1
|
Suzuki N, Mori-Yoshimura M, Nishino I, Aoki M. Ultra-Orphan drug development for GNE Myopathy: A synthetic literature review and meta-analysis. J Neuromuscul Dis 2024:22143602241296226. [PMID: 39973407 DOI: 10.1177/22143602241296226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
GNE myopathy is an autosomal recessive hereditary muscle disorder that has the following clinical characteristics: develops in early adulthood, gradually progresses from the distal muscles, and is relatively sparing of quadriceps until the advanced stages of the disease. With further progression, patients become non-ambulatory and need a wheelchair. There is growing concern about extra-muscular presentations such as thrombocytopenia, respiratory dysfunction, and sleep apnea syndrome. Pathologically, rimmed vacuoles and tubulofilamentous inclusions are observed in affected muscles. The cause of the disease is thought to be a sialic acid deficiency due to mutations of the GNE gene required for in vivo sialic acid biosynthesis. Sialic acid supplementation to a presymptomatic GNE myopathy mouse model was effective in preventing the development of the disease. Several clinical studies have been conducted to evaluate the safety and efficacy of sialic acid supplementation in humans. Based on the favorable results of these studies, an extended-release aceneuramic acid formulation was approved for treatment of GNE myopathy in Japan in March 2024. It is anticipated that it will be a significant step in the development of an effective treatment for GNE myopathy and other ultra-orphan diseases.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Suzuki N, Mori-Yoshimura M, Katsuno M, Takahashi MP, Yamashita S, Oya Y, Hashizume A, Yamada S, Nakamori M, Izumi R, Kato M, Warita H, Tateyama M, Kuroda H, Asada R, Yamaguchi T, Nishino I, Aoki M. Safety and efficacy of aceneuramic acid in GNE myopathy: open-label extension study. J Neurol Neurosurg Psychiatry 2024; 95:1093-1094. [PMID: 38839274 PMCID: PMC11503044 DOI: 10.1136/jnnp-2024-333853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Hospital, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Satoshi Yamashita
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Hospital, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaaki Kato
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kuroda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuta Asada
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research and Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Yoshioka W, Nakamura H, Oba M, Saito Y, Nishino I, Mori-Yoshimura M. Large phenotypic diversity by genotype in patients with GNE myopathy: 10 years after the establishment of a national registry in Japan. J Neurol 2024; 271:4453-4461. [PMID: 38691167 DOI: 10.1007/s00415-024-12396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND GNE myopathy is an ultra-rare autosomal recessive distal myopathy caused by pathogenic variants of the GNE gene, which encodes a key enzyme in sialic acid biosynthesis. The present study aimed to examine the long-term progression of GNE myopathy, genotype-phenotype correlations, and complications to provide useful information for predicting patient progression and designing clinical trials using a large collection of registry data over a 10-year period. METHODS We analyzed 220 Japanese patients with GNE myopathy from a national registry in Japan. Diagnoses were confirmed by genetic curators based on genetic analysis reports. We analyzed registration sheets and annually updated items completed by attending physicians. RESULTS In total, 197 of 220 participants (89.5%) carried p.D207V or p.V603L in at least one allele. The median disease duration to loss of ambulation was estimated to be 10 years in p.V603L homozygotes (n = 48), whereas more than 90% of p.D207V/p.V603L compound heterozygotes were estimated to be ambulatory even 20 years after disease onset according to Kaplan-Meier analysis (p < 0.001). Moreover, participants with a younger age of onset lost ambulation earlier regardless of genotype. A decline in respiratory function was observed as the disease progressed, particularly in p.V603L homozygotes, whereas none of the p.D207V/p.V603L compound heterozygotes showed a decline. CONCLUSIONS The present study demonstrated large differences in disease progression and respiratory function between genotypes. Moreover, age of onset was found to be an indicator of disease severity regardless of genotype in GNE myopathy patients. These results may help stratify patients in clinical trials and predict disease progression.
Collapse
Affiliation(s)
- Wakako Yoshioka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Harumasa Nakamura
- Department of Clinical Research Support, Clinical Research & Education Promotion Division, National Center Hospital, NCNP, Tokyo, Japan
| | - Mari Oba
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, NCNP, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
4
|
Tamanna N, Pi BK, Lee AJ, Kanwal S, Choi BO, Chung KW. Recessive GNE Mutations in Korean Nonaka Distal Myopathy Patients with or without Peripheral Neuropathy. Genes (Basel) 2024; 15:485. [PMID: 38674419 PMCID: PMC11050279 DOI: 10.3390/genes15040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Autosomal recessive Nonaka distal myopathy is a rare autosomal recessive genetic disease characterized by progressive degeneration of the distal muscles, causing muscle weakness and decreased grip strength. It is primarily associated with mutations in the GNE gene, which encodes a key enzyme of sialic acid biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase). This study was performed to find GNE mutations in six independent distal myopathy patients with or without peripheral neuropathy using whole-exome sequencing (WES). In silico pathogenic prediction and simulation of 3D structural changes were performed for the mutant GNE proteins. As a result, we identified five pathogenic or likely pathogenic missense variants: c.86T>C (p.Met29Thr), c.527A>T (p.Asp176Val), c.782T>C (p.Met261Thr), c.1714G>C (p.Val572Leu), and c.1771G>A (p.Ala591Thr). Five affected individuals showed compound heterozygous mutations, while only one patient revealed a homozygous mutation. Two patients revealed unreported combinations of combined heterozygous mutations. We observed some specific clinical features, such as complex phenotypes of distal myopathy with distal hereditary peripheral neuropathy, an earlier onset of weakness in legs than that of hands, and clinical heterogeneity between two patients with the same set of compound heterozygous mutations. Our findings on these genetic causes expand the clinical spectrum associated with the GNE mutations and can help prepare therapeutic strategies.
Collapse
Affiliation(s)
- Nasrin Tamanna
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (N.T.); (B.K.P.); (A.J.L.)
| | - Byung Kwon Pi
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (N.T.); (B.K.P.); (A.J.L.)
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (N.T.); (B.K.P.); (A.J.L.)
| | - Sumaira Kanwal
- Department of Biosciences, COMSATS University Islamabad, Sahiwal 45550, Pakistan;
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology, Seoul 06351, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (N.T.); (B.K.P.); (A.J.L.)
| |
Collapse
|
5
|
Neu CT, Weilepp L, Bork K, Gesper A, Horstkorte R. GNE deficiency impairs Myogenesis in C2C12 cells and cannot be rescued by ManNAc supplementation. Glycobiology 2024; 34:cwae004. [PMID: 38224318 PMCID: PMC10987290 DOI: 10.1093/glycob/cwae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
GNE myopathy (GNEM) is a late-onset muscle atrophy, caused by mutations in the gene for the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). With an incidence of one to nine cases per million it is an ultra-rare, so far untreatable, autosomal recessive disease. Several attempts have been made to treat GNEM patients by oral supplementation with sialic acid precursors (e.g. N-acetylmannosamine, ManNAc) to restore sarcolemmal sialylation and muscle strength. In most studies, however, no significant improvement was observed. The lack of a suitable mouse model makes it difficult to understand the exact pathomechanism of GNEM and many years of research have failed to identify the role of GNE in skeletal muscle due to the lack of appropriate tools. We established a CRISPR/Cas9-mediated Gne-knockout cell line using murine C2C12 cells to gain insight into the actual role of the GNE enzyme and sialylation in a muscular context. The main aspect of this study was to evaluate the therapeutic potential of ManNAc and N-acetylneuraminic acid (Neu5Ac). Treatment of Gne-deficient C2C12 cells with Neu5Ac, but not with ManNAc, showed a restoration of the sialylation level back to wild type levels-albeit only with long-term treatment, which could explain the rather low therapeutic potential. We furthermore highlight the importance of sialic acids on myogenesis, for C2C12 Gne-knockout myoblasts lack the ability to differentiate into mature myotubes.
Collapse
Affiliation(s)
- Carolin T Neu
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Linus Weilepp
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Kaya Bork
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Astrid Gesper
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| |
Collapse
|
6
|
Zhao M, Zhu Y, Wang H, Zhang W, Mu W. Recent advances on N-acetylneuraminic acid: Physiological roles, applications, and biosynthesis. Synth Syst Biotechnol 2023; 8:509-519. [PMID: 37502821 PMCID: PMC10369400 DOI: 10.1016/j.synbio.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
N-Acetylneuraminic acid (Neu5Ac), the most common type of Sia, generally acts as the terminal sugar in cell surface glycans, glycoconjugates, oligosaccharides, lipo-oligosaccharides, and polysaccharides, thus exerting numerous physiological functions. The extensive applications of Neu5Ac in the food, cosmetic, and pharmaceutical industries make large-scale production of this chemical desirable. Biosynthesis which is associated with important application potential and environmental friendliness has become an indispensable approach for large-scale synthesis of Neu5Ac. In this review, the physiological roles of Neu5Ac was first summarized in detail. Second, the safety evaluation, regulatory status, and applications of Neu5Ac were discussed. Third, enzyme-catalyzed preparation, whole-cell biocatalysis, and microbial de novo synthesis of Neu5Ac were comprehensively reviewed. In addition, we discussed the main challenges of Neu5Ac de novo biosynthesis, such as screening and engineering of key enzymes, identifying exporters of intermediates and Neu5Ac, and balancing cell growth and biosynthesis. The corresponding strategies and systematic strategies were proposed to overcome these challenges and facilitate Neu5Ac industrial-scale production.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong, 250010, PR China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| |
Collapse
|
7
|
Mori-Yoshimura M, Suzuki N, Katsuno M, Takahashi MP, Yamashita S, Oya Y, Hashizume A, Yamada S, Nakamori M, Izumi R, Kato M, Warita H, Tateyama M, Kuroda H, Asada R, Yamaguchi T, Nishino I, Aoki M. Efficacy confirmation study of aceneuramic acid administration for GNE myopathy in Japan. Orphanet J Rare Dis 2023; 18:241. [PMID: 37568154 PMCID: PMC10416530 DOI: 10.1186/s13023-023-02850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND A rare muscle disease, GNE myopathy is caused by mutations in the GNE gene involved in sialic acid biosynthesis. Our recent phase II/III study has indicated that oral administration of aceneuramic acid to patients slows disease progression. METHODS We conducted a phase III, randomized, placebo-controlled, double-blind, parallel-group, multicenter study. Participants were assigned to receive an extended-release formulation of aceneuramic acid (SA-ER) or placebo. Changes in muscle strength and function over 48 weeks were compared between treatment groups using change in the upper extremity composite (UEC) score from baseline to Week 48 as the primary endpoint and the investigator-assessed efficacy rate as the key secondary endpoint. For safety, adverse events, vital signs, body weight, electrocardiogram, and clinical laboratory results were monitored. RESULTS A total of 14 patients were enrolled and given SA-ER (n = 10) or placebo (n = 4) tablets orally. Decrease in least square mean (LSM) change in UEC score at Week 48 with SA-ER (- 0.115 kg) was numerically smaller as compared with placebo (- 2.625 kg), with LSM difference (95% confidence interval) of 2.510 (- 1.720 to 6.740) kg. In addition, efficacy was higher with SA-ER as compared with placebo. No clinically significant adverse events or other safety concerns were observed. CONCLUSIONS The present study reproducibly showed a trend towards slowing of loss of muscle strength and function with orally administered SA-ER, indicating supplementation with sialic acid might be a promising replacement therapy for GNE myopathy. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT04671472).
Collapse
Affiliation(s)
- Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Satoshi Yamashita
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Masaaki Kato
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Hiroshi Kuroda
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Ryuta Asada
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience and Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan.
| |
Collapse
|