques and discuss the possible mechanisms mediating their therapeutic effects based on these findings.
Collapse
Affiliation(s)
- Katherine Muksuris
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - David M. Scarisbrick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Mahoney
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Mariya V. Cherkasova
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
7
|
Brock KK, Chen SR, Sheth RA, Siewerdsen JH. Imaging in Interventional Radiology: 2043 and Beyond. Radiology 2023; 308:e230146. [PMID: 37462500 PMCID: PMC10374939 DOI: 10.1148/radiol.230146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/21/2023]
Abstract
Since its inception in the early 20th century, interventional radiology (IR) has evolved tremendously and is now a distinct clinical discipline with its own training pathway. The arsenal of modalities at work in IR includes x-ray radiography and fluoroscopy, CT, MRI, US, and molecular and multimodality imaging within hybrid interventional environments. This article briefly reviews the major developments in imaging technology in IR over the past century, summarizes technologies now representative of the standard of care, and reflects on emerging advances in imaging technology that could shape the field in the century ahead. The role of emergent imaging technologies in enabling high-precision interventions is also briefly reviewed, including image-guided ablative therapies.
Collapse
Affiliation(s)
- Kristy K. Brock
- From the Departments of Imaging Physics (K.K.B., J.H.S.),
Interventional Radiology (S.R.C., R.A.S.), Neurosurgery (J.H.S.), and Radiation
Physics (J.H.S.), The University of Texas MD Anderson Cancer Center, 1400
Pressler St, FCT14.6050 Pickens Academic Tower, Houston, TX 77030-4000
| | - Stephen R. Chen
- From the Departments of Imaging Physics (K.K.B., J.H.S.),
Interventional Radiology (S.R.C., R.A.S.), Neurosurgery (J.H.S.), and Radiation
Physics (J.H.S.), The University of Texas MD Anderson Cancer Center, 1400
Pressler St, FCT14.6050 Pickens Academic Tower, Houston, TX 77030-4000
| | - Rahul A. Sheth
- From the Departments of Imaging Physics (K.K.B., J.H.S.),
Interventional Radiology (S.R.C., R.A.S.), Neurosurgery (J.H.S.), and Radiation
Physics (J.H.S.), The University of Texas MD Anderson Cancer Center, 1400
Pressler St, FCT14.6050 Pickens Academic Tower, Houston, TX 77030-4000
| | - Jeffrey H. Siewerdsen
- From the Departments of Imaging Physics (K.K.B., J.H.S.),
Interventional Radiology (S.R.C., R.A.S.), Neurosurgery (J.H.S.), and Radiation
Physics (J.H.S.), The University of Texas MD Anderson Cancer Center, 1400
Pressler St, FCT14.6050 Pickens Academic Tower, Houston, TX 77030-4000
| |
Collapse
|